Land subsidence susceptibility assessment using random forest machine learning algorithm

The mechanism of land subsidence and soil deformation deals with the dissipation of excess pore water pressure and the compaction of soil skeleton under the effect of natural or man-made factors, which can lead to serious disasters in the process of urbanization. The negative effects of land subside...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental earth sciences Ročník 78; číslo 16; s. 1 - 12
Hlavní autoři: Mohammady, Majid, Pourghasemi, Hamid Reza, Amiri, Mojtaba
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
Springer Nature B.V
Témata:
ISSN:1866-6280, 1866-6299
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The mechanism of land subsidence and soil deformation deals with the dissipation of excess pore water pressure and the compaction of soil skeleton under the effect of natural or man-made factors, which can lead to serious disasters in the process of urbanization. The negative effects of land subsidence include structural and fundamental damages to underground and aboveground infrastructures such as pipelines and buildings, changes in land surface morphology, and creation of earth fissures. Arid and semi-arid countries like Iran are highly prone to land subsidence phenomenon. In these regions, precipitation rate and natural recharges are relatively lower than those of the global average showing the importance of ground waters for agricultural and industrial activities. Land subsidence has already occurred in more than 300 plains in Iran. Semnan Plain is one of the most important areas facing this phenomenon. The purpose of this research was to assess land subsidence susceptibility using random forest machine learning theory. At first, prioritization of conditioning factors was done using random forest method. Results showed that distance from fault, elevation, slope angle, land use, and water table have the greatest impacts on subsidence occurrence. Then land subsidence susceptibility map was prepared in GIS and R environment. The receiver operating characteristic curve was applied to assess the accuracy of random forest algorithm. The area under the curve by value of 0.77 showed that random forest is an acceptable model for land subsidence susceptibility mapping in the study area. The research results can provide a basis for the protection of environment and also promote the sustainable development of economy and society.
AbstractList The mechanism of land subsidence and soil deformation deals with the dissipation of excess pore water pressure and the compaction of soil skeleton under the effect of natural or man-made factors, which can lead to serious disasters in the process of urbanization. The negative effects of land subsidence include structural and fundamental damages to underground and aboveground infrastructures such as pipelines and buildings, changes in land surface morphology, and creation of earth fissures. Arid and semi-arid countries like Iran are highly prone to land subsidence phenomenon. In these regions, precipitation rate and natural recharges are relatively lower than those of the global average showing the importance of ground waters for agricultural and industrial activities. Land subsidence has already occurred in more than 300 plains in Iran. Semnan Plain is one of the most important areas facing this phenomenon. The purpose of this research was to assess land subsidence susceptibility using random forest machine learning theory. At first, prioritization of conditioning factors was done using random forest method. Results showed that distance from fault, elevation, slope angle, land use, and water table have the greatest impacts on subsidence occurrence. Then land subsidence susceptibility map was prepared in GIS and R environment. The receiver operating characteristic curve was applied to assess the accuracy of random forest algorithm. The area under the curve by value of 0.77 showed that random forest is an acceptable model for land subsidence susceptibility mapping in the study area. The research results can provide a basis for the protection of environment and also promote the sustainable development of economy and society.
ArticleNumber 503
Author Amiri, Mojtaba
Pourghasemi, Hamid Reza
Mohammady, Majid
Author_xml – sequence: 1
  givenname: Majid
  surname: Mohammady
  fullname: Mohammady, Majid
  email: majid.mohammady@semnan.ac.ir
  organization: Department of Range and Watershed Management Engineering, College of Natural Resources, Semnan University
– sequence: 2
  givenname: Hamid Reza
  surname: Pourghasemi
  fullname: Pourghasemi, Hamid Reza
  organization: Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University
– sequence: 3
  givenname: Mojtaba
  surname: Amiri
  fullname: Amiri, Mojtaba
  organization: Department of Range and Watershed Management Engineering, College of Natural Resources, Semnan University
BookMark eNp9kE9LwzAYh4MoOOc-gLeCFy_VJmnS5ijDfzDwouAtpGmyZbTJzJse_PZmTBQEzSUv5HnC7_2doWMfvEHoAlfXuKqaG8CEc1ZWWJQtw21Jj9AMt5yXnAhx_D231SlaAGyrfCimouIz9LZSvi9g6sD1xmuTR9Bml1znBpc-CgVgAEbjUzGB8-siZj6MhQ3RQCpGpTfOm2IwKvr9sxrWIbq0Gc_RiVUDmMXXPUev93cvy8dy9fzwtLxdlYo2JJVYKMW6hplaENJ1jDWtVZRg1lnWK2x0bzBvlCXMMlrXvdW4q4WmwtYdrXVP5-jq8O8uhvcpZ5KjyxsMg_ImTCAJxYxwQTDP6OUvdBum6HM6SQhvBWUtJ5lqDpSOASAaK7VLKrngU1RukLiS-9LloXSZS5f70iXNJv5l7qIbVfz41yEHBzLr1yb-ZPpb-gRnXJdW
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_118685
crossref_primary_10_1016_j_scs_2025_106719
crossref_primary_10_1016_j_measurement_2024_114387
crossref_primary_10_1007_s41748_025_00659_2
crossref_primary_10_3390_jmse13030559
crossref_primary_10_1016_j_envsoft_2025_106679
crossref_primary_10_1017_dmp_2022_187
crossref_primary_10_1016_j_catena_2023_107695
crossref_primary_10_1155_2022_9752512
crossref_primary_10_1038_s41598_024_62959_3
crossref_primary_10_1371_journal_pone_0233398
