Recognition of geochemical anomalies using a deep variational autoencoder network

Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for mining complex, high-level, and non-linear geospatial data and for extracting previously unknown patterns related to geological processes. In thi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied geochemistry Ročník 122; s. 104710
Hlavní autoři: Luo, Zijing, Xiong, Yihui, Zuo, Renguang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2020
Témata:
ISSN:0883-2927, 1872-9134
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for mining complex, high-level, and non-linear geospatial data and for extracting previously unknown patterns related to geological processes. In this study, a deep variational autoencoder (VAE) network was used to extract features related to mineralization; and these features were then integrated as a anomaly map in support of mineral exploration based on geochemical exploration data, which consist of Cu, Pb, Mn, Zn and Fe2O3. Various experiments were conducted to determine the optimal parameters of the VAE. The structure of the VAE, in which the network depth and number of hidden units were 24–12-3-12-24, was built to recognize geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province, China. The geochemical anomalies recognized by the VAE show a close spatial correlation with known Fe polymetallic deposits. Meanwhile, the areas with high probability are located in or around the Yanshanian intrusions and the contact zones of the Carboniferous–Permian formation and Yanshanian intrusions. These results suggest that the anomalous areas identified by the VAE are meaningful for mineral exploration. •A deep variational autoencoder (VAE) network for multivariate geochemical anomalies recognition is demonstrated.•The reconstruction probability instead of reconstruction error is employed as the anomaly score.•A case study from southwestern Fujian district is conducted.
AbstractList Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for mining complex, high-level, and non-linear geospatial data and for extracting previously unknown patterns related to geological processes. In this study, a deep variational autoencoder (VAE) network was used to extract features related to mineralization; and these features were then integrated as a anomaly map in support of mineral exploration based on geochemical exploration data, which consist of Cu, Pb, Mn, Zn and Fe₂O₃. Various experiments were conducted to determine the optimal parameters of the VAE. The structure of the VAE, in which the network depth and number of hidden units were 24–12-3-12-24, was built to recognize geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province, China. The geochemical anomalies recognized by the VAE show a close spatial correlation with known Fe polymetallic deposits. Meanwhile, the areas with high probability are located in or around the Yanshanian intrusions and the contact zones of the Carboniferous–Permian formation and Yanshanian intrusions. These results suggest that the anomalous areas identified by the VAE are meaningful for mineral exploration.
Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for mining complex, high-level, and non-linear geospatial data and for extracting previously unknown patterns related to geological processes. In this study, a deep variational autoencoder (VAE) network was used to extract features related to mineralization; and these features were then integrated as a anomaly map in support of mineral exploration based on geochemical exploration data, which consist of Cu, Pb, Mn, Zn and Fe2O3. Various experiments were conducted to determine the optimal parameters of the VAE. The structure of the VAE, in which the network depth and number of hidden units were 24–12-3-12-24, was built to recognize geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province, China. The geochemical anomalies recognized by the VAE show a close spatial correlation with known Fe polymetallic deposits. Meanwhile, the areas with high probability are located in or around the Yanshanian intrusions and the contact zones of the Carboniferous–Permian formation and Yanshanian intrusions. These results suggest that the anomalous areas identified by the VAE are meaningful for mineral exploration. •A deep variational autoencoder (VAE) network for multivariate geochemical anomalies recognition is demonstrated.•The reconstruction probability instead of reconstruction error is employed as the anomaly score.•A case study from southwestern Fujian district is conducted.
ArticleNumber 104710
Author Zuo, Renguang
Xiong, Yihui
Luo, Zijing
Author_xml – sequence: 1
  givenname: Zijing
  surname: Luo
  fullname: Luo, Zijing
– sequence: 2
  givenname: Yihui
  surname: Xiong
  fullname: Xiong, Yihui
– sequence: 3
  givenname: Renguang
  surname: Zuo
  fullname: Zuo, Renguang
  email: zrguang@cug.edu.cn
BookMark eNqNkD1PwzAQhi1UJNrCbyAjS4rtOHEyMFQVX1IlBILZujiX4pLYxU6L-PcktGJggenk8_O-0j0TMrLOIiHnjM4YZdnlegabFTr9iu2MUz5shWT0iIxZLnlcsESMyJjmeRLzgssTMglhTSlNJeVj8viE2q2s6YyzkaujQ5PR0ERgXQuNwRBtg7GrCKIKcRPtwBsY-AHZdg6tdhX6yGL34fzbKTmuoQl4dphT8nJz_by4i5cPt_eL-TKGRLIurkqZFiBSTKFCQFGKopR1_9AgigJ0JrHSnHOWaSlSjVAKWvK6qOsUk_4vmZKLfe_Gu_cthk61JmhsGrDotkFxIWXG8yJjPXq1R7V3IXislTbd9wmdB9MoRtWgUq3Vj0o1qFR7lX1e_spvvGnBf_4jOd8nsTexM-hV0KYXhpXxqDtVOfNnxxf22pgT
CitedBy_id crossref_primary_10_1007_s00778_021_00721_1
crossref_primary_10_1007_s11053_024_10433_2
crossref_primary_10_1016_j_gexplo_2021_106875
crossref_primary_10_1016_j_oregeorev_2022_105024
crossref_primary_10_1016_j_cageo_2023_105490
