Categorical models of Linear Logic with fixed points of formulas

We develop a categorical semantics of µLL, a version of propositional Linear Logic with least and greatest fixed points extending David Baelde's propositional µMALL with exponentials. Our general categorical setting is based on Seely categories and on strong functors acting on them. We exhibit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13
Hlavní autoři: Ehrhard, Thomas, Jafarrahmani, Farzad
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We develop a categorical semantics of µLL, a version of propositional Linear Logic with least and greatest fixed points extending David Baelde's propositional µMALL with exponentials. Our general categorical setting is based on Seely categories and on strong functors acting on them. We exhibit two simple instances of this setting. In the first one, which is based on the category of sets and relations, least and greatest fixed points are interpreted in the same way. In the second one, based on a category of sets equipped with a notion of totality (non-uniform totality spaces) and relations preserving it, least and greatest fixed points have distinct interpretations. This latter model shows that µLL enjoys a denotational form of normalization of proofs.
AbstractList We develop a categorical semantics of µLL, a version of propositional Linear Logic with least and greatest fixed points extending David Baelde's propositional µMALL with exponentials. Our general categorical setting is based on Seely categories and on strong functors acting on them. We exhibit two simple instances of this setting. In the first one, which is based on the category of sets and relations, least and greatest fixed points are interpreted in the same way. In the second one, based on a category of sets equipped with a notion of totality (non-uniform totality spaces) and relations preserving it, least and greatest fixed points have distinct interpretations. This latter model shows that µLL enjoys a denotational form of normalization of proofs.
Author Ehrhard, Thomas
Jafarrahmani, Farzad
Author_xml – sequence: 1
  givenname: Thomas
  surname: Ehrhard
  fullname: Ehrhard, Thomas
  organization: Université de Paris,CNRS, IRIF,Paris,France,F-75006
– sequence: 2
  givenname: Farzad
  surname: Jafarrahmani
  fullname: Jafarrahmani, Farzad
  organization: Université de Paris,CNRS, IRIF,Paris,France,F-75006
BookMark eNotj8tKxDAUQCMoqGO_QJD8QMd7885OKToOFFyo6yHNY4y0zdBW1L8XdFZnczhwLsnpWMZIyA3CGhHsbbttXiRjSqwZMFxboUEpcUIqqw0qJYUwVqpzUs3zBwAwoxGEvSB3jVvivkzZu54OJcR-piXRNo_RTbQt--zpV17eacrfMdBDyePyZ6QyDZ-9m6_IWXL9HKsjV-Tt8eG1earb5822uW9rxzUudcTgtZOArtOSQ-IqBZ1sp4W1waA0vgOhmQ3BgdTeKa249ga5QpuiN3xFrv-7Oca4O0x5cNPP7vjJfwFKuEq6
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS52264.2021.9470664
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665448956
1665448954
EndPage 13
ExternalDocumentID 9470664
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIO
ID FETCH-LOGICAL-a371t-e1dc7a501ab7530f36fd7f9b7499d8158cb04729dda057ca67637c813619fec83
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947350400062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:26:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a371t-e1dc7a501ab7530f36fd7f9b7499d8158cb04729dda057ca67637c813619fec83
OpenAccessLink https://hal.science/hal-03013356v3/file/lics-pub.pdf
PageCount 13
ParticipantIDs ieee_primary_9470664
PublicationCentury 2000
PublicationDate 2021-June-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002871049
Score 2.212037
Snippet We develop a categorical semantics of µLL, a version of propositional Linear Logic with least and greatest fixed points extending David Baelde's propositional...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Computer science
Semantics
Title Categorical models of Linear Logic with fixed points of formulas
URI https://ieeexplore.ieee.org/document/9470664
WOSCitedRecordID wos000947350400062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sFT1VZ8k4NHt91ks5vkJhSLgpSCCr2VNA_oZbe02-LPN5OuFcGLtxASApPHfDOZmQ_gnklpc25VolKfJ1y5IlHe44cjp9ozJaXTkWxCTCZyNlPTFjwccmGcczH4zA2wGf_ybWW26CobKi6ChuRtaAtR7HO1Dv4URP4B7TZJwDRVw9eX0RuiC_ScMDpoJv9iUYlKZNz93_In0P_JxiPTg545hZYrz6D7TcdAmtvZg8cRVn3Y1_wgkeFmQypPgrUZTjNBUmVD0O1K_PLTWbKqlmUdRyBu3QYU3YeP8dP76DlpCBISnQlaJ45aI3SeUr0IVkfqs8Jb4dVCBDPGSppLs8BikMpaHWCZ0UV4TISRNAtWk3dGZufQKavSXQARPlVMmgDHPOdaU12Et0AbyiwThTD0EnookPlqXwNj3sji6u_uazhGmWNIFVM30KnXW3cLR2ZXLzfru7hxX2TamFw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6sLbQn22qx7xx67Oomm90kt4JUlFoRasGbxDzAy67oWvrzm8StpdBLbyEkECaP-WYyMx_AA-Fcp1SLSMQ2jagwWSSs9R-OFEtLBOdGBrIJNh7z2UxMavC4z4UxxoTgM9PxzfCXrwu19a6yrqDMaUh6AIcppSTeZWvtPSoe-zu8W6UB41h0R8Pem8cX3ndCcKea_otHJaiRfuN_CziF1k8-HprsNc0Z1Ex-Do1vQgZU3c8mPPV83Ydd1Q8UOG42qLDI2ZvuPCNPq6yQd7wiu_w0Gq2KZV6GER65bh2ObsF7_3naG0QVRUIkE4bLyGCtmExjLBfO7ohtklnNrFgwZ8hojlOuFr4cpNBaOmCmZOaeE6Y4TpzdZI3iyQXU8yI3bUDMxoJw5QCZpVRKLDP3GkiFiSYsYwpfQtMLZL7aVcGYV7K4-rv7Ho4H09fRfDQcv1zDiZe_D7Ai4gbq5XprbuFIfZTLzfoubOIXg0Gbow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+36th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Categorical+models+of+Linear+Logic+with+fixed+points+of+formulas&rft.au=Ehrhard%2C+Thomas&rft.au=Jafarrahmani%2C+Farzad&rft.date=2021-06-29&rft.pub=IEEE&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FLICS52264.2021.9470664&rft.externalDocID=9470664