crossref_primary_10_1038_s41598_022_26526_y
crossref_primary_10_1002_ldr_4788
crossref_primary_10_1186_s40249_024_01219_y
crossref_primary_10_3390_rs17132231
crossref_primary_10_3390_rs14071748
crossref_primary_10_1016_j_asr_2024_09_054
crossref_primary_10_1016_j_scitotenv_2020_139954
crossref_primary_10_1016_j_trgeo_2020_100497
crossref_primary_10_1007_s12517_022_09531_3
crossref_primary_10_1038_s41598_023_32173_8
crossref_primary_10_1007_s10064_024_03629_6
crossref_primary_10_1155_2022_2754302
crossref_primary_10_1016_j_scs_2022_103677
crossref_primary_10_1007_s12665_023_10909_z
crossref_primary_10_1029_2023GL104497
crossref_primary_10_1111_wej_12688
crossref_primary_10_1016_j_scitotenv_2024_174285
crossref_primary_10_1007_s11069_021_04986_1
crossref_primary_10_1007_s11356_021_16924_6
crossref_primary_10_3390_earth6030061
crossref_primary_10_1007_s10064_020_01915_7
crossref_primary_10_3389_fenvs_2021_787053
crossref_primary_10_3390_land12040843
crossref_primary_10_1016_j_jclepro_2022_132428
crossref_primary_10_3389_feart_2023_1117004
crossref_primary_10_3390_rs13071326
crossref_primary_10_1016_j_jenvman_2020_110525
crossref_primary_10_1016_j_rsase_2024_101223
crossref_primary_10_1007_s12065_021_00608_8
crossref_primary_10_1007_s11069_023_05878_2
crossref_primary_10_1007_s11069_022_05410_y
crossref_primary_10_2478_geosc_2022_0008
crossref_primary_10_3390_rs14133229
crossref_primary_10_3390_rs15194795
crossref_primary_10_1007_s11069_022_05624_0
crossref_primary_10_1080_10106049_2022_2086631
crossref_primary_10_1007_s12665_020_09238_2
crossref_primary_10_1080_19648189_2020_1763842
crossref_primary_10_1371_journal_pone_0287079
crossref_primary_10_1016_j_buildenv_2023_110602
crossref_primary_10_1007_s10712_020_09609_1
crossref_primary_10_1016_j_gr_2023_09_019
crossref_primary_10_1007_s11356_023_27799_0
crossref_primary_10_1016_j_ijdrr_2024_104750
crossref_primary_10_1080_17538947_2023_2297842
crossref_primary_10_3390_w13020216
crossref_primary_10_3390_ma15051817
crossref_primary_10_1007_s11069_024_06991_6
crossref_primary_10_1007_s00477_020_01810_3
crossref_primary_10_1016_j_jhydrol_2025_133015
crossref_primary_10_1016_j_buildenv_2024_111301
crossref_primary_10_3390_land13030322
crossref_primary_10_1016_j_ctarc_2021_100396
crossref_primary_10_1002_ldr_4721
crossref_primary_10_1016_j_ecoinf_2023_102342
crossref_primary_10_1007_s00477_020_01967_x
crossref_primary_10_1515_jag_2024_0031
crossref_primary_10_1002_gj_4603
crossref_primary_10_3390_land13101583
crossref_primary_10_1016_j_heliyon_2024_e31085
crossref_primary_10_1016_j_scitotenv_2020_142928
crossref_primary_10_1080_10106049_2023_2248069
crossref_primary_10_1371_journal_pone_0232828
crossref_primary_10_3390_geosciences13050133
crossref_primary_10_1080_10106049_2020_1841835
crossref_primary_10_1007_s11069_020_04169_4
crossref_primary_10_1007_s11356_021_17750_6
crossref_primary_10_1080_10106049_2022_2066198
crossref_primary_10_1080_17538947_2025_2499199
crossref_primary_10_1016_j_jenvman_2021_112067
crossref_primary_10_1007_s10666_023_09910_4
crossref_primary_10_1016_j_ecoinf_2023_101980
crossref_primary_10_1007_s10706_024_03031_9
crossref_primary_10_1016_j_gsf_2019_10_001
crossref_primary_10_3390_rs15112851
Cites_doi 10.1007/s10661-018-6507-8
10.1007/s12665-017-6731-5
10.1016/S0013-7952(98)00051-9
10.1007/s10040-012-0892-9
10.1007/s10040-002-0225-5
10.1890/07-0539.1
10.1111/j.1745-6584.1977.tb03180.x
10.1007/s12665-015-4950-1
10.1016/j.foreco.2012.03.003
10.1007/s12517-017-2985-1
10.1080/14498596.2018.1505564
10.1093/bib/bbq011
10.1007/978-0-387-84858-7
10.1186/s40703-017-0069-4
10.1016/j.geoderma.2018.12.042
10.1111/j.1745-6584.1992.tb01575.x
10.1007/s00267-011-9766-5
10.1016/j.enggeo.2009.10.001
10.1016/j.rse.2009.04.015
10.1007/s00254-002-0669-x
10.1061/(ASCE)GM.1943-5622.0000060
10.1007/s12040-014-0532-y
10.1016/S0013-7952(98)00056-8
10.1007/s12665-016-5928-3
10.1016/j.jenvman.2013.04.010
10.1007/s10064-018-1403-6
10.3390/s18082464
10.1016/j.ecolind.2015.12.030
10.1007/s11069-016-2404-z
10.1111/j.1467-9523.2006.00310.x
10.1007/s12517-017-3207-6
10.1007/s11069-017-2749-y
10.1111/j.1365-246X.2009.04135.x
10.1061/41003(327)16
10.1007/s10040-017-1712-z
10.3133/cir1182
10.3178/hrl.11.99
10.1007/s10040-015-1356-9
10.1016/j.geomorph.2016.02.012
10.1016/j.enggeo.2008.02.011
10.1007/s00254-008-1315-z
10.1016/j.ecolmodel.2011.12.007
10.1007/s13762-014-0728-3
10.1007/s11634-018-0318-1
10.1007/s00254-001-0504-9
10.1007/s10040-015-1329-z
10.1007/978-1-4419-9890-3_12
10.1007/s11069-012-0247-9
10.1007/s00254-005-0010-6
10.1016/j.catena.2015.10.010
10.1007/s10346-015-0614-1
10.1023/A:1010933404324
10.1016/j.catena.2017.11.022
10.1016/j.catena.2016.11.032
10.1007/s00704-016-2022-4
10.1007/s11069-015-1714-x
10.1007/s10661-015-5049-6
10.1016/j.rse.2011.05.013
10.1016/S0013-7952(01)00118-1
10.1061/(ASCE)1090-0241(2003)129:3(197)
10.5194/nhess-13-2815-2013
10.1007/s40328-015-0118-4
10.1002/hyp.3360050103
10.1016/j.rse.2005.10.014
10.1061/40796(177)11
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Environmental Earth Sciences is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Environmental Earth Sciences is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7ST
7TG
7UA
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s12665-019-8518-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Proquest Central Journals
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Proquest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database (subscription)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-6299
EndPage 12
ExternalDocumentID 10_1007_s12665_019_8518_3
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID -5A
-5G
-BR
-DZ
-EM
-Y2
-~C
.4S
.DC
06D
0R~
0VY
199
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40D
40E
4P2
5VS
67M
67Z
6NX
7XC
88I
8FE
8FH
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IKXTQ
ITM
IWAJR
J-C
J0Z
JBSCW
JZLTJ
KOV
L8X
LK5
LLZTM
M2P
M4Y
M7R
MA-
ML.