crossref_primary_10_1016_j_oregeorev_2022_105265
crossref_primary_10_1007_s11053_022_10038_7
crossref_primary_10_1007_s11053_023_10200_9
crossref_primary_10_1016_j_gexplo_2021_106872
crossref_primary_10_1016_j_cageo_2024_105657
crossref_primary_10_3390_min13101332
crossref_primary_10_1007_s11053_022_10050_x
crossref_primary_10_1016_j_gexplo_2022_106958
crossref_primary_10_1016_j_oregeorev_2023_105381
crossref_primary_10_1016_j_apgeochem_2021_104994
crossref_primary_10_1016_j_apgeochem_2023_105722
crossref_primary_10_1109_ACCESS_2021_3058809
crossref_primary_10_1007_s11004_021_09935_z
crossref_primary_10_1016_j_apgeochem_2024_106137
crossref_primary_10_1007_s11053_025_10464_3
crossref_primary_10_1016_j_apgeochem_2021_105043
crossref_primary_10_1007_s11053_021_09984_5
crossref_primary_10_1007_s11053_024_10409_2
crossref_primary_10_1016_j_apgeochem_2023_105765
crossref_primary_10_1007_s11004_025_10190_9
crossref_primary_10_1016_j_oregeorev_2023_105418
crossref_primary_10_1029_2024JH000468
crossref_primary_10_3390_pr13010184
crossref_primary_10_1016_j_oregeorev_2025_106705
crossref_primary_10_1007_s11004_021_09979_1
crossref_primary_10_1016_j_oregeorev_2024_106204
crossref_primary_10_1007_s11004_022_10023_z
crossref_primary_10_1016_j_apgeochem_2021_105072
crossref_primary_10_1016_j_cageo_2022_105100
crossref_primary_10_1016_j_chemer_2024_126209
crossref_primary_10_1016_j_cageo_2025_106011
crossref_primary_10_1016_j_oregeorev_2023_105573
crossref_primary_10_1007_s11053_024_10317_5
crossref_primary_10_32604_cmc_2023_033408
crossref_primary_10_1007_s11053_022_10080_5
crossref_primary_10_1007_s11053_024_10322_8
crossref_primary_10_1007_s11053_024_10328_2
crossref_primary_10_1029_2023JB027378
crossref_primary_10_1016_j_jafrearsci_2025_105854
crossref_primary_10_1016_j_oregeorev_2021_104316
crossref_primary_10_1016_j_apgeochem_2022_105450
crossref_primary_10_1007_s11053_025_10496_9
crossref_primary_10_1016_j_apgeochem_2021_105111
crossref_primary_10_4018_JGIM_361589
crossref_primary_10_1016_j_apgeochem_2024_106146
crossref_primary_10_1007_s40747_021_00549_w
crossref_primary_10_1016_j_cageo_2022_105074
crossref_primary_10_1016_j_cageo_2023_105392
crossref_primary_10_1016_j_oregeorev_2025_106615
crossref_primary_10_1016_j_cageo_2022_105153
crossref_primary_10_1029_2022EA002626
crossref_primary_10_1016_j_cageo_2022_105075
crossref_primary_10_1016_j_geogeo_2025_100361
crossref_primary_10_1016_j_cageo_2024_105679
crossref_primary_10_1007_s11004_022_10042_w
crossref_primary_10_3390_app15084082
crossref_primary_10_1007_s11053_024_10334_4
crossref_primary_10_1007_s11004_025_10195_4
crossref_primary_10_1016_j_chemer_2023_125959
crossref_primary_10_1016_j_oregeorev_2021_104264
crossref_primary_10_1007_s11004_023_10133_2
crossref_primary_10_1007_s11004_024_10153_6
crossref_primary_10_3724_j_issn_1007_2802_20240157
crossref_primary_10_1007_s11004_022_10024_y
crossref_primary_10_1007_s11053_022_10088_x
crossref_primary_10_1016_j_oregeorev_2025_106447
crossref_primary_10_1016_j_cageo_2023_105341
crossref_primary_10_1016_j_oregeorev_2023_105478
crossref_primary_10_1016_j_apgeochem_2021_104958
crossref_primary_10_1016_j_oregeorev_2025_106882
crossref_primary_10_3390_min12060689
crossref_primary_10_3390_en15114011
crossref_primary_10_3390_min11080816
crossref_primary_10_1016_j_gexplo_2021_106904
crossref_primary_10_1016_j_earscirev_2025_105209
crossref_primary_10_1016_j_gexplo_2023_107274
crossref_primary_10_1007_s12145_023_01095_4
crossref_primary_10_1016_j_apgeochem_2022_105273
crossref_primary_10_1016_j_oregeorev_2022_104955
crossref_primary_10_1016_j_oregeorev_2022_104916
crossref_primary_10_1038_s41598_025_11953_4
crossref_primary_10_1007_s12145_024_01224_7
crossref_primary_10_1016_j_apgeochem_2024_106124
crossref_primary_10_1016_j_oregeorev_2023_105706
Cites_doi 10.1016/j.gexplo.2015.06.001
10.1016/j.earscirev.2016.04.006
10.1016/j.oregeorev.2006.10.002
10.1109/JSTARS.2014.2329330
10.1016/j.gexplo.2019.106453
10.1016/j.gexplo.2017.05.008
10.1144/1467-7873/09-215
10.1016/j.epsl.2007.08.021
10.1016/j.apgeochem.2011.12.020
10.1016/j.cageo.2004.11.013
10.1016/j.gexplo.2019.04.007
10.1016/j.gexplo.2014.10.010
10.1016/j.oregeorev.2019.02.027
10.1016/S0375-6742(97)00029-0
10.1016/j.gexplo.2015.04.010
10.1016/j.cageo.2019.05.011
10.1029/2017JB015251
10.1126/science.1127647
10.1016/0375-6742(88)90066-0
10.1007/s11430-015-5178-3
10.1016/j.gexplo.2017.03.017
10.1109/LGRS.2017.2657818
10.1016/j.cageo.2015.10.006
10.1016/j.gexplo.2014.02.013
10.1007/s11053-020-09700-9
10.1016/S0040-1951(00)00120-7
10.1023/A:1023818214614
10.1016/j.apgeochem.2020.104668
10.3390/min9050270
10.1016/j.gexplo.2015.06.004
10.1007/s11053-019-09486-5
10.1007/s11053-017-9357-0
10.1023/A:1010109829861
10.1144/geochem2012-144
10.1016/j.oregeorev.2014.09.007
10.1016/j.patrec.2005.10.010
10.1144/1467-7873/09-210
10.1016/j.gexplo.2015.04.013
10.1038/nature14539
10.1016/j.oregeorev.2014.09.024
10.1016/j.gexplo.2012.07.007
10.1016/0375-6742(94)90013-2
10.1016/j.cageo.2020.104484
10.1144/1467-7873/08-184
10.1016/j.gexplo.2019.106431
10.1007/s11053-017-9345-4
10.1007/s11053-019-09471-y
10.1016/j.earscirev.2019.02.023
10.1144/geochem2016-024
10.1016/j.gexplo.2008.03.004
10.1016/0375-6742(74)90030-2
10.1016/j.gexplo.2012.02.002
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apgeochem.2020.104710
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9134
ExternalDocumentID 10_1016_j_apgeochem_2020_104710
S088329272030202X
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-a371t-db759a45e5adeae4b49b7f5adca499ac67edc22216c745ceab40b2f9ff5e37ed3
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587914200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0883-2927
IngestDate Sun Sep 28 04:31:04 EDT 2025
Tue Nov 18 20:29:12 EST 2025
Sat Nov 29 07:18:27 EST 2025
Sun Apr 21 12:55:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Mineral exploration
Geochemical mapping
Variational autoencoder network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a371t-db759a45e5adeae4b49b7f5adca499ac67edc22216c745ceab40b2f9ff5e37ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2477628961
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2477628961
crossref_citationtrail_10_1016_j_apgeochem_2020_104710
crossref_primary_10_1016_j_apgeochem_2020_104710
elsevier_sciencedirect_doi_10_1016_j_apgeochem_2020_104710
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Applied geochemistry
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Lin, Zhao, Wang, Gu (bib8) 2014; 7
Wang, Zhou, Xiao (bib48) 2020; 104679
Han, Zhou, Chi (bib25) 2018; 57
Chen, Wu (bib9) 2017; 17
Tukey (bib41) 1977
Filzmoser, Garrett, Reimann (bib19) 2005; 31
Wu, Chen (bib50) 2018; 21
An, Cho (bib2) 2015
Wang, Dong, Zuo (bib46) 2019; 107
Ziaii, Pouyan, Ziaei (bib69) 2009; 100
Kürzl (bib31) 1988; 30
Cheng (bib10) 2007; 32
Chen, Lu, Li (bib7) 2014; 140
Yousefi, Kamkar-Rouhani, Carranza (bib60) 2012; 115
Yang, Zhang, Feng, She, Li (bib58) 2008; 27
Aitchison (bib1) 1986
Gao, Gao, He (bib20) 2017; 45
Wang, Zuo (bib49) 2020; 119
Duchi, Hazan, Singer (bib16) 2011; 12
Carranza (bib4) 2008; vol. 11
Gonbadi, Tabatabaei, Carranza (bib22) 2015; 157
Yousefi, Kamkar-Rouhani, Carranza (bib61) 2014; 14
Zuo, Xiong (bib76) 2020; 209
Li, Wu, Du (bib33) 2017; 14
Sun, Ding, Hu, Li (bib40) 2007; 262
Zuo, Xiong, Wang, Carranza (bib78) 2019; 192
Zuo, Wang (bib74) 2016; 164
Hinton, Salakhutdinov (bib27) 2006; 313
Fawcett (bib18) 2006; 27
Matheron (bib34) 1962; vol. 1
Ziaii, Ardejani, Ziaei, Soleymani (bib70) 2012; 27
Doersch (bib15) 2016
Cheng (bib11) 2012; 122
Wang, Cheng, Zuo (bib43) 2015; 148
Wang, Zuo (bib44) 2015; 155
Xiao, Wang, Hou, Erten (bib51) 2020; 210
Yuan, Feng, Zhang, Di, Wang, Ni (bib62) 2013
Zuo, Zhang, Zhang, Carranza, Wang (bib77) 2015; 71
Zhang, Wu, Di, Wang, Yao, Zhang, Lv, Yuan, Shi (bib64) 2012; 37
Wang, Cheng, Zuo (bib42) 2015; 157
Xiong, Zuo (bib57) 2020; 140
Xiao, Wang, Hou, Wang, Zhou (bib52) 2019; 29
Wang, Zuo, Dong (bib47) 2019; 28
Goovaerts (bib23) 1997
Zhang, Li, Zhang, Wang (bib63) 2012; 26
She, Tian, Liang (bib38) 2018; 10
Yu, Xiao, Zhou, Wang, Wang (bib59) 2019; 203
Cheng, Xu, Grunsky (bib13) 2000; 9
Zuo (bib72) 2020
Zhang, Zuo, Xiong (bib66) 2015; 59
Xiong, Zuo (bib56) 2016; 86
Zuo (bib71) 2017; 26
Chen, An, Li (bib5) 2016; 35
Zhang, Xiao, Carranza, Yang, Zhao (bib65) 2019; 130
Zhou, Li (bib67) 2000; 326
Ge, Han, Zhou, Chen (bib21) 1981; 3
Hu, Huang, Wei, Zhang, Li (bib28) 2015
Xie, Wang, Zhang, Zhou, Cheng, Liu, Cheng, Xu (bib55) 2008; 8
Nykänen, Lahti, Niiranen, Korhonen (bib36) 2015; 71
Zuo, Xiong (bib75) 2018; 27
Moeini, Torab (bib35) 2017; 180
Cao, Xu, Wang (bib3) 2019; 46
Egozcue, Pawlowsky-Glahn, Mateu-Figueras, Barcelo-Vidal (bib17) 2003; 35
Wang, Zhang, Vatuva, Yan, Ma, Feng, Yu, Bai, Di (bib45) 2015; vol. 44
Zuo, Carranza, Wang (bib73) 2016; 158
Kingma, Welling (bib30) 2013
Sinclair (bib39) 1974; 3
Grunsky (bib24) 2010; 10
LeCun, Bengio, Hinton (bib32) 2015; 521
Hawkes, Webb (bib26) 1962
Chen, Guan, Feng, Yue, Wang, Zhang (bib6) 2019; 9
Cheng, Agterberg, Ballantyne (bib12) 1994; 51
Xiao, Chen, Hou, Wang, Zhou, Erten (bib53) 2018; 189
Xie, Mu, Ren (bib54) 1997; 60
Kingma, Ba (bib29) 2014
Zhou, Wang, Zuo, Xiao, She, Wang (bib68) 2018; 34
Cohen, Kelley, Anand, Coker (bib14) 2010; 10
Ross, Meier, Hauksson (bib37) 2018; 123
Cheng (10.1016/j.apgeochem.2020.104710_bib13) 2000; 9
Wang (10.1016/j.apgeochem.2020.104710_bib43) 2015; 148
Zuo (10.1016/j.apgeochem.2020.104710_bib72) 2020
Doersch (10.1016/j.apgeochem.2020.104710_bib15) 2016
Chen (10.1016/j.apgeochem.2020.104710_bib7) 2014; 140
Hawkes (10.1016/j.apgeochem.2020.104710_bib26) 1962
LeCun (10.1016/j.apgeochem.2020.104710_bib32) 2015; 521
Wang (10.1016/j.apgeochem.2020.104710_bib42) 2015; 157
Zuo (10.1016/j.apgeochem.2020.104710_bib74) 2016; 164
Wang (10.1016/j.apgeochem.2020.104710_bib49) 2020; 119
Cheng (10.1016/j.apgeochem.2020.104710_bib11) 2012; 122
Ge (10.1016/j.apgeochem.2020.104710_bib21) 1981; 3
Hinton (10.1016/j.apgeochem.2020.104710_bib27) 2006; 313
Xiao (10.1016/j.apgeochem.2020.104710_bib52) 2019; 29
Chen (10.1016/j.apgeochem.2020.104710_bib6) 2019; 9
Xiong (10.1016/j.apgeochem.2020.104710_bib57) 2020; 140
Zhou (10.1016/j.apgeochem.2020.104710_bib67) 2000; 326
Li (10.1016/j.apgeochem.2020.104710_bib33) 2017; 14
Sun (10.1016/j.apgeochem.2020.104710_bib40) 2007; 262
Wang (10.1016/j.apgeochem.2020.104710_bib48) 2020; 104679
Gao (10.1016/j.apgeochem.2020.104710_bib20) 2017; 45
Nykänen (10.1016/j.apgeochem.2020.104710_bib36) 2015; 71
Cheng (10.1016/j.apgeochem.2020.104710_bib12) 1994; 51
Zuo (10.1016/j.apgeochem.2020.104710_bib78) 2019; 192
Yuan (10.1016/j.apgeochem.2020.104710_bib62) 2013
Hu (10.1016/j.apgeochem.2020.104710_bib28) 2015
Aitchison (10.1016/j.apgeochem.2020.104710_bib1) 1986
Zhang (10.1016/j.apgeochem.2020.104710_bib66) 2015; 59
Ziaii (10.1016/j.apgeochem.2020.104710_bib69) 2009; 100
Chen (10.1016/j.apgeochem.2020.104710_bib8) 2014; 7
Moeini (10.1016/j.apgeochem.2020.104710_bib35) 2017; 180
Zuo (10.1016/j.apgeochem.2020.104710_bib77) 2015; 71
Yu (10.1016/j.apgeochem.2020.104710_bib59) 2019; 203
Egozcue (10.1016/j.apgeochem.2020.104710_bib17) 2003; 35
Wang (10.1016/j.apgeochem.2020.104710_bib47) 2019; 28
Ziaii (10.1016/j.apgeochem.2020.104710_bib70) 2012; 27