MQGED
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PATMY
PCBAR
PF-
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7V
Z7W
Z7Y
Z7Z
Z81
Z83
Z85
ZCG
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
7ST
7TG
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-a372t-19aa5b75e4922bb5578fa3215bf5da1ecde167af25f5344dfc1b49c39f4b34cd3
IEDL.DBID RSV
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000479127800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1866-6280
IngestDate Fri Sep 05 07:41:52 EDT 2025
Tue Dec 02 16:06:42 EST 2025
Sat Nov 29 02:05:27 EST 2025
Tue Nov 18 22:23:56 EST 2025
Fri Feb 21 02:33:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Land subsidence
Random forest
Groundwater
Iran
Mean decrease Gini
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a372t-19aa5b75e4922bb5578fa3215bf5da1ecde167af25f5344dfc1b49c39f4b34cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2268935862
PQPubID 54063
PageCount 12
ParticipantIDs proquest_miscellaneous_2315269216
proquest_journals_2268935862
crossref_citationtrail_10_1007_s12665_019_8518_3
crossref_primary_10_1007_s12665_019_8518_3
springer_journals_10_1007_s12665_019_8518_3
PublicationCentury 2000
PublicationDate 20190800
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 8
  year: 2019
  text: 20190800
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Environmental earth sciences
PublicationTitleAbbrev Environ Earth Sci
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Tharp (CR61) 1999; 52
Dai, Lei, Liu, Tang, Lai, Yuhr, Alexander, Beck (CR16) 2008
Orndorff, Weary, Lagueux (CR45) 2000; 29
De Luna, Garnes, Cabral, Santos (CR17) 2017; 86
Moe, Kure, Januriyadi, Farid, Udo, Kazama, Koshimura (CR38) 2017; 11
Suganthi, Elango, Subramanian (CR60) 2017
Mohammady, Morady, Zeinivand, Temme (CR39) 2015; 12
He, Liu, Wang (CR25) 2003; 43
CR35
Stumpf, Kerle (CR59) 2011; 115
Cui, Li, Jia (CR14) 2016; 84
Ye, Xue, Wu, Yan, Yu (CR75) 2016; 24
CR76
Dehghani, ValadanZoej, Entezam, Mansourian, Saatchi (CR18) 2009; 178
Naghibi, Pourghasemi, Dixon (CR41) 2016; 188
Peng, Sun, Wang, Sun (CR47) 2016; 75
Chen, Xie, Wang, Pradhan, Hong, Bui, Duan, Ma (CR12) 2017; 151
Wang, Nguyen, Huang, Nguyen (CR66) 2018
Zhang, Wu, Niu, Yang, Zhao (CR78) 2017; 76
Breiman (CR6) 2001; 45
Williams (CR69) 2011
Xu, Ma, Shen, Sun (CR72) 2012; 20
CR4
Qin, Andrews, Tian, Cao, Luo, Liu (CR52) 2018; 26
Liaw, Wiener (CR37) 2002; 2
Bouwer (CR5) 1977; 15
CR7
Xu, Yuan, Shen, Yin, Wu, Ma (CR73) 2015; 78
Pourghasemi, Kerle (CR49) 2016; 75
Hastie, Tibshirani, Friedman (CR24) 2009
Sahu, Yadav, Das, Prakash, Kumar (CR55) 2017
Kaufmann, Quinif (CR29) 2002; 65
Whitman, Gubbels, Powel (CR68) 1999; 65
Kotsiantis, Pintelas (CR31) 2004; 1
Li, Zhou, Xu (CR36) 2013; 671–674
Cutler, Edwards, Beard, Cutler, Hess, Gibson, Lawler (CR15) 2007; 88
Lee, Park (CR33) 2013; 127
Rodolfo, Siringan (CR54) 2006; 30
Tien Bui, Shahabi, Shirzadi, Chapi, Pradhan, Chen, Khosravi, Panahi, Ahmed, Lee (CR63) 2018; 18
Catani, Lagomarsino, Segoni, Tofani (CR10) 2013; 13
Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (CR77) 2016; 13
Pourghasemi, Rahmati (CR50) 2018; 162
Wang, Hu, Wu, Tang, Zhu, Yang (CR65) 2009; 57
Watts, Lawrence, Miller, Montagne (CR67) 2009; 113
Conway (CR13) 2016; 24
Khorsandi Aghai (CR30) 2015; 124
Oliveira, Oehler, San-Miguel-Ayanz, Camia, Pereira (CR44) 2012; 275
Vorpahl, Elsenbeer, Märker, Schröder (CR64) 2012; 239
Lee, Park, Choi (CR34) 2012; 49
Karimzadeh (CR28) 2015
Augarde, Lyamin, Sloan (CR3) 2003; 129
Hong, Pourghasemi, Pourtaghi (CR26) 2016; 259
Santos, Cabral, Pontes Filho (CR56) 2012; 64
Naghibi, Pourghasemi, Abbaspour (CR42) 2018
Shi, Wu, Ye, Zhang, Xue, Wei, Li, Yu (CR57) 2008; 100
Abdollahi, Pourghasemi, Ghanbarian, Safaeian (CR1) 2018
Ghorbanzadeh, Blaschke, Aryal, Gholaminia (CR22) 2018
Park, Lee, Lee (CR46) 2014; 6
Calle, Urrea (CR9) 2010; 12
Forth, Butcher, Senior (CR19) 1999; 52
Wilson, Beck (CR70) 1992; 30
Rahmati, Pourghasemi, Melesse (CR53) 2016; 137
Nandi, Shakoor (CR43) 2010; 110
Pourtaghi, Pourghasemi, Aretanoc, Semeraro (CR51) 2016; 64
Xue, Zhang, Ye, Wu, Li (CR74) 2005; 48
Galloway, Jones, Ingebritsen (CR20) 1999; 1182
Budhu (CR8) 2011; 11
Amiri, Pourghasemi, Ghanbariana, Afzali (CR2) 2019; 340
Lawrence, Wood, Sheley (CR32) 2006; 100
Tharp (CR62) 2002; 42
Pirouzi, Eslami (CR48) 2017
Golkarian, Naghibi, Kalantar, Pradhan (CR23) 2018; 190
Moore, Grayson, Ladson (CR40) 1991; 5
Chen, Pei, Jiao (CR11) 2003; 11
Simon, Soriano, Bobrowsky (CR58) 2002
8518_CR4
JD Watts (8518_CR67) 2009; 113
A Nandi (8518_CR43) 2010; 110
8518_CR7
TJ Hastie (8518_CR24) 2009
CE Augarde (8518_CR3) 2003; 129
J Dai (8518_CR16) 2008
ML Calle (8518_CR9) 2010; 12
C Chen (8518_CR11) 2003; 11
O Rahmati (8518_CR53) 2016; 137
AM Youssef (8518_CR77) 2016; 13
H Bouwer (8518_CR5) 1977; 15
K Zhang (8518_CR78) 2017; 76
D Tien Bui (8518_CR63) 2018; 18
S Ye (8518_CR75) 2016; 24
K He (8518_CR25) 2003; 43
A Stumpf (8518_CR59) 2011; 115
A Liaw (8518_CR37) 2002; 2
HR Pourghasemi (8518_CR50) 2018; 162
D Whitman (8518_CR68) 1999; 65
O Kaufmann (8518_CR29) 2002; 65
RL Lawrence (8518_CR32) 2006; 100
8518_CR76
H Hong (8518_CR26) 2016; 259
RA Forth (8518_CR19) 1999; 52
SP Sahu (8518_CR55) 2017
8518_CR35
RC Orndorff (8518_CR45) 2000; 29
S Karimzadeh (8518_CR28) 2015
I Park (8518_CR46) 2014; 6
O Ghorbanzadeh (8518_CR22) 2018
IR Moe (8518_CR38) 2017; 11
P Vorpahl (8518_CR64) 2012; 239
S Kotsiantis (8518_CR31) 2004; 1
TM Tharp (8518_CR62) 2002; 42
Graham Williams (8518_CR69) 2011
A Golkarian (8518_CR23) 2018; 190
ZS Pourtaghi (8518_CR51) 2016; 64
M Amiri (8518_CR2) 2019; 340
ID Moore (8518_CR40) 1991; 5
W Chen (8518_CR12) 2017; 151
TM Tharp (8518_CR61) 1999; 52
BD Conway (8518_CR13) 2016; 24
JL Simon (8518_CR58) 2002
SA Naghibi (8518_CR42) 2018
DL Galloway (8518_CR20) 1999; 1182
M Dehghani (8518_CR18) 2009; 178
M Mohammady (8518_CR39) 2015; 12
S Abdollahi (8518_CR1) 2018
XQ Shi (8518_CR57) 2008; 100
WL Wilson (8518_CR70) 1992; 30