Xiao (10.1016/j.apgeochem.2020.104710_bib53) 2018; 189
Cheng (10.1016/j.apgeochem.2020.104710_bib10) 2007; 32
Tukey (10.1016/j.apgeochem.2020.104710_bib41) 1977
Xie (10.1016/j.apgeochem.2020.104710_bib54) 1997; 60
Zuo (10.1016/j.apgeochem.2020.104710_bib73) 2016; 158
Filzmoser (10.1016/j.apgeochem.2020.104710_bib19) 2005; 31
Wang (10.1016/j.apgeochem.2020.104710_bib45) 2015; vol. 44
Wang (10.1016/j.apgeochem.2020.104710_bib44) 2015; 155
Kingma (10.1016/j.apgeochem.2020.104710_bib29) 2014
Zuo (10.1016/j.apgeochem.2020.104710_bib71) 2017; 26
Grunsky (10.1016/j.apgeochem.2020.104710_bib24) 2010; 10
Wang (10.1016/j.apgeochem.2020.104710_bib46) 2019; 107
Zhang (10.1016/j.apgeochem.2020.104710_bib65) 2019; 130
Gonbadi (10.1016/j.apgeochem.2020.104710_bib22) 2015; 157
Zhang (10.1016/j.apgeochem.2020.104710_bib63) 2012; 26
She (10.1016/j.apgeochem.2020.104710_bib38) 2018; 10
Fawcett (10.1016/j.apgeochem.2020.104710_bib18) 2006; 27
Matheron (10.1016/j.apgeochem.2020.104710_bib34) 1962; vol. 1
Ross (10.1016/j.apgeochem.2020.104710_bib37) 2018; 123
Yousefi (10.1016/j.apgeochem.2020.104710_bib60) 2012; 115
Cohen (10.1016/j.apgeochem.2020.104710_bib14) 2010; 10
Carranza (10.1016/j.apgeochem.2020.104710_bib4) 2008; vol. 11
Zhang (10.1016/j.apgeochem.2020.104710_bib64) 2012; 37
Xie (10.1016/j.apgeochem.2020.104710_bib55) 2008; 8
Zuo (10.1016/j.apgeochem.2020.104710_bib75) 2018; 27
Cao (10.1016/j.apgeochem.2020.104710_bib3) 2019; 46
Kingma (10.1016/j.apgeochem.2020.104710_bib30) 2013
Xiao (10.1016/j.apgeochem.2020.104710_bib51) 2020; 210
Wu (10.1016/j.apgeochem.2020.104710_bib50) 2018; 21
Chen (10.1016/j.apgeochem.2020.104710_bib5) 2016; 35
Zuo (10.1016/j.apgeochem.2020.104710_bib76) 2020; 209
Chen (10.1016/j.apgeochem.2020.104710_bib9) 2017; 17
Zhou (10.1016/j.apgeochem.2020.104710_bib68) 2018; 34
Han (10.1016/j.apgeochem.2020.104710_bib25) 2018; 57
Duchi (10.1016/j.apgeochem.2020.104710_bib16) 2011; 12
An (10.1016/j.apgeochem.2020.104710_bib2) 2015
Xiong (10.1016/j.apgeochem.2020.104710_bib56) 2016; 86
Yang (10.1016/j.apgeochem.2020.104710_bib58) 2008; 27
Kürzl (10.1016/j.apgeochem.2020.104710_bib31) 1988; 30
Sinclair (10.1016/j.apgeochem.2020.104710_bib39) 1974; 3
Goovaerts (10.1016/j.apgeochem.2020.104710_bib23) 1997
Yousefi (10.1016/j.apgeochem.2020.104710_bib61) 2014; 14
References_xml – volume: 10
  start-page: 27
  year: 2010
  end-page: 74
  ident: bib24
  article-title: The interpretation of geochemical survey data
  publication-title: Geochem. Explor. Environ. Anal.
– volume: 210
  start-page: 106453
  year: 2020
  ident: bib51
  article-title: Identifying geochemical anomaly through spatially anisotropic singularity mapping: a case study from silver-gold deposit in Pangxidong district, SE China
  publication-title: J. Geochem. Explor.
– volume: 157
  start-page: 81
  year: 2015
  end-page: 91
  ident: bib22
  article-title: Supervised geochemical anomaly detection by pattern recognition
  publication-title: J. Geochem. Explor.
– volume: 326
  start-page: 269
  year: 2000
  end-page: 287
  ident: bib67
  article-title: Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas
  publication-title: Tectonophysics
– volume: 140
  start-page: 104484
  year: 2020
  ident: bib57
  article-title: Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine
  publication-title: Comput. Geosci.
– volume: vol. 11
  year: 2008
  ident: bib4
  publication-title: Geochemical Anomaly and Mineral Prospectivity Mapping in GIS
– volume: 123
  start-page: 5120
  year: 2018
  end-page: 5129
  ident: bib37
  article-title: P wave arrival picking and first-motion polarity determination with deep learning
  publication-title: J. Geophys. Res.
– volume: 57
  start-page: 72
  year: 2018
  end-page: 79+87
  ident: bib25
  article-title: Random noise removal of seismic data based on deep learning convolutional neural networks
  publication-title: Geophys. Prospect. Pet.
– volume: 104679
  year: 2020
  ident: bib48
  article-title: Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: a case study from Ag-Pb-Zn deposits in north-western Zhejiang, China
  publication-title: Appl. Geochem.
– volume: 164
  start-page: 33
  year: 2016
  end-page: 41
  ident: bib74
  article-title: Fractal/multifractal modeling of geochemical data: a review
  publication-title: J. Geochem. Explor.
– volume: 209
  start-page: 106431
  year: 2020
  ident: bib76
  article-title: Geodata science and geochemical mapping
  publication-title: J. Geochem. Explor.
– volume: 8
  start-page: 333
  year: 2008
  end-page: 341
  ident: bib55
  article-title: Multiscale geochemical mapping in China
  publication-title: Geochem. Explor. Environ. Anal.
– volume: 14
  start-page: 597
  year: 2017
  end-page: 601
  ident: bib33
  article-title: Transferred deep learning for anomaly detection in hyperspectral imagery
  publication-title: Geosci. Rem. Sens. Lett. IEEE
– volume: 51
  start-page: 109
  year: 1994
  end-page: 130
  ident: bib12
  article-title: The separation of geochemical anomalies from background by fractal methods
  publication-title: J. Geochem. Explor.
– start-page: 482pp
  year: 1997
  ident: bib23
  article-title: Geostatistics for Natural Resources Evaluation
– volume: 31
  start-page: 579
  year: 2005
  end-page: 587
  ident: bib19
  article-title: Multivariate outlier detection in exploration geochemistry
  publication-title: Comput. Geosci.
– volume: 155
  start-page: 84
  year: 2015
  end-page: 90
  ident: bib44
  article-title: A comparative study of trend surface analysis and spectrum-area multifractal model to identify geochemical anomalies
  publication-title: J. Geochem. Explor.
– volume: 158
  start-page: 9
  year: 2016
  end-page: 18
  ident: bib73
  article-title: Spatial analysis and visualization of exploration geochemical data
  publication-title: Earth Sci. Rev.
– volume: 32
  start-page: 314
  year: 2007
  end-page: 324
  ident: bib10
  article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China
  publication-title: Ore Geol. Rev.
– volume: 34
  start-page: 3173
  year: 2018
  end-page: 3178
  ident: bib68
  article-title: Machine learning, deep learning and Python language in field of geology
  publication-title: Acta Petrol. Sin.
– volume: 3
  start-page: 129
  year: 1974
  end-page: 149
  ident: bib39
  article-title: Selection of threshold values in geochemical data using probability graphs
  publication-title: J. Geochem. Explor.
– volume: 521
  start-page: 436
  year: 2015
  ident: bib32
  article-title: Deep learning
  publication-title: Nature
– volume: 17
  start-page: 231
  year: 2017
  end-page: 238
  ident: bib9
  article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data
  publication-title: Geochem. Explor. Environ. Anal.
– year: 2013
  ident: bib30
  article-title: Auto-encoding Variational Bayes
– volume: 86
  start-page: 75
  year: 2016
  end-page: 82
  ident: bib56
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Comput. Geosci.
– volume: 10
  start-page: 27
  year: 2018
  end-page: 35
  ident: bib38
  article-title: Fault diagnosis method based on deep convolution variational self-encoding network
  publication-title: J. Instrum.
– year: 2020
  ident: bib72
  article-title: Geodata science-based mineral prospectivity mapping: a review
  publication-title: Nat. Resour. Res.
– start-page: 258619
  year: 2015
  ident: bib28
  article-title: Deep convolutional neural networks for hyperspectral image classification
  publication-title: J. Sensors
– volume: 180
  start-page: 15
  year: 2017
  end-page: 23
  ident: bib35
  article-title: Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at hamich exploration area, east of Iran
  publication-title: J. Geochem. Explor.
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: bib16
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 270
  year: 2019
  ident: bib6
  article-title: A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition
  publication-title: Minerals
– volume: 28
  start-page: 1285
  year: 2019
  end-page: 1298
  ident: bib47
  article-title: Mapping geochemical anomalies through integrating random forest and metric learning methods
  publication-title: Nat. Resour. Res.
– volume: 192
  start-page: 1
  year: 2019
  end-page: 14
  ident: bib78
  article-title: Deep learning and its application in geochemical mapping
  publication-title: Earth Sci. Rev.
– volume: 119
  start-page: 104668
  year: 2020
  ident: bib49
  article-title: Assessing geochemical anomalies using geographically weighted lasso
  publication-title: Appl. Geochem.
– volume: 7
  start-page: 2094
  year: 2014
  end-page: 2107
  ident: bib8
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens.
– volume: 71
  start-page: 502
  year: 2015
  end-page: 515
  ident: bib77
  article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China
  publication-title: Ore Geol. Rev.
– volume: 27
  start-page: 663
  year: 2012
  end-page: 676
  ident: bib70
  article-title: Neuro-fuzzy modeling based genetic algorithms for identification of geochemical anomalies in mining geochemistry
  publication-title: Appl. Geochem.
– year: 1977
  ident: bib41
  article-title: Exploratory Data Analysis
– volume: 35
  start-page: 210
  year: 2016
  end-page: 216
  ident: bib5
  article-title: Identification and classification of bad geological bodies based on convolutional neural network
  publication-title: Geol. Sci. Technol. Inf.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib27
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 26
  start-page: 434
  year: 2012
  end-page: 444
  ident: bib63
  article-title: LA-ICP-MS zircon U-Pb ages and Hf isotopic compositions of Dayang granite from Longyan, Fujian province
  publication-title: Geoscience
– volume: 45
  start-page: 730
  year: 2017
  end-page: 739
  ident: bib20
  article-title: A lightweight intrusion detection model based on autoencoder network with feature reduction
  publication-title: Acta Electron. Sin.
– volume: 46
  start-page: 203
  year: 2019
  end-page: 207
  ident: bib3
  article-title: Semi-supervised intrusion detection algorithm based on depth generation model
  publication-title: Comput. Sci.
– volume: vol. 44
  start-page: 450
  year: 2015
  end-page: 468
  ident: bib45
  publication-title: Zircon U-Pb Geochronology, Geochemistry and Hf Isotope Compositions of the Dayang and Juzhou Granites in Longyan, Fujian and Their Geological Implications
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib18
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn. Lett.
– volume: 122
  start-page: 55
  year: 2012
  end-page: 70
  ident: bib11
  article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas
  publication-title: J. Geochem. Explor.
– volume: 21
  start-page: 36
  year: 2018
  end-page: 47
  ident: bib50
  article-title: Application of isolation forest to extract multivariate anomalies from geochemical exploration data
  publication-title: Glob. Geol.
– volume: 9
  start-page: 43
  year: 2000
  end-page: 52
  ident: bib13
  article-title: Integrated spatial and spectrum method for geochemical anomaly separation
  publication-title: Nat. Resour. Res.
– volume: 14
  start-page: 45
  year: 2014
  end-page: 58
  ident: bib61
  article-title: Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping
  publication-title: Geochem. Explor. Environ. Anal.
– volume: 100
  start-page: 25
  year: 2009
  end-page: 36
  ident: bib69
  article-title: Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies
  publication-title: J. Geochem. Explor.
– volume: 29
  start-page: 89
  year: 2019
  end-page: 113
  ident: bib52
  article-title: Prospectivity mapping for porphyry Cu-Mo mineralization in the Eastern Tianshan, Xinjiang, northwestern China
  publication-title: Nat. Resour. Res.
– volume: 26
  start-page: 457
  year: 2017
  end-page: 464
  ident: bib71
  article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods
  publication-title: Nat. Resour. Res.
– volume: 140
  start-page: 56
  year: 2014
  end-page: 63
  ident: bib7
  article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly
  publication-title: J. Geochem. Explor.
– volume: 203
  start-page: 87
  year: 2019
  end-page: 95
  ident: bib59
  article-title: Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district
  publication-title: J. Geochem. Explor.
– year: 2014
  ident: bib29
  article-title: Adam: A Method for Stochastic Optimization
– volume: 60
  start-page: 99
  year: 1997
  end-page: 113
  ident: bib54
  article-title: Geochemical mapping in China
  publication-title: J. Geochem. Explor.
– volume: 71
  start-page: 853
  year: 2015
  end-page: 860
  ident: bib36
  article-title: Receiver operating characteristics (ROC) as validation tool for prospectivity models-A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland
  publication-title: Ore Geol. Rev.
– volume: 107
  start-page: 258
  year: 2019
  end-page: 265
  ident: bib46
  article-title: Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method
  publication-title: Ore Geol. Rev.
– volume: 37
  start-page: 1217
  year: 2012
  end-page: 1231
  ident: bib64
  article-title: Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance
  publication-title: J. China Univ. Geosci.