H Qin (8518_CR52) 2018; 26
S Lee (8518_CR34) 2012; 49
F Catani (8518_CR10) 2013; 13
Z Li (8518_CR36) 2013; 671–674
S Oliveira (8518_CR44) 2012; 275
SM Santos (8518_CR56) 2012; 64
L Breiman (8518_CR6) 2001; 45
DR Cutler (8518_CR15) 2007; 88
JB Peng (8518_CR47) 2016; 75
HR Pourghasemi (8518_CR49) 2016; 75
RMR De Luna (8518_CR17) 2017; 86
YS Xu (8518_CR72) 2012; 20
KS Rodolfo (8518_CR54) 2006; 30
S Suganthi (8518_CR60) 2017
A Pirouzi (8518_CR48) 2017
J Wang (8518_CR65) 2009; 57
S Lee (8518_CR33) 2013; 127
A Khorsandi Aghai (8518_CR30) 2015; 124
Q Wang (8518_CR66) 2018
M Budhu (8518_CR8) 2011; 11
ZD Cui (8518_CR14) 2016; 84
SA Naghibi (8518_CR41) 2016; 188
YQ Xue (8518_CR74) 2005; 48
YS Xu (8518_CR73) 2015; 78
References_xml – volume: 190
  start-page: 149
  year: 2018
  ident: CR23
  article-title: Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-018-6507-8
– volume: 76
  start-page: 405
  year: 2017
  ident: CR78
  article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-017-6731-5
– volume: 52
  start-page: 23
  year: 1999
  end-page: 33
  ident: CR61
  article-title: Mechanics of upward propagation of cover-collapse sinkholes
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(98)00051-9
– volume: 20
  start-page: 1623
  issue: 8
  year: 2012
  end-page: 1634
  ident: CR72
  article-title: Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-012-0892-9
– volume: 11
  start-page: 275
  issue: 2
  year: 2003
  end-page: 287
  ident: CR11
  article-title: Land subsidence caused by groundwater exploitation in Suzhou City, China
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-002-0225-5
– volume: 88
  start-page: 2783
  issue: 11
  year: 2007
  end-page: 2792
  ident: CR15
  article-title: Random forests for classification in ecology
  publication-title: Ecology
  doi: 10.1890/07-0539.1
– ident: CR4
– volume: 15
  start-page: 358
  year: 1977
  end-page: 364
  ident: CR5
  article-title: Land subsidence and cracking due to ground water depletion
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1977.tb03180.x
– volume: 75
  start-page: 185
  year: 2016
  ident: CR49
  article-title: Random forest-evidential belief function based landslide susceptibility assessment in western Mazandaran Province, Iran
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4950-1
– volume: 275
  start-page: 117
  year: 2012
  end-page: 129
  ident: CR44
  article-title: Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2012.03.003
– year: 2017
  ident: CR55
  publication-title: Multivariate statistical approach for assessment of subsidence in Jharia coalfields
  doi: 10.1007/s12517-017-2985-1
– year: 2018
  ident: CR22
  article-title: A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping
  publication-title: J Spat Sci
  doi: 10.1080/14498596.2018.1505564
– volume: 12
  start-page: 86
  issue: 1
  year: 2010
  end-page: 89
  ident: CR9
  article-title: Letter to the editor: stability of random forest importance measures
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbq011
– year: 2009
  ident: CR24
  publication-title: The elements of statistical learning
  doi: 10.1007/978-0-387-84858-7
– year: 2017
  ident: CR48
  article-title: Ground subsidence in plains around Tehran: site survey, records compilation and analysis
  publication-title: J Geo-Eng Int
  doi: 10.1186/s40703-017-0069-4
– ident: CR35
– volume: 340
  start-page: 55
  year: 2019
  end-page: 69
  ident: CR2
  article-title: Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.042
– volume: 30
  start-page: 918
  issue: 6
  year: 1992
  end-page: 930
  ident: CR70
  article-title: Hydrogeologic factors in affecting new sinkhole development in the Orlando area, Florida
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1992.tb01575.x
– volume: 49
  start-page: 347
  issue: 2
  year: 2012
  end-page: 358
  ident: CR34
  article-title: Spatial prediction of ground subsidence susceptibility using an artificial neural network
  publication-title: Environ Manag
  doi: 10.1007/s00267-011-9766-5
– volume: 110
  start-page: 11
  year: 2010
  end-page: 20
  ident: CR43
  article-title: A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2009.10.001
– volume: 113
  start-page: 1843
  year: 2009
  end-page: 1852
  ident: CR67
  article-title: Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2009.04.015
– volume: 6
  start-page: 207
  issue: 2
  year: 2014
  end-page: 218
  ident: CR46
  article-title: Ensemble of ground subsidence hazard maps using fuzzy logic
  publication-title: Cent Eur J Geosci
– volume: 43
  start-page: 720
  year: 2003
  end-page: 724
  ident: CR25
  article-title: Karst collapse related to over-pumping and a criterion for its stability
  publication-title: Environ Geol
  doi: 10.1007/s00254-002-0669-x
– volume: 11
  start-page: 1
  issue: 1
  year: 2011
  end-page: 11
  ident: CR8
  article-title: Earth fissure formation from the mechanics of groundwater pumping
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0000060
– volume: 124
  start-page: 261
  issue: 1
  year: 2015
  end-page: 268
  ident: CR30
  article-title: Survey of land subsidence—case study: the land subsidence formation in artificial recharge ponds at South Hamadan Power Plant, northwest of Iran
  publication-title: J Earth Syst Sci
  doi: 10.1007/s12040-014-0532-y
– volume: 52
  start-page: 67
  year: 1999
  end-page: 74
  ident: CR19
  article-title: Hazard mapping of karst along the coast of the Algarve, Portugal
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(98)00056-8
– volume: 75
  start-page: 1190
  year: 2016
  ident: CR47
  article-title: Characteristics of land subsidence, earth fissures and related disaster chain effects with respect to urban hazards in Xi’an
  publication-title: China. Environ Earth Sci
  doi: 10.1007/s12665-016-5928-3
– volume: 127
  start-page: 166
  year: 2013
  end-page: 176
  ident: CR33
  article-title: Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2013.04.010