– start-page: 415
  year: 1962
  ident: bib26
  article-title: Geochemistry in Mineral Exploration
– volume: 3
  start-page: 47
  year: 1981
  end-page: 69
  ident: bib21
  article-title: Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin
  publication-title: Acta Geosci. Sin.
– volume: 27
  start-page: 5
  year: 2018
  end-page: 13
  ident: bib75
  article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods
  publication-title: Nat. Resour. Res.
– volume: 10
  start-page: 3
  year: 2010
  end-page: 16
  ident: bib14
  article-title: Major advances in exploration geochemistry, 1998-2007
  publication-title: Geochem. Explor. Environ. Anal.
– year: 2016
  ident: bib15
  article-title: Tutorial on Variational Autoencoders
– volume: 262
  start-page: 533
  year: 2007
  end-page: 542
  ident: bib40
  article-title: The golden transformation of the Cretaceous plate subduction in the west Pacific
  publication-title: Earth Planet Sci. Lett.
– volume: 148
  start-page: 259
  year: 2015
  end-page: 269
  ident: bib43
  article-title: Spatial characteristics of geochemical patterns related to Fe mineralization in the southwestern Fujian province (China)
  publication-title: J. Geochem. Explor.
– volume: 189
  start-page: 122
  year: 2018
  end-page: 137
  ident: bib53
  article-title: A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China
  publication-title: J. Geochem. Explor.
– start-page: 73
  year: 2013
  end-page: 75
  ident: bib62
  article-title: Geochronology of Dapai iron-polymetallic deposit in Yongding city, Fujian province and its geological significance
  publication-title: Acta Mineral. Sin.
– volume: 59
  start-page: 556
  year: 2015
  end-page: 572
  ident: bib66
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Sci. China Earth Sci.
– start-page: 416
  year: 1986
  ident: bib1
  article-title: The Statistical Analysis of Compositional Data
– volume: 35
  start-page: 279
  year: 2003
  end-page: 300
  ident: bib17
  article-title: Isometric logratio transformations for compositional data analysis
  publication-title: Math. Geol.
– volume: 157
  start-page: 110
  year: 2015
  end-page: 119
  ident: bib42
  article-title: Quantifying the spatial characteristics of geochemical patterns via GIS-based geographically weighted statistics
  publication-title: J. Geochem. Explor.
– volume: 130
  start-page: 43
  year: 2019
  end-page: 56
  ident: bib65
  article-title: Integration of auto-encoder network with density-based spatial clustering for geochemical anomaly detection for mineral exploration
  publication-title: Comput. Geosci.
– year: 2015
  ident: bib2
  article-title: Variational Autoencoder Based Anomaly Detection Using Reconstruction Probability
– volume: 27
  start-page: 329
  year: 2008
  end-page: 335
  ident: bib58
  article-title: SHRIMP zircon U–Pb dating of quartz porphyry from Zhongjia Tin-polymetallic deposit in Longyan area, Fujian province, and its geological significance
  publication-title: Miner. Deposits
– volume: vol. 1
  start-page: 334
  year: 1962
  ident: bib34
  publication-title: Traité de géostatistique appliquée
– volume: 30
  start-page: 309
  year: 1988
  end-page: 322
  ident: bib31
  article-title: Exploratory data analysis: recent advances for the interpretation of geochemical data
  publication-title: J. Geochem. Explor.
– volume: 115
  start-page: 24
  year: 2012
  end-page: 35
  ident: bib60
  article-title: Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping
  publication-title: J. Geochem. Explor.
– volume: 157
  start-page: 81
  year: 2015
  ident: 10.1016/j.apgeochem.2020.104710_bib22
  article-title: Supervised geochemical anomaly detection by pattern recognition
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.06.001
– volume: 158
  start-page: 9
  year: 2016
  ident: 10.1016/j.apgeochem.2020.104710_bib73
  article-title: Spatial analysis and visualization of exploration geochemical data
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2016.04.006
– volume: 32
  start-page: 314
  year: 2007
  ident: 10.1016/j.apgeochem.2020.104710_bib10
  article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2006.10.002
– volume: 7
  start-page: 2094
  year: 2014
  ident: 10.1016/j.apgeochem.2020.104710_bib8
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens.
  doi: 10.1109/JSTARS.2014.2329330
– volume: 210
  start-page: 106453
  year: 2020
  ident: 10.1016/j.apgeochem.2020.104710_bib51
  article-title: Identifying geochemical anomaly through spatially anisotropic singularity mapping: a case study from silver-gold deposit in Pangxidong district, SE China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2019.106453
– start-page: 482pp
  year: 1997
  ident: 10.1016/j.apgeochem.2020.104710_bib23
– volume: 180
  start-page: 15
  year: 2017
  ident: 10.1016/j.apgeochem.2020.104710_bib35
  article-title: Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at hamich exploration area, east of Iran
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2017.05.008
– start-page: 73
  issue: Suppl. l
  year: 2013
  ident: 10.1016/j.apgeochem.2020.104710_bib62
  article-title: Geochronology of Dapai iron-polymetallic deposit in Yongding city, Fujian province and its geological significance
  publication-title: Acta Mineral. Sin.
– volume: 10
  start-page: 3
  year: 2010
  ident: 10.1016/j.apgeochem.2020.104710_bib14
  article-title: Major advances in exploration geochemistry, 1998-2007
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/09-215
– volume: 262
  start-page: 533
  year: 2007
  ident: 10.1016/j.apgeochem.2020.104710_bib40
  article-title: The golden transformation of the Cretaceous plate subduction in the west Pacific
  publication-title: Earth Planet Sci. Lett.
  doi: 10.1016/j.epsl.2007.08.021
– volume: 27
  start-page: 663
  year: 2012
  ident: 10.1016/j.apgeochem.2020.104710_bib70
  article-title: Neuro-fuzzy modeling based genetic algorithms for identification of geochemical anomalies in mining geochemistry
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2011.12.020
– volume: 31
  start-page: 579
  year: 2005
  ident: 10.1016/j.apgeochem.2020.104710_bib19
  article-title: Multivariate outlier detection in exploration geochemistry
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.11.013
– volume: vol. 11
  year: 2008
  ident: 10.1016/j.apgeochem.2020.104710_bib4
– volume: 203
  start-page: 87
  year: 2019
  ident: 10.1016/j.apgeochem.2020.104710_bib59
  article-title: Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2019.04.007
– volume: 37
  start-page: 1217
  year: 2012
  ident: 10.1016/j.apgeochem.2020.104710_bib64
  article-title: Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance
  publication-title: J. China Univ. Geosci.
– start-page: 258619
  year: 2015
  ident: 10.1016/j.apgeochem.2020.104710_bib28
  article-title: Deep convolutional neural networks for hyperspectral image classification
  publication-title: J. Sensors
– volume: 148
  start-page: 259
  year: 2015
  ident: 10.1016/j.apgeochem.2020.104710_bib43
  article-title: Spatial characteristics of geochemical patterns related to Fe mineralization in the southwestern Fujian province (China)
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.10.010
– volume: 107
  start-page: 258
  year: 2019
  ident: 10.1016/j.apgeochem.2020.104710_bib46
  article-title: Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2019.02.027
– volume: 60
  start-page: 99
  year: 1997
  ident: 10.1016/j.apgeochem.2020.104710_bib54
  article-title: Geochemical mapping in China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(97)00029-0
– volume: 164
  start-page: 33
  year: 2016
  ident: 10.1016/j.apgeochem.2020.104710_bib74
  article-title: Fractal/multifractal modeling of geochemical data: a review
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.04.010
– volume: 12
  start-page: 2121
  year: 2011
  ident: 10.1016/j.apgeochem.2020.104710_bib16
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– year: 1977
  ident: 10.1016/j.apgeochem.2020.104710_bib41
– volume: 130
  start-page: 43
  year: 2019
  ident: 10.1016/j.apgeochem.2020.104710_bib65
  article-title: Integration of auto-encoder network with density-based spatial clustering for geochemical anomaly detection for mineral exploration
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.05.011
– volume: 27
  start-page: 329
  year: 2008
  ident: 10.1016/j.apgeochem.2020.104710_bib58
  article-title: SHRIMP zircon U–Pb dating of quartz porphyry from Zhongjia Tin-polymetallic deposit in Longyan area, Fujian province, and its geological significance
  publication-title: Miner. Deposits
– volume: 123
  start-page: 5120
  year: 2018
  ident: 10.1016/j.apgeochem.2020.104710_bib37
  article-title: P wave arrival picking and first-motion polarity determination with deep learning
  publication-title: J. Geophys. Res.
  doi: 10.1029/2017JB015251
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.apgeochem.2020.104710_bib27
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 30
  start-page: 309
  year: 1988
  ident: 10.1016/j.apgeochem.2020.104710_bib31
  article-title: Exploratory data analysis: recent advances for the interpretation of geochemical data
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(88)90066-0
– volume: 59
  start-page: 556
  year: 2015
  ident: 10.1016/j.apgeochem.2020.104710_bib66
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-015-5178-3
– volume: 10
  start-page: 27
  year: 2018
  ident: 10.1016/j.apgeochem.2020.104710_bib38
  article-title: Fault diagnosis method based on deep convolution variational self-encoding network
  publication-title: J. Instrum.
– volume: 46
  start-page: 203
  year: 2019
  ident: 10.1016/j.apgeochem.2020.104710_bib3
  article-title: Semi-supervised intrusion detection algorithm based on depth generation model
  publication-title: Comput. Sci.
– volume: 189
  start-page: 122
  year: 2018
  ident: 10.1016/j.apgeochem.2020.104710_bib53
  article-title: A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2017.03.017
– volume: 57
  start-page: 72
  year: 2018
  ident: 10.1016/j.apgeochem.2020.104710_bib25
  article-title: Random noise removal of seismic data based on deep learning convolutional neural networks
  publication-title: Geophys. Prospect. Pet.
– volume: 34
  start-page: 3173
  year: 2018
  ident: 10.1016/j.apgeochem.2020.104710_bib68
  article-title: Machine learning, deep learning and Python language in field of geology
  publication-title: Acta Petrol. Sin.
– year: 2014
  ident: 10.1016/j.apgeochem.2020.104710_bib29
– start-page: 415
  year: 1962
  ident: 10.1016/j.apgeochem.2020.104710_bib26
– volume: 14
  start-page: 597
  year: 2017
  ident: 10.1016/j.apgeochem.2020.104710_bib33
  article-title: Transferred deep learning for anomaly detection in hyperspectral imagery
  publication-title: Geosci. Rem. Sens. Lett. IEEE
  doi: 10.1109/LGRS.2017.2657818
– volume: 86
  start-page: 75
  year: 2016
  ident: 10.1016/j.apgeochem.2020.104710_bib56
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.10.006
– volume: 140
  start-page: 56
  year: 2014
  ident: 10.1016/j.apgeochem.2020.104710_bib7
  article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.02.013
– volume: 21
  start-page: 36
  year: 2018
  ident: 10.1016/j.apgeochem.2020.104710_bib50
  article-title: Application of isolation forest to extract multivariate anomalies from geochemical exploration data
  publication-title: Glob. Geol.
– year: 2020
  ident: 10.1016/j.apgeochem.2020.104710_bib72
  article-title: Geodata science-based mineral prospectivity mapping: a review
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09700-9
– volume: vol. 44
  start-page: 450
  year: 2015
  ident: 10.1016/j.apgeochem.2020.104710_bib45
– volume: 326
  start-page: 269
  year: 2000
  ident: 10.1016/j.apgeochem.2020.104710_bib67
  article-title: Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(00)00120-7
– volume: 35
  start-page: 279
  year: 2003
  ident: 10.1016/j.apgeochem.2020.104710_bib17
  article-title: Isometric logratio transformations for compositional data analysis
  publication-title: Math. Geol.
  doi: 10.1023/A:1023818214614
– volume: 119
  start-page: 104668
  year: 2020
  ident: 10.1016/j.apgeochem.2020.104710_bib49
  article-title: Assessing geochemical anomalies using geographically weighted lasso
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2020.104668
– volume: 9
  start-page: 270
  year: 2019
  ident: 10.1016/j.apgeochem.2020.104710_bib6
  article-title: A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition
  publication-title: Minerals
  doi: 10.3390/min9050270
– volume: 157
  start-page: 110
  year: 2015
  ident: 10.1016/j.apgeochem.2020.104710_bib42
  article-title: Quantifying the spatial characteristics of geochemical patterns via GIS-based geographically weighted statistics
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.06.004
– volume: 29
  start-page: 89
  year: 2019
  ident: 10.1016/j.apgeochem.2020.104710_bib52
  article-title: Prospectivity mapping for porphyry Cu-Mo mineralization in the Eastern Tianshan, Xinjiang, northwestern China
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09486-5
– volume: 27
  start-page: 5
  year: 2018
  ident: 10.1016/j.apgeochem.2020.104710_bib75
  article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9357-0
– volume: 9
  start-page: 43
  year: 2000
  ident: 10.1016/j.apgeochem.2020.104710_bib13
  article-title: Integrated spatial and spectrum method for geochemical anomaly separation
  publication-title: Nat. Resour. Res.
  doi: 10.1023/A:1010109829861
– volume: 14
  start-page: 45
  year: 2014
  ident: 10.1016/j.apgeochem.2020.104710_bib61
  article-title: Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/geochem2012-144
– volume: 71
  start-page: 853
  year: 2015
  ident: 10.1016/j.apgeochem.2020.104710_bib36
  article-title: Receiver operating characteristics (ROC) as validation tool for prospectivity models-A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.09.007
– volume: 27
  start-page: 861
  year: 2006
  ident: 10.1016/j.apgeochem.2020.104710_bib18
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 10
  start-page: 27
  year: 2010
  ident: 10.1016/j.apgeochem.2020.104710_bib24
  article-title: The interpretation of geochemical survey data
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/09-210
– volume: 104679
  year: 2020
  ident: 10.1016/j.apgeochem.2020.104710_bib48
  article-title: Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: a case study from Ag-Pb-Zn deposits in north-western Zhejiang, China
  publication-title: Appl. Geochem.