– year: 2018
  ident: CR1
  article-title: Prioritization of effective factors in the occurrence of land subsidence and its susceptibility mapping using SVM model and their different kernel functions
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1403-6
– volume: 18
  start-page: 2464
  year: 2018
  ident: CR63
  article-title: Land subsidence susceptibility mapping in South Korea using machine learning algorithms
  publication-title: Sensors
  doi: 10.3390/s18082464
– volume: 64
  start-page: 72
  year: 2016
  end-page: 84
  ident: CR51
  article-title: Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2015.12.030
– volume: 84
  start-page: 35
  year: 2016
  end-page: 53
  ident: CR14
  article-title: Model test study on the subsidence of high-rise building group due to variation of groundwater level
  publication-title: Nat Hazards
  doi: 10.1007/s11069-016-2404-z
– volume: 30
  start-page: 118
  issue: 1
  year: 2006
  end-page: 139
  ident: CR54
  article-title: Global sea-level rise is recognized, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines
  publication-title: Disasters
  doi: 10.1111/j.1467-9523.2006.00310.x
– year: 2017
  ident: CR60
  publication-title: Microwave D-InSAR technique for assessment of land subsidence in Kolkata city
  doi: 10.1007/s12517-017-3207-6
– volume: 86
  start-page: 1363
  year: 2017
  end-page: 1376
  ident: CR17
  article-title: Groundwater overexploitation and soil subsidence monitoring on Recife plain (Brazil)
  publication-title: Nat Hazards
  doi: 10.1007/s11069-017-2749-y
– volume: 178
  start-page: 47
  year: 2009
  end-page: 56
  ident: CR18
  article-title: InSAR monitoring of progressive land subsidence in Neyshabour, Northeast Iran
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2009.04135.x
– start-page: 156
  year: 2008
  end-page: 164
  ident: CR16
  article-title: An assessment of karst collapse hazards in Guilin, Guangxi Province, China
  publication-title: Sinkholes and the engineering and environmental impacts of Karst
  doi: 10.1061/41003(327)16
– volume: 26
  start-page: 1061
  issue: 4
  year: 2018
  end-page: 1081
  ident: CR52
  article-title: Groundwater-pumping optimization for land-subsidence control in Beijing plain, China
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-017-1712-z
– start-page: 649
  year: 2002
  end-page: 666
  ident: CR58
  article-title: Actual and potential doline subsidence hazard mapping: case study in the Ebro basin (Spain)
  publication-title: Geoenvironmental mapping: method, theory and practice
– volume: 1182
  start-page: 175
  year: 1999
  ident: CR20
  article-title: Land subsidence in the United States
  publication-title: US Geol Surv Circ
  doi: 10.3133/cir1182
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: CR37
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 11
  start-page: 99
  issue: 2
  year: 2017
  end-page: 105
  ident: CR38
  article-title: Future projection of flood inundation considering land-use changes and land subsidence in Jakarta, Indonesia
  publication-title: Hydrol Res Lett
  doi: 10.3178/hrl.11.99
– volume: 24
  start-page: 685
  year: 2016
  end-page: 693
  ident: CR75
  article-title: Progression and mitigation of land subsidence in China
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-015-1356-9
– volume: 259
  start-page: 105
  year: 2016
  end-page: 118
  ident: CR26
  article-title: Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.02.012
– volume: 100
  start-page: 27
  issue: 1
  year: 2008
  end-page: 42
  ident: CR57
  article-title: Regional land subsidence simulation in Su-xi-Chang area and Shanghai City, China
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2008.02.011
– volume: 57
  start-page: 447
  issue: 2
  year: 2009
  end-page: 453
  ident: CR65
  article-title: Hydraulic barrier function of the underground continuous concrete wall in the pit of subway station and its optimization
  publication-title: Environ Geol
  doi: 10.1007/s00254-008-1315-z
– volume: 239
  start-page: 27
  year: 2012
  end-page: 39
  ident: CR64
  article-title: How can statistical models help to determine driving factors of landslides?
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2011.12.007
– volume: 12
  start-page: 1515
  issue: 5
  year: 2015
  end-page: 1526
  ident: CR39
  article-title: A comparison of supervised, unsupervised and synthetic land use classification methods in the North of Iran
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-014-0728-3
– year: 2018
  ident: CR66
  article-title: an efficient random forests algorithm for high dimensional data classification
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-018-0318-1
– volume: 671–674
  start-page: 105
  year: 2013
  end-page: 108
  ident: CR36
  article-title: Research on prediction model of support vector machine based land subsidence caused by foundation pit dewatering
  publication-title: Adv Mat Res
– volume: 42
  start-page: 447
  year: 2002
  end-page: 456
  ident: CR62
  article-title: Poroelastic analysis of cover-collapse sinkhole formation by piezometric surface drawdown
  publication-title: Environ Geol
  doi: 10.1007/s00254-001-0504-9
– volume: 24
  start-page: 649
  issue: 3
  year: 2016
  end-page: 655
  ident: CR13
  article-title: Land subsidence and earth fissures in south central and southern Arizona, USA
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-015-1329-z
– start-page: 245
  year: 2011
  end-page: 268
  ident: CR69
  article-title: Random Forests
  publication-title: Data Mining with Rattle and R
  doi: 10.1007/978-1-4419-9890-3_12
– volume: 64
  start-page: 421
  year: 2012
  end-page: 439
  ident: CR56
  article-title: Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0247-9
– volume: 65
  start-page: 1169
  year: 1999
  end-page: 1178
  ident: CR68
  article-title: Spatial relationship between lake elevations, water tables and sinkhole occurrence in central Florida: a GIS approach
  publication-title: Photogramm Eng Remote Sens
– volume: 48
  start-page: 713
  issue: 6
  year: 2005
  end-page: 720
  ident: CR74
  article-title: Land subsidence in China
  publication-title: Environ Geol
  doi: 10.1007/s00254-005-0010-6
– volume: 137
  start-page: 360
  year: 2016
  end-page: 372
  ident: CR53
  article-title: Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2015.10.010
– volume: 13
  start-page: 839
  issue: 5
  year: 2016
  end-page: 856
  ident: CR77
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir region, Saudi Arabia
  publication-title: Landslides
  doi: 10.1007/s10346-015-0614-1
– volume: 45
  start-page: 5
  issue: l
  year: 2001
  end-page: 32
  ident: CR6
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 162
  start-page: 177
  year: 2018
  end-page: 192
  ident: CR50
  article-title: Rapid GIS-based spatial and regional modelling of landslide susceptibility using machine learning techniques in the R open source software
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.11.022
– volume: 29
  start-page: 161
  year: 2000
  end-page: 175
  ident: CR45
  article-title: Geographic information system analysis of geologic controls on the distribution of dolines in the Ozarks of South Central Missouri
  publication-title: Acta Carsologica
– volume: 151
  start-page: 147
  year: 2017
  end-page: 160
  ident: CR12
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: CATENA
  doi: 10.1016/j.catena.2016.11.032
– year: 2018
  ident: CR42
  article-title: A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-016-2022-4
– volume: 78
  start-page: 281
  issue: 1
  year: 2015
  end-page: 296
  ident: CR73
  article-title: Investigation into subsidence hazards due to groundwater pumping from aquifer II in Changzhou, China
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-1714-x
– volume: 188
  start-page: 44
  issue: 1
  year: 2016
  ident: CR41
  article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-015-5049-6
– volume: 115
  start-page: 2564
  year: 2011
  end-page: 2577
  ident: CR59
  article-title: Object-oriented mapping of landslides using random forests
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2011.05.013
– volume: 65
  start-page: 117
  year: 2002
  end-page: 124
  ident: CR29
  article-title: Geohazard map of cover-collapse sinkholes in the Tournaisis area, southern Belgium
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(01)00118-1
– volume: 129
  start-page: 197
  year: 2003
  end-page: 205
  ident: CR3
  article-title: Prediction of undrained sinkhole collapse
  publication-title: J Geotech Geoenviron
  doi: 10.1061/(ASCE)1090-0241(2003)129:3(197)
– volume: 13
  start-page: 2815
  year: 2013
  end-page: 2831
  ident: CR10
  article-title: Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-13-2815-2013
– year: 2015
  ident: CR28
  article-title: Characterization of land subsidence in Tabriz basin (NW Iran) using InSAR and watershed analyses
  publication-title: Acta Geod Geophys
  doi: 10.1007/s40328-015-0118-4
– ident: CR7
– ident: CR76
– volume: 1
  start-page: 324
  issue: 4
  year: 2004
  end-page: 333
  ident: CR31
  article-title: Combining bagging and boosting
  publication-title: Int J Comput Intell
– volume: 5
  start-page: 3
  year: 1991
  end-page: 30
  ident: CR40
  article-title: Digital terrain modeling: a review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol Process
  doi: 10.1002/hyp.3360050103
– volume: 100
  start-page: 356
  year: 2006
  end-page: 362
  ident: CR32
  article-title: Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (Random Forest)
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2005.10.014
– volume: 115
  start-page: 2564
  year: 2011
  ident: 8518_CR59
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2011.05.013
– ident: 8518_CR7
– volume: 49
  start-page: 347
  issue: 2
  year: 2012
  ident: 8518_CR34
  publication-title: Environ Manag
  doi: 10.1007/s00267-011-9766-5
– volume: 24
  start-page: 685
  year: 2016
  ident: 8518_CR75
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-015-1356-9
– volume: 13
  start-page: 2815
  year: 2013
  ident: 8518_CR10
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-13-2815-2013
– volume: 88
  start-page: 2783
  issue: 11
  year: 2007
  ident: 8518_CR15
  publication-title: Ecology
  doi: 10.1890/07-0539.1
– year: 2017
  ident: 8518_CR48
  publication-title: J Geo-Eng Int
  doi: 10.1186/s40703-017-0069-4
– volume-title: Microwave D-InSAR technique for assessment of land subsidence in Kolkata city
  year: 2017
  ident: 8518_CR60
  doi: 10.1007/s12517-017-3207-6
– volume: 64
  start-page: 72
  year: 2016
  ident: 8518_CR51
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2015.12.030
– volume: 340
  start-page: 55
  year: 2019
  ident: 8518_CR2
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.042
– volume: 75
  start-page: 1190
  year: 2016
  ident: 8518_CR47
  publication-title: China. Environ Earth Sci
  doi: 10.1007/s12665-016-5928-3
– volume: 275
  start-page: 117
  year: 2012
  ident: 8518_CR44
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2012.03.003
– volume: 26
  start-page: 1061
  issue: 4
  year: 2018
  ident: 8518_CR52
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-017-1712-z
– volume: 48
  start-page: 713
  issue: 6
  year: 2005
  ident: 8518_CR74
  publication-title: Environ Geol
  doi: 10.1007/s00254-005-0010-6
– volume: 18
  start-page: 2464
  year: 2018
  ident: 8518_CR63
  publication-title: Sensors
  doi: 10.3390/s18082464
– volume: 162
  start-page: 177
  year: 2018
  ident: 8518_CR50
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.11.022
– volume: 137
  start-page: 360
  year: 2016
  ident: 8518_CR53
  publication-title: Catena
  doi: 10.1016/j.catena.2015.10.010
– volume: 13
  start-page: 839
  issue: 5
  year: 2016
  ident: 8518_CR77
  publication-title: Landslides
  doi: 10.1007/s10346-015-0614-1
– volume: 75
  start-page: 185
  year: 2016
  ident: 8518_CR49
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4950-1
– volume: 65
  start-page: 1169
  year: 1999
  ident: 8518_CR68
  publication-title: Photogramm Eng Remote Sens
– volume: 151
  start-page: 147
  year: 2017
  ident: 8518_CR12
  publication-title: CATENA
  doi: 10.1016/j.catena.2016.11.032
– volume: 259
  start-page: 105
  year: 2016
  ident: 8518_CR26
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.02.012
– start-page: 649
  volume-title: Geoenvironmental mapping: method, theory and practice
  year: 2002
  ident: 8518_CR58
– volume: 671–674
  start-page: 105
  year: 2013
  ident: 8518_CR36
  publication-title: Adv Mat Res
– volume: 12
  start-page: 1515
  issue: 5
  year: 2015
  ident: 8518_CR39
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-014-0728-3
– volume: 57
  start-page: 447
  issue: 2
  year: 2009
  ident: 8518_CR65
  publication-title: Environ Geol
  doi: 10.1007/s00254-008-1315-z
– volume: 15
  start-page: 358
  year: 1977
  ident: 8518_CR5
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1977.tb03180.x
– volume: 24
  start-page: 649
  issue: 3
  year: 2016
  ident: 8518_CR13
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-015-1329-z
– volume: 5
  start-page: 3
  year: 1991
  ident: 8518_CR40
  publication-title: Hydrol Process
  doi: 10.1002/hyp.3360050103
– volume: 42
  start-page: 447
  year: 2002
  ident: 8518_CR62
  publication-title: Environ Geol
  doi: 10.1007/s00254-001-0504-9
– volume-title: Multivariate statistical approach for assessment of subsidence in Jharia coalfields
  year: 2017
  ident: 8518_CR55
  doi: 10.1007/s12517-017-2985-1
– volume: 1182
  start-page: 175
  year: 1999
  ident: 8518_CR20
  publication-title: US Geol Surv Circ
  doi: 10.3133/cir1182
– volume: 6
  start-page: 207
  issue: 2
  year: 2014
  ident: 8518_CR46
  publication-title: Cent Eur J Geosci
– volume: 2
  start-page: 18
  year: 2002
  ident: 8518_CR37
  publication-title: R News
– year: 2018
  ident: 8518_CR22
  publication-title: J Spat Sci
  doi: 10.1080/14498596.2018.1505564
– year: 2018
  ident: 8518_CR42
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-016-2022-4
– volume: 178
  start-page: 47
  year: 2009
  ident: 8518_CR18
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2009.04135.x
– volume-title: The elements of statistical learning
  year: 2009
  ident: 8518_CR24
  doi: 10.1007/978-0-387-84858-7
– volume: 84
  start-page: 35
  year: 2016
  ident: 8518_CR14
  publication-title: Nat Hazards
  doi: 10.1007/s11069-016-2404-z
– volume: 30
  start-page: 118
  issue: 1
  year: 2006
  ident: 8518_CR54
  publication-title: Disasters
  doi: 10.1111/j.1467-9523.2006.00310.x
– volume: 43
  start-page: 720
  year: 2003
  ident: 8518_CR25
  publication-title: Environ Geol
  doi: 10.1007/s00254-002-0669-x
– volume: 65
  start-page: 117
  year: 2002
  ident: 8518_CR29
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(01)00118-1
– year: 2018
  ident: 8518_CR66
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-018-0318-1
– year: 2018
  ident: 8518_CR1
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1403-6
– volume: 1
  start-page: 324
  issue: 4
  year: 2004
  ident: 8518_CR31
  publication-title: Int J Comput Intell
– volume: 127
  start-page: 166
  year: 2013
  ident: 8518_CR33
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2013.04.010
– start-page: 156
  volume-title: Sinkholes and the engineering and environmental impacts of Karst
  year: 2008
  ident: 8518_CR16
  doi: 10.1061/41003(327)16
– volume: 190
  start-page: 149
  year: 2018
  ident: 8518_CR23
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-018-6507-8
– ident: 8518_CR35
  doi: 10.1061/40796(177)11
– ident: 8518_CR76
– volume: 45
  start-page: 5
  issue: l
  year: 2001
  ident: 8518_CR6
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 30
  start-page: 918
  issue: 6
  year: 1992
  ident: 8518_CR70
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1992.tb01575.x
– volume: 52
  start-page: 23
  year: 1999
  ident: 8518_CR61
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(98)00051-9
– volume: 64
  start-page: 421
  year: 2012
  ident: 8518_CR56
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0247-9
– volume: 11
  start-page: 275
  issue: 2
  year: 2003
  ident: 8518_CR11
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-002-0225-5
– year: 2015
  ident: 8518_CR28
  publication-title: Acta Geod Geophys
  doi: 10.1007/s40328-015-0118-4
– ident: 8518_CR4
– volume: 100
  start-page: 356
  year: 2006
  ident: 8518_CR32
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2005.10.014
– volume: 11
  start-page: 99
  issue: 2
  year: 2017
  ident: 8518_CR38
  publication-title: Hydrol Res Lett
  doi: 10.3178/hrl.11.99
– volume: 100
  start-page: 27
  issue: 1
  year: 2008
  ident: 8518_CR57
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2008.02.011
– volume: 76
  start-page: 405
  year: 2017
  ident: 8518_CR78
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-017-6731-5
– volume: 129
  start-page: 197
  year: 2003
  ident: 8518_CR3
  publication-title: J Geotech Geoenviron
  doi: 10.1061/(ASCE)1090-0241(2003)129:3(197)
– volume: 20
  start-page: 1623
  issue: 8
  year: 2012
  ident: 8518_CR72
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-012-0892-9
– volume: 86
  start-page: 1363
  year: 2017
  ident: 8518_CR17
  publication-title: Nat Hazards
  doi: 10.1007/s11069-017-2749-y
– volume: 124
  start-page: 261
  issue: 1
  year: 2015
  ident: 8518_CR30
  publication-title: J Earth Syst Sci
  doi: 10.1007/s12040-014-0532-y
– start-page: 245
  volume-title: Data Mining with Rattle and R
  year: 2011
  ident: 8518_CR69
  doi: 10.1007/978-1-4419-9890-3_12
– volume: 188
  start-page: 44
  issue: 1
  year: 2016
  ident: 8518_CR41
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-015-5049-6
– volume: 78
  start-page: 281
  issue: 1
  year: 2015
  ident: 8518_CR73
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-1714-x
– volume: 12
  start-page: 86
  issue: 1
  year: 2010
  ident: 8518_CR9
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbq011
– volume: 239
  start-page: 27
  year: 2012
  ident: 8518_CR64
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2011.12.007
– volume: 11
  start-page: 1
  issue: 1
  year: 2011
  ident: 8518_CR8
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0000060
– volume: 52
  start-page: 67
  year: 1999
  ident: 8518_CR19
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(98)00056-8
– volume: 113
  start-page: 1843
  year: 2009
  ident: 8518_CR67
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2009.04.015
– volume: 29
  start-page: 161
  year: 2000
  ident: 8518_CR45
  publication-title: Acta Carsologica
– volume: 110
  start-page: 11
  year: 2010
  ident: 8518_CR43
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2009.10.001
SSID ssj0000313906
Score 2.5439396
Snippet The mechanism of land subsidence and soil deformation deals with the dissipation of excess pore water pressure and the compaction of soil skeleton under the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Arid regions
Artificial intelligence
Biogeosciences
buildings
Deformation
Disaster management
Disasters
Earth
Earth and Environmental Science
Earth Sciences
Environmental protection
Environmental Science and Engineering
forestry equipment
Geochemistry
geographic information systems
Geographical information systems
Geology
graphs
groundwater
Groundwater table
Hydrology/Water Resources
Hydrostatic pressure
Industrial areas
infrastructure
Iran
Land subsidence
Land use
Learning algorithms
Learning theory
Machine learning
Mapping
Morphology
Original Article
pipelines
Plains
Pore pressure
Pore water
Pore water pressure
Precipitation rate
prioritization
Soil
Soil compaction
Soils
Structural damage
Submarine pipelines
Subsidence
Sustainable development
Terrestrial Pollution
Urbanization
Water pressure
Water table
SummonAdditionalLinks – databaseName: Science Database (subscription)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VClIvbXlU3ZZWRuoJZBE_8jpVVVXaQ0EcqLS3aPxakNgsJQsS_56xN5sVleDSW6Q4seWxZ754vswH8EVr68ghCo5CItcis-QHK_pwxdyJQoYMs5DEJsrT02o8rs_6A7eup1UufWJy1G5m4xn5EcGEKubsCvn1-i-PqlExu9pLaKzBS0I2IlK6TuTZcMYS6xLWSV4zlnXjhayGxGb6e46CU2Su1ZxgR8XV49C0wpv_pEhT5Dl-879jfguve8zJvi0WyRa88O02bP5Mmr73OzD-ja1jHXmQhcAoXXaJ7JJ4s_cMh-KdLLLkJ4zCm5tNGcFdGgqbJjqmZ73-xITh1YQGMb-Y7sKf4x_n33_xXnCBoyrlnIsaMTdl7nUtpTE57eaAikCBCblD4a3zoigxyDzkSmsXrDC6tqoO2igyunoH6-2s9e-BeZc7H5KIdamxirXTLZrMoLbSVF6PIFvOdWP7auRRFOOqWdVRjuZpyDxNNE-jRnAwPHK9KMXxXOO9pUmafld2zcoeI9gfbtN-ikkSbP3sltooEUXXpShGcLg0_OoVT3b44fkOP8IrGVdaog7uwfr85tZ_gg17N7_sbj6nZfsAQELz0w
  priority: 102
  providerName: ProQuest
Title Land subsidence susceptibility assessment using random forest machine learning algorithm
URI https://link.springer.com/article/10.1007/s12665-019-8518-3
https://www.proquest.com/docview/2268935862
https://www.proquest.com/docview/2315269216
Volume 78
WOSCitedRecordID wos000479127800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: RSV
  dateStart: 20091101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7YVsEX7-Jqu4zQJyWQueT2qKWXB12WamXfwpnbWuhmZbMV-u89M5tkqahg3wKZTIYzM-ec5HzzfQCHShlLDpEnyAUmiqeG_GBJH66YWZ4Ln2Lqo9hEMZmUs1k17c5xtz3avS9JRk-9PexGsSQAzaqEsoQykTuwR9GuDHoN51--DT9WAhlhFTU1A5dbkotyqGb-qZfb8WibZP5WF43h5uTxnQb6BB512SX7sFkOT-Gea57Bg9Oo3nvzHGafsLGsJV-xkRKlyzbCWiJC9obhQNPJAh5-ziiQ2eWCUWJLo2WLCLx0rFOamDO8mi9Xl-vvixdwcXL89egs6aQVEpSFWCe8Qsx0kTlVCaF1RvvWo6Twr31mkTtjHc8L9CLzmVTKesO1qoysvNKSple-hN1m2bhXwJzNrPNRrrpQWAaWdIM61aiM0KVTI0h7A9em4x0P8hdX9ZYxORisJoPVwWC1HMG74ZEfG9KNfzXe72et7vZfW1NSWYYKby5G8Ha4TTsnlEOwcctraiN5kFcXPB_B-34mt1389YWv_6v1G3gowlKImMF92F2vrt0B3Dc_15ftagx7H48n0_Mx7HwW03FcyL8AYW_r0A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61hQouPAqoCwWMBBeQ1fiR1wEhBJRWXVY9FGlvwc-lUjdbmi1o_xS_kbE3yYpK9NYDt0hxbE38eWbsGc8H8FJKY1EhMqoYV1SyxKAeLHDjqlLLMu4TlfhINpGPRsV4XB6twe_uLkxIq-x0YlTUdmbCGfkuuglFiNll_N3ZDxpYo0J0taPQWMLi0C1-4ZateXvwEef3Fed7n44_7NOWVYAqkfM5ZaVSqc5TJ0vOtU4Rsl4JtHzap1YxZ6xjWa48T30qpLTeMC1LI0ovtUDJBPa7DjdkqCwWUgX5UX-mE-oglpHOM5SRoxkv-kBqvK2HxjBkypUU3ZyCir9N4cq_vRSSjZZu7-7_9o_uwZ3Wpybvl4vgPqy5egs2P0fO4sUDGA9VbUmDGnJJoIqPTUzmiXnBC6L64qQk3AKYEDTfdjYl6M6j6GQa000dafk1JkSdTlDo-ffpQ_h6LWI9go16VrttIM6m1vlI0p1LVYTa8EbpRCtpuC6cHEDSzW1l2mrrgfTjtFrViQ5wqBAOVYBDJQbwuv_kbFlq5KrGOx0EqlbrNNVq_gfwon-N-iIEgVTtZhfYRrBAKs9ZNoA3HdBWXfxzwMdXD_gcbu0ffxlWw4PR4RO4zQPKY5rkDmzMzy_cU7hpfs5PmvNncckQ-Hbd-PsDoIBSpw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFFAv5a2GFjASXEBW1499HRCqKIGqJcqhSOG09foRKjWbtpuC8tf4dYyd3Y1AorceuK20fsj255mxZzwfwCsptUGByKhiXFHJIo1yMMODq4oNS7iLVOQC2UQ6HGbjcT5ag1_tWxgfVtnKxCCozUz7O_JdNBMy77NL-K5rwiJG-4P35xfUM0h5T2tLp7GEyKFd_MTjW_3uYB_X-jXng4_HHz7ThmGAKpHyOWW5UnGZxlbmnJdljPB1SqAWLF1sFLPaWJakyvHYxUJK4zQrZa5F7mQpcJQC270F61mSRlkP1kd7x1--dTc8PitiHsg9fVI5mvCsc6uGt3uoGn3cXE7R6Mmo-FMxrqzdvxy0Qe8N7v3PM3YfNhtrm-wtt8cDWLPVQ7jzKbAZLx7B-EhVhtQoO5fUqvhZhzCfEDG8IKpLW0r8-4AJQcVuZlOChj5OA5mGQFRLGuaNCVFnExz0_Pv0MXy9kWE9gV41q-wWEGtiY12g706lynzWeK3KqFRS8zKzsg9Ru86FbvKwezqQs2KVQdpDo0BoFB4ahejDm67K-TIJyXWFd1o4FI08qosVFvrwsvuNksS7h1RlZ1dYRjBPN89Z0oe3LehWTfyzw6fXd_gC7iLsiqOD4eE2bHAP-BA_uQO9-eWVfQa39Y_5aX35vNk_BE5uGoC_Ac9_XO0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+subsidence+susceptibility+assessment+using+random+forest+machine+learning+algorithm&rft.jtitle=Environmental+earth+sciences&rft.au=Mohammady%2C+Majid&rft.au=Pourghasemi%2C+Hamid+Reza&rft.au=Amiri%2C+Mojtaba&rft.date=2019-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1866-6280&rft.eissn=1866-6299&rft.volume=78&rft.issue=16&rft_id=info:doi/10.1007%2Fs12665-019-8518-3&rft.externalDocID=10_1007_s12665_019_8518_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6280&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6280&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6280&client=summon