– volume: 155
  start-page: 84
  year: 2015
  ident: 10.1016/j.apgeochem.2020.104710_bib44
  article-title: A comparative study of trend surface analysis and spectrum-area multifractal model to identify geochemical anomalies
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.04.013
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.apgeochem.2020.104710_bib32
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2015
  ident: 10.1016/j.apgeochem.2020.104710_bib2
– volume: 3
  start-page: 47
  year: 1981
  ident: 10.1016/j.apgeochem.2020.104710_bib21
  article-title: Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin
  publication-title: Acta Geosci. Sin.
– volume: 71
  start-page: 502
  year: 2015
  ident: 10.1016/j.apgeochem.2020.104710_bib77
  article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.09.024
– volume: 122
  start-page: 55
  year: 2012
  ident: 10.1016/j.apgeochem.2020.104710_bib11
  article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2012.07.007
– volume: 51
  start-page: 109
  year: 1994
  ident: 10.1016/j.apgeochem.2020.104710_bib12
  article-title: The separation of geochemical anomalies from background by fractal methods
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(94)90013-2
– volume: 140
  start-page: 104484
  year: 2020
  ident: 10.1016/j.apgeochem.2020.104710_bib57
  article-title: Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104484
– volume: 45
  start-page: 730
  year: 2017
  ident: 10.1016/j.apgeochem.2020.104710_bib20
  article-title: A lightweight intrusion detection model based on autoencoder network with feature reduction
  publication-title: Acta Electron. Sin.
– volume: 8
  start-page: 333
  year: 2008
  ident: 10.1016/j.apgeochem.2020.104710_bib55
  article-title: Multiscale geochemical mapping in China
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/1467-7873/08-184
– year: 2013
  ident: 10.1016/j.apgeochem.2020.104710_bib30
– volume: 209
  start-page: 106431
  year: 2020
  ident: 10.1016/j.apgeochem.2020.104710_bib76
  article-title: Geodata science and geochemical mapping
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2019.106431
– volume: 26
  start-page: 457
  year: 2017
  ident: 10.1016/j.apgeochem.2020.104710_bib71
  article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9345-4
– volume: 28
  start-page: 1285
  year: 2019
  ident: 10.1016/j.apgeochem.2020.104710_bib47
  article-title: Mapping geochemical anomalies through integrating random forest and metric learning methods
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09471-y
– volume: 26
  start-page: 434
  year: 2012
  ident: 10.1016/j.apgeochem.2020.104710_bib63
  article-title: LA-ICP-MS zircon U-Pb ages and Hf isotopic compositions of Dayang granite from Longyan, Fujian province
  publication-title: Geoscience
– volume: 192
  start-page: 1
  year: 2019
  ident: 10.1016/j.apgeochem.2020.104710_bib78
  article-title: Deep learning and its application in geochemical mapping
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.02.023
– volume: 35
  start-page: 210
  year: 2016
  ident: 10.1016/j.apgeochem.2020.104710_bib5
  article-title: Identification and classification of bad geological bodies based on convolutional neural network
  publication-title: Geol. Sci. Technol. Inf.
– start-page: 416
  year: 1986
  ident: 10.1016/j.apgeochem.2020.104710_bib1
– volume: 17
  start-page: 231
  year: 2017
  ident: 10.1016/j.apgeochem.2020.104710_bib9
  article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data
  publication-title: Geochem. Explor. Environ. Anal.
  doi: 10.1144/geochem2016-024
– year: 2016
  ident: 10.1016/j.apgeochem.2020.104710_bib15
– volume: 100
  start-page: 25
  year: 2009
  ident: 10.1016/j.apgeochem.2020.104710_bib69
  article-title: Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2008.03.004
– volume: 3
  start-page: 129
  year: 1974
  ident: 10.1016/j.apgeochem.2020.104710_bib39
  article-title: Selection of threshold values in geochemical data using probability graphs
  publication-title: J. Geochem. Explor.
  doi: 10.1016/0375-6742(74)90030-2
– volume: vol. 1
  start-page: 334
  year: 1962
  ident: 10.1016/j.apgeochem.2020.104710_bib34
– volume: 115
  start-page: 24
  year: 2012
  ident: 10.1016/j.apgeochem.2020.104710_bib60
  article-title: Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2012.02.002
SSID ssj0005702
Score 2.5792937
Snippet Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104710
SubjectTerms algorithms
China
copper
Deep learning
ferric oxide
Geochemical mapping
geochemistry
iron
lead
manganese
Mineral exploration
mineralization
mining
probability
spatial data
Variational autoencoder network
zinc
Title Recognition of geochemical anomalies using a deep variational autoencoder network
URI https://dx.doi.org/10.1016/j.apgeochem.2020.104710
https://www.proquest.com/docview/2477628961
Volume 122
WOSCitedRecordID wos000587914200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005702
  issn: 0883-2927
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBhIviE-x8SEj8Valaj4cJ7xN09hA1QRjoMCLZSc2pNqSak2q8d_vHNtpyocGQrxEiWPH7d35_PP57ozQy6SAOY6E3JOJoF4UKurxMIDHApbPQUGVSVb9aUaPj5MsS9-NRjMXC7M6o1WVXF6mi__KaigDZuvQ2b9gd_9RKIB7YDpcge1w_SPGnziXIIMEv0p9JpZLClCfA-6Wy3HbmQj4uJByMV7BetnZBHnb1Dq3pU4xURkX8SF-daDVfXXZrN2IZ21ndv1Szt10CIVZaX1-P5ff2rI3U5uqJ1IbS21la3qAdaa_YXroY2LWDkhGbenT4UzE_0QatZrQoNvj39C7JiD5Jx1uzAnzCV_Y_zLRfevNaGo9YDcTZH_QPeoOA1BYUDW7gbYDSlLQcdt7bw6yt2uXH9r5oPa_cMPf75fd_Q6t_DBvd2Dk9C66Y1cReM9w_x4ayeo-unXYndL8_QF6P5ABXCs8kAHcywDuZABzrGUAD2QAD2QAWxl4iD6-PjjdP_Ls2Rkw1KjfeIUACvCISMILyWUkolRQBQ85hzUuz2MqixywoR_nNCK55CKaikClShEZwrvwEdqq6ko-RhgwoiAkSKdcAdyLBY_j1C8SSackT3wldlDsaMRym1hen29yxpwH4Zz1xGWauMwQdwdN-4YLk1vl-iavHBOYhYgG-jGQnusbv3BsYzBA9M4Yr2TdLlkQUQAFSRr7u__SwRN0ez1MnqKt5qKVz9DNfNWUy4vnVhqvAJqKnsU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+geochemical+anomalies+using+a+deep+variational+autoencoder+network&rft.jtitle=Applied+geochemistry&rft.au=Luo%2C+Zijing&rft.au=Xiong%2C+Yihui&rft.au=Zuo%2C+Renguang&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0883-2927&rft.eissn=1872-9134&rft.volume=122&rft_id=info:doi/10.1016%2Fj.apgeochem.2020.104710&rft.externalDocID=S088329272030202X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon