Recognition of geochemical anomalies using a deep variational autoencoder network
Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for mining complex, high-level, and non-linear geospatial data and for extracting previously unknown patterns related to geological processes. In thi...
Uloženo v:
| Vydáno v: | Applied geochemistry Ročník 122; s. 104710 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2020
|
| Témata: | |
| ISSN: | 0883-2927, 1872-9134 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for mining complex, high-level, and non-linear geospatial data and for extracting previously unknown patterns related to geological processes. In this study, a deep variational autoencoder (VAE) network was used to extract features related to mineralization; and these features were then integrated as a anomaly map in support of mineral exploration based on geochemical exploration data, which consist of Cu, Pb, Mn, Zn and Fe2O3. Various experiments were conducted to determine the optimal parameters of the VAE. The structure of the VAE, in which the network depth and number of hidden units were 24–12-3-12-24, was built to recognize geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province, China. The geochemical anomalies recognized by the VAE show a close spatial correlation with known Fe polymetallic deposits. Meanwhile, the areas with high probability are located in or around the Yanshanian intrusions and the contact zones of the Carboniferous–Permian formation and Yanshanian intrusions. These results suggest that the anomalous areas identified by the VAE are meaningful for mineral exploration.
•A deep variational autoencoder (VAE) network for multivariate geochemical anomalies recognition is demonstrated.•The reconstruction probability instead of reconstruction error is employed as the anomaly score.•A case study from southwestern Fujian district is conducted. |
|---|---|
| AbstractList | Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for mining complex, high-level, and non-linear geospatial data and for extracting previously unknown patterns related to geological processes. In this study, a deep variational autoencoder (VAE) network was used to extract features related to mineralization; and these features were then integrated as a anomaly map in support of mineral exploration based on geochemical exploration data, which consist of Cu, Pb, Mn, Zn and Fe₂O₃. Various experiments were conducted to determine the optimal parameters of the VAE. The structure of the VAE, in which the network depth and number of hidden units were 24–12-3-12-24, was built to recognize geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province, China. The geochemical anomalies recognized by the VAE show a close spatial correlation with known Fe polymetallic deposits. Meanwhile, the areas with high probability are located in or around the Yanshanian intrusions and the contact zones of the Carboniferous–Permian formation and Yanshanian intrusions. These results suggest that the anomalous areas identified by the VAE are meaningful for mineral exploration. Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for mining complex, high-level, and non-linear geospatial data and for extracting previously unknown patterns related to geological processes. In this study, a deep variational autoencoder (VAE) network was used to extract features related to mineralization; and these features were then integrated as a anomaly map in support of mineral exploration based on geochemical exploration data, which consist of Cu, Pb, Mn, Zn and Fe2O3. Various experiments were conducted to determine the optimal parameters of the VAE. The structure of the VAE, in which the network depth and number of hidden units were 24–12-3-12-24, was built to recognize geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province, China. The geochemical anomalies recognized by the VAE show a close spatial correlation with known Fe polymetallic deposits. Meanwhile, the areas with high probability are located in or around the Yanshanian intrusions and the contact zones of the Carboniferous–Permian formation and Yanshanian intrusions. These results suggest that the anomalous areas identified by the VAE are meaningful for mineral exploration. •A deep variational autoencoder (VAE) network for multivariate geochemical anomalies recognition is demonstrated.•The reconstruction probability instead of reconstruction error is employed as the anomaly score.•A case study from southwestern Fujian district is conducted. |
| ArticleNumber | 104710 |
| Author | Zuo, Renguang Xiong, Yihui Luo, Zijing |
| Author_xml | – sequence: 1 givenname: Zijing surname: Luo fullname: Luo, Zijing – sequence: 2 givenname: Yihui surname: Xiong fullname: Xiong, Yihui – sequence: 3 givenname: Renguang surname: Zuo fullname: Zuo, Renguang email: zrguang@cug.edu.cn |
| BookMark | eNqNkD1PwzAQhi1UJNrCbyAjS4rtOHEyMFQVX1IlBILZujiX4pLYxU6L-PcktGJggenk8_O-0j0TMrLOIiHnjM4YZdnlegabFTr9iu2MUz5shWT0iIxZLnlcsESMyJjmeRLzgssTMglhTSlNJeVj8viE2q2s6YyzkaujQ5PR0ERgXQuNwRBtg7GrCKIKcRPtwBsY-AHZdg6tdhX6yGL34fzbKTmuoQl4dphT8nJz_by4i5cPt_eL-TKGRLIurkqZFiBSTKFCQFGKopR1_9AgigJ0JrHSnHOWaSlSjVAKWvK6qOsUk_4vmZKLfe_Gu_cthk61JmhsGrDotkFxIWXG8yJjPXq1R7V3IXislTbd9wmdB9MoRtWgUq3Vj0o1qFR7lX1e_spvvGnBf_4jOd8nsTexM-hV0KYXhpXxqDtVOfNnxxf22pgT |
| CitedBy_id | crossref_primary_10_1007_s00778_021_00721_1 crossref_primary_10_1007_s11053_024_10433_2 crossref_primary_10_1016_j_gexplo_2021_106875 crossref_primary_10_1016_j_oregeorev_2022_105024 crossref_primary_10_1016_j_cageo_2023_105490 crossref_primary_10_1016_j_oregeorev_2022_105265 crossref_primary_10_1007_s11053_022_10038_7 crossref_primary_10_1007_s11053_023_10200_9 crossref_primary_10_1016_j_gexplo_2021_106872 crossref_primary_10_1016_j_cageo_2024_105657 crossref_primary_10_3390_min13101332 crossref_primary_10_1007_s11053_022_10050_x crossref_primary_10_1016_j_gexplo_2022_106958 crossref_primary_10_1016_j_oregeorev_2023_105381 crossref_primary_10_1016_j_apgeochem_2021_104994 crossref_primary_10_1016_j_apgeochem_2023_105722 crossref_primary_10_1109_ACCESS_2021_3058809 crossref_primary_10_1007_s11004_021_09935_z crossref_primary_10_1016_j_apgeochem_2024_106137 crossref_primary_10_1007_s11053_025_10464_3 crossref_primary_10_1016_j_apgeochem_2021_105043 crossref_primary_10_1007_s11053_021_09984_5 crossref_primary_10_1007_s11053_024_10409_2 crossref_primary_10_1016_j_apgeochem_2023_105765 crossref_primary_10_1007_s11004_025_10190_9 crossref_primary_10_1016_j_oregeorev_2023_105418 crossref_primary_10_1029_2024JH000468 crossref_primary_10_3390_pr13010184 crossref_primary_10_1016_j_oregeorev_2025_106705 crossref_primary_10_1007_s11004_021_09979_1 crossref_primary_10_1016_j_oregeorev_2024_106204 crossref_primary_10_1007_s11004_022_10023_z crossref_primary_10_1016_j_apgeochem_2021_105072 crossref_primary_10_1016_j_cageo_2022_105100 crossref_primary_10_1016_j_chemer_2024_126209 crossref_primary_10_1016_j_cageo_2025_106011 crossref_primary_10_1016_j_oregeorev_2023_105573 crossref_primary_10_1007_s11053_024_10317_5 crossref_primary_10_32604_cmc_2023_033408 crossref_primary_10_1007_s11053_022_10080_5 crossref_primary_10_1007_s11053_024_10322_8 crossref_primary_10_1007_s11053_024_10328_2 crossref_primary_10_1029_2023JB027378 crossref_primary_10_1016_j_jafrearsci_2025_105854 crossref_primary_10_1016_j_oregeorev_2021_104316 crossref_primary_10_1016_j_apgeochem_2022_105450 crossref_primary_10_1007_s11053_025_10496_9 crossref_primary_10_1016_j_apgeochem_2021_105111 crossref_primary_10_4018_JGIM_361589 crossref_primary_10_1016_j_apgeochem_2024_106146 crossref_primary_10_1007_s40747_021_00549_w crossref_primary_10_1016_j_cageo_2022_105074 crossref_primary_10_1016_j_cageo_2023_105392 crossref_primary_10_1016_j_oregeorev_2025_106615 crossref_primary_10_1016_j_cageo_2022_105153 crossref_primary_10_1029_2022EA002626 crossref_primary_10_1016_j_cageo_2022_105075 crossref_primary_10_1016_j_geogeo_2025_100361 crossref_primary_10_1016_j_cageo_2024_105679 crossref_primary_10_1007_s11004_022_10042_w crossref_primary_10_3390_app15084082 crossref_primary_10_1007_s11053_024_10334_4 crossref_primary_10_1007_s11004_025_10195_4 crossref_primary_10_1016_j_chemer_2023_125959 crossref_primary_10_1016_j_oregeorev_2021_104264 crossref_primary_10_1007_s11004_023_10133_2 crossref_primary_10_1007_s11004_024_10153_6 crossref_primary_10_3724_j_issn_1007_2802_20240157 crossref_primary_10_1007_s11004_022_10024_y crossref_primary_10_1007_s11053_022_10088_x crossref_primary_10_1016_j_oregeorev_2025_106447 crossref_primary_10_1016_j_cageo_2023_105341 crossref_primary_10_1016_j_oregeorev_2023_105478 crossref_primary_10_1016_j_apgeochem_2021_104958 crossref_primary_10_1016_j_oregeorev_2025_106882 crossref_primary_10_3390_min12060689 crossref_primary_10_3390_en15114011 crossref_primary_10_3390_min11080816 crossref_primary_10_1016_j_gexplo_2021_106904 crossref_primary_10_1016_j_earscirev_2025_105209 crossref_primary_10_1016_j_gexplo_2023_107274 crossref_primary_10_1007_s12145_023_01095_4 crossref_primary_10_1016_j_apgeochem_2022_105273 crossref_primary_10_1016_j_oregeorev_2022_104955 crossref_primary_10_1016_j_oregeorev_2022_104916 crossref_primary_10_1038_s41598_025_11953_4 crossref_primary_10_1007_s12145_024_01224_7 crossref_primary_10_1016_j_apgeochem_2024_106124 crossref_primary_10_1016_j_oregeorev_2023_105706 |
| Cites_doi | 10.1016/j.gexplo.2015.06.001 10.1016/j.earscirev.2016.04.006 10.1016/j.oregeorev.2006.10.002 10.1109/JSTARS.2014.2329330 10.1016/j.gexplo.2019.106453 10.1016/j.gexplo.2017.05.008 10.1144/1467-7873/09-215 10.1016/j.epsl.2007.08.021 10.1016/j.apgeochem.2011.12.020 10.1016/j.cageo.2004.11.013 10.1016/j.gexplo.2019.04.007 10.1016/j.gexplo.2014.10.010 10.1016/j.oregeorev.2019.02.027 10.1016/S0375-6742(97)00029-0 10.1016/j.gexplo.2015.04.010 10.1016/j.cageo.2019.05.011 10.1029/2017JB015251 10.1126/science.1127647 10.1016/0375-6742(88)90066-0 10.1007/s11430-015-5178-3 10.1016/j.gexplo.2017.03.017 10.1109/LGRS.2017.2657818 10.1016/j.cageo.2015.10.006 10.1016/j.gexplo.2014.02.013 10.1007/s11053-020-09700-9 10.1016/S0040-1951(00)00120-7 10.1023/A:1023818214614 10.1016/j.apgeochem.2020.104668 10.3390/min9050270 10.1016/j.gexplo.2015.06.004 10.1007/s11053-019-09486-5 10.1007/s11053-017-9357-0 10.1023/A:1010109829861 10.1144/geochem2012-144 10.1016/j.oregeorev.2014.09.007 10.1016/j.patrec.2005.10.010 10.1144/1467-7873/09-210 10.1016/j.gexplo.2015.04.013 10.1038/nature14539 10.1016/j.oregeorev.2014.09.024 10.1016/j.gexplo.2012.07.007 10.1016/0375-6742(94)90013-2 10.1016/j.cageo.2020.104484 10.1144/1467-7873/08-184 10.1016/j.gexplo.2019.106431 10.1007/s11053-017-9345-4 10.1007/s11053-019-09471-y 10.1016/j.earscirev.2019.02.023 10.1144/geochem2016-024 10.1016/j.gexplo.2008.03.004 10.1016/0375-6742(74)90030-2 10.1016/j.gexplo.2012.02.002 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apgeochem.2020.104710 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1872-9134 |
| ExternalDocumentID | 10_1016_j_apgeochem_2020_104710 S088329272030202X |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a371t-db759a45e5adeae4b49b7f5adca499ac67edc22216c745ceab40b2f9ff5e37ed3 |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587914200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0883-2927 |
| IngestDate | Sun Sep 28 04:31:04 EDT 2025 Tue Nov 18 20:29:12 EST 2025 Sat Nov 29 07:18:27 EST 2025 Sun Apr 21 12:55:15 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Mineral exploration Geochemical mapping Variational autoencoder network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a371t-db759a45e5adeae4b49b7f5adca499ac67edc22216c745ceab40b2f9ff5e37ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2477628961 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2477628961 crossref_citationtrail_10_1016_j_apgeochem_2020_104710 crossref_primary_10_1016_j_apgeochem_2020_104710 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2020_104710 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied geochemistry |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen, Lin, Zhao, Wang, Gu (bib8) 2014; 7 Wang, Zhou, Xiao (bib48) 2020; 104679 Han, Zhou, Chi (bib25) 2018; 57 Chen, Wu (bib9) 2017; 17 Tukey (bib41) 1977 Filzmoser, Garrett, Reimann (bib19) 2005; 31 Wu, Chen (bib50) 2018; 21 An, Cho (bib2) 2015 Wang, Dong, Zuo (bib46) 2019; 107 Ziaii, Pouyan, Ziaei (bib69) 2009; 100 Kürzl (bib31) 1988; 30 Cheng (bib10) 2007; 32 Chen, Lu, Li (bib7) 2014; 140 Yousefi, Kamkar-Rouhani, Carranza (bib60) 2012; 115 Yang, Zhang, Feng, She, Li (bib58) 2008; 27 Aitchison (bib1) 1986 Gao, Gao, He (bib20) 2017; 45 Wang, Zuo (bib49) 2020; 119 Duchi, Hazan, Singer (bib16) 2011; 12 Carranza (bib4) 2008; vol. 11 Gonbadi, Tabatabaei, Carranza (bib22) 2015; 157 Yousefi, Kamkar-Rouhani, Carranza (bib61) 2014; 14 Zuo, Xiong (bib76) 2020; 209 Li, Wu, Du (bib33) 2017; 14 Sun, Ding, Hu, Li (bib40) 2007; 262 Zuo, Xiong, Wang, Carranza (bib78) 2019; 192 Zuo, Wang (bib74) 2016; 164 Hinton, Salakhutdinov (bib27) 2006; 313 Fawcett (bib18) 2006; 27 Matheron (bib34) 1962; vol. 1 Ziaii, Ardejani, Ziaei, Soleymani (bib70) 2012; 27 Doersch (bib15) 2016 Cheng (bib11) 2012; 122 Wang, Cheng, Zuo (bib43) 2015; 148 Wang, Zuo (bib44) 2015; 155 Xiao, Wang, Hou, Erten (bib51) 2020; 210 Yuan, Feng, Zhang, Di, Wang, Ni (bib62) 2013 Zuo, Zhang, Zhang, Carranza, Wang (bib77) 2015; 71 Zhang, Wu, Di, Wang, Yao, Zhang, Lv, Yuan, Shi (bib64) 2012; 37 Wang, Cheng, Zuo (bib42) 2015; 157 Xiong, Zuo (bib57) 2020; 140 Xiao, Wang, Hou, Wang, Zhou (bib52) 2019; 29 Wang, Zuo, Dong (bib47) 2019; 28 Goovaerts (bib23) 1997 Zhang, Li, Zhang, Wang (bib63) 2012; 26 She, Tian, Liang (bib38) 2018; 10 Yu, Xiao, Zhou, Wang, Wang (bib59) 2019; 203 Cheng, Xu, Grunsky (bib13) 2000; 9 Zuo (bib72) 2020 Zhang, Zuo, Xiong (bib66) 2015; 59 Xiong, Zuo (bib56) 2016; 86 Zuo (bib71) 2017; 26 Chen, An, Li (bib5) 2016; 35 Zhang, Xiao, Carranza, Yang, Zhao (bib65) 2019; 130 Zhou, Li (bib67) 2000; 326 Ge, Han, Zhou, Chen (bib21) 1981; 3 Hu, Huang, Wei, Zhang, Li (bib28) 2015 Xie, Wang, Zhang, Zhou, Cheng, Liu, Cheng, Xu (bib55) 2008; 8 Nykänen, Lahti, Niiranen, Korhonen (bib36) 2015; 71 Zuo, Xiong (bib75) 2018; 27 Moeini, Torab (bib35) 2017; 180 Cao, Xu, Wang (bib3) 2019; 46 Egozcue, Pawlowsky-Glahn, Mateu-Figueras, Barcelo-Vidal (bib17) 2003; 35 Wang, Zhang, Vatuva, Yan, Ma, Feng, Yu, Bai, Di (bib45) 2015; vol. 44 Zuo, Carranza, Wang (bib73) 2016; 158 Kingma, Welling (bib30) 2013 Sinclair (bib39) 1974; 3 Grunsky (bib24) 2010; 10 LeCun, Bengio, Hinton (bib32) 2015; 521 Hawkes, Webb (bib26) 1962 Chen, Guan, Feng, Yue, Wang, Zhang (bib6) 2019; 9 Cheng, Agterberg, Ballantyne (bib12) 1994; 51 Xiao, Chen, Hou, Wang, Zhou, Erten (bib53) 2018; 189 Xie, Mu, Ren (bib54) 1997; 60 Kingma, Ba (bib29) 2014 Zhou, Wang, Zuo, Xiao, She, Wang (bib68) 2018; 34 Cohen, Kelley, Anand, Coker (bib14) 2010; 10 Ross, Meier, Hauksson (bib37) 2018; 123 Cheng (10.1016/j.apgeochem.2020.104710_bib13) 2000; 9 Wang (10.1016/j.apgeochem.2020.104710_bib43) 2015; 148 Zuo (10.1016/j.apgeochem.2020.104710_bib72) 2020 Doersch (10.1016/j.apgeochem.2020.104710_bib15) 2016 Chen (10.1016/j.apgeochem.2020.104710_bib7) 2014; 140 Hawkes (10.1016/j.apgeochem.2020.104710_bib26) 1962 LeCun (10.1016/j.apgeochem.2020.104710_bib32) 2015; 521 Wang (10.1016/j.apgeochem.2020.104710_bib42) 2015; 157 Zuo (10.1016/j.apgeochem.2020.104710_bib74) 2016; 164 Wang (10.1016/j.apgeochem.2020.104710_bib49) 2020; 119 Cheng (10.1016/j.apgeochem.2020.104710_bib11) 2012; 122 Ge (10.1016/j.apgeochem.2020.104710_bib21) 1981; 3 Hinton (10.1016/j.apgeochem.2020.104710_bib27) 2006; 313 Xiao (10.1016/j.apgeochem.2020.104710_bib52) 2019; 29 Chen (10.1016/j.apgeochem.2020.104710_bib6) 2019; 9 Xiong (10.1016/j.apgeochem.2020.104710_bib57) 2020; 140 Zhou (10.1016/j.apgeochem.2020.104710_bib67) 2000; 326 Li (10.1016/j.apgeochem.2020.104710_bib33) 2017; 14 Sun (10.1016/j.apgeochem.2020.104710_bib40) 2007; 262 Wang (10.1016/j.apgeochem.2020.104710_bib48) 2020; 104679 Gao (10.1016/j.apgeochem.2020.104710_bib20) 2017; 45 Nykänen (10.1016/j.apgeochem.2020.104710_bib36) 2015; 71 Cheng (10.1016/j.apgeochem.2020.104710_bib12) 1994; 51 Zuo (10.1016/j.apgeochem.2020.104710_bib78) 2019; 192 Yuan (10.1016/j.apgeochem.2020.104710_bib62) 2013 Hu (10.1016/j.apgeochem.2020.104710_bib28) 2015 Aitchison (10.1016/j.apgeochem.2020.104710_bib1) 1986 Zhang (10.1016/j.apgeochem.2020.104710_bib66) 2015; 59 Ziaii (10.1016/j.apgeochem.2020.104710_bib69) 2009; 100 Chen (10.1016/j.apgeochem.2020.104710_bib8) 2014; 7 Moeini (10.1016/j.apgeochem.2020.104710_bib35) 2017; 180 Zuo (10.1016/j.apgeochem.2020.104710_bib77) 2015; 71 Yu (10.1016/j.apgeochem.2020.104710_bib59) 2019; 203 Egozcue (10.1016/j.apgeochem.2020.104710_bib17) 2003; 35 Wang (10.1016/j.apgeochem.2020.104710_bib47) 2019; 28 Ziaii (10.1016/j.apgeochem.2020.104710_bib70) 2012; 27 Xiao (10.1016/j.apgeochem.2020.104710_bib53) 2018; 189 Cheng (10.1016/j.apgeochem.2020.104710_bib10) 2007; 32 Tukey (10.1016/j.apgeochem.2020.104710_bib41) 1977 Xie (10.1016/j.apgeochem.2020.104710_bib54) 1997; 60 Zuo (10.1016/j.apgeochem.2020.104710_bib73) 2016; 158 Filzmoser (10.1016/j.apgeochem.2020.104710_bib19) 2005; 31 Wang (10.1016/j.apgeochem.2020.104710_bib45) 2015; vol. 44 Wang (10.1016/j.apgeochem.2020.104710_bib44) 2015; 155 Kingma (10.1016/j.apgeochem.2020.104710_bib29) 2014 Zuo (10.1016/j.apgeochem.2020.104710_bib71) 2017; 26 Grunsky (10.1016/j.apgeochem.2020.104710_bib24) 2010; 10 Wang (10.1016/j.apgeochem.2020.104710_bib46) 2019; 107 Zhang (10.1016/j.apgeochem.2020.104710_bib65) 2019; 130 Gonbadi (10.1016/j.apgeochem.2020.104710_bib22) 2015; 157 Zhang (10.1016/j.apgeochem.2020.104710_bib63) 2012; 26 She (10.1016/j.apgeochem.2020.104710_bib38) 2018; 10 Fawcett (10.1016/j.apgeochem.2020.104710_bib18) 2006; 27 Matheron (10.1016/j.apgeochem.2020.104710_bib34) 1962; vol. 1 Ross (10.1016/j.apgeochem.2020.104710_bib37) 2018; 123 Yousefi (10.1016/j.apgeochem.2020.104710_bib60) 2012; 115 Cohen (10.1016/j.apgeochem.2020.104710_bib14) 2010; 10 Carranza (10.1016/j.apgeochem.2020.104710_bib4) 2008; vol. 11 Zhang (10.1016/j.apgeochem.2020.104710_bib64) 2012; 37 Xie (10.1016/j.apgeochem.2020.104710_bib55) 2008; 8 Zuo (10.1016/j.apgeochem.2020.104710_bib75) 2018; 27 Cao (10.1016/j.apgeochem.2020.104710_bib3) 2019; 46 Kingma (10.1016/j.apgeochem.2020.104710_bib30) 2013 Xiao (10.1016/j.apgeochem.2020.104710_bib51) 2020; 210 Wu (10.1016/j.apgeochem.2020.104710_bib50) 2018; 21 Chen (10.1016/j.apgeochem.2020.104710_bib5) 2016; 35 Zuo (10.1016/j.apgeochem.2020.104710_bib76) 2020; 209 Chen (10.1016/j.apgeochem.2020.104710_bib9) 2017; 17 Zhou (10.1016/j.apgeochem.2020.104710_bib68) 2018; 34 Han (10.1016/j.apgeochem.2020.104710_bib25) 2018; 57 Duchi (10.1016/j.apgeochem.2020.104710_bib16) 2011; 12 An (10.1016/j.apgeochem.2020.104710_bib2) 2015 Xiong (10.1016/j.apgeochem.2020.104710_bib56) 2016; 86 Yang (10.1016/j.apgeochem.2020.104710_bib58) 2008; 27 Kürzl (10.1016/j.apgeochem.2020.104710_bib31) 1988; 30 Sinclair (10.1016/j.apgeochem.2020.104710_bib39) 1974; 3 Goovaerts (10.1016/j.apgeochem.2020.104710_bib23) 1997 Yousefi (10.1016/j.apgeochem.2020.104710_bib61) 2014; 14 |
| References_xml | – volume: 10 start-page: 27 year: 2010 end-page: 74 ident: bib24 article-title: The interpretation of geochemical survey data publication-title: Geochem. Explor. Environ. Anal. – volume: 210 start-page: 106453 year: 2020 ident: bib51 article-title: Identifying geochemical anomaly through spatially anisotropic singularity mapping: a case study from silver-gold deposit in Pangxidong district, SE China publication-title: J. Geochem. Explor. – volume: 157 start-page: 81 year: 2015 end-page: 91 ident: bib22 article-title: Supervised geochemical anomaly detection by pattern recognition publication-title: J. Geochem. Explor. – volume: 326 start-page: 269 year: 2000 end-page: 287 ident: bib67 article-title: Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas publication-title: Tectonophysics – volume: 140 start-page: 104484 year: 2020 ident: bib57 article-title: Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine publication-title: Comput. Geosci. – volume: vol. 11 year: 2008 ident: bib4 publication-title: Geochemical Anomaly and Mineral Prospectivity Mapping in GIS – volume: 123 start-page: 5120 year: 2018 end-page: 5129 ident: bib37 article-title: P wave arrival picking and first-motion polarity determination with deep learning publication-title: J. Geophys. Res. – volume: 57 start-page: 72 year: 2018 end-page: 79+87 ident: bib25 article-title: Random noise removal of seismic data based on deep learning convolutional neural networks publication-title: Geophys. Prospect. Pet. – volume: 104679 year: 2020 ident: bib48 article-title: Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: a case study from Ag-Pb-Zn deposits in north-western Zhejiang, China publication-title: Appl. Geochem. – volume: 164 start-page: 33 year: 2016 end-page: 41 ident: bib74 article-title: Fractal/multifractal modeling of geochemical data: a review publication-title: J. Geochem. Explor. – volume: 209 start-page: 106431 year: 2020 ident: bib76 article-title: Geodata science and geochemical mapping publication-title: J. Geochem. Explor. – volume: 8 start-page: 333 year: 2008 end-page: 341 ident: bib55 article-title: Multiscale geochemical mapping in China publication-title: Geochem. Explor. Environ. Anal. – volume: 14 start-page: 597 year: 2017 end-page: 601 ident: bib33 article-title: Transferred deep learning for anomaly detection in hyperspectral imagery publication-title: Geosci. Rem. Sens. Lett. IEEE – volume: 51 start-page: 109 year: 1994 end-page: 130 ident: bib12 article-title: The separation of geochemical anomalies from background by fractal methods publication-title: J. Geochem. Explor. – start-page: 482pp year: 1997 ident: bib23 article-title: Geostatistics for Natural Resources Evaluation – volume: 31 start-page: 579 year: 2005 end-page: 587 ident: bib19 article-title: Multivariate outlier detection in exploration geochemistry publication-title: Comput. Geosci. – volume: 155 start-page: 84 year: 2015 end-page: 90 ident: bib44 article-title: A comparative study of trend surface analysis and spectrum-area multifractal model to identify geochemical anomalies publication-title: J. Geochem. Explor. – volume: 158 start-page: 9 year: 2016 end-page: 18 ident: bib73 article-title: Spatial analysis and visualization of exploration geochemical data publication-title: Earth Sci. Rev. – volume: 32 start-page: 314 year: 2007 end-page: 324 ident: bib10 article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China publication-title: Ore Geol. Rev. – volume: 34 start-page: 3173 year: 2018 end-page: 3178 ident: bib68 article-title: Machine learning, deep learning and Python language in field of geology publication-title: Acta Petrol. Sin. – volume: 3 start-page: 129 year: 1974 end-page: 149 ident: bib39 article-title: Selection of threshold values in geochemical data using probability graphs publication-title: J. Geochem. Explor. – volume: 521 start-page: 436 year: 2015 ident: bib32 article-title: Deep learning publication-title: Nature – volume: 17 start-page: 231 year: 2017 end-page: 238 ident: bib9 article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data publication-title: Geochem. Explor. Environ. Anal. – year: 2013 ident: bib30 article-title: Auto-encoding Variational Bayes – volume: 86 start-page: 75 year: 2016 end-page: 82 ident: bib56 article-title: Recognition of geochemical anomalies using a deep autoencoder network publication-title: Comput. Geosci. – volume: 10 start-page: 27 year: 2018 end-page: 35 ident: bib38 article-title: Fault diagnosis method based on deep convolution variational self-encoding network publication-title: J. Instrum. – year: 2020 ident: bib72 article-title: Geodata science-based mineral prospectivity mapping: a review publication-title: Nat. Resour. Res. – start-page: 258619 year: 2015 ident: bib28 article-title: Deep convolutional neural networks for hyperspectral image classification publication-title: J. Sensors – volume: 180 start-page: 15 year: 2017 end-page: 23 ident: bib35 article-title: Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at hamich exploration area, east of Iran publication-title: J. Geochem. Explor. – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: bib16 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 270 year: 2019 ident: bib6 article-title: A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition publication-title: Minerals – volume: 28 start-page: 1285 year: 2019 end-page: 1298 ident: bib47 article-title: Mapping geochemical anomalies through integrating random forest and metric learning methods publication-title: Nat. Resour. Res. – volume: 192 start-page: 1 year: 2019 end-page: 14 ident: bib78 article-title: Deep learning and its application in geochemical mapping publication-title: Earth Sci. Rev. – volume: 119 start-page: 104668 year: 2020 ident: bib49 article-title: Assessing geochemical anomalies using geographically weighted lasso publication-title: Appl. Geochem. – volume: 7 start-page: 2094 year: 2014 end-page: 2107 ident: bib8 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. – volume: 71 start-page: 502 year: 2015 end-page: 515 ident: bib77 article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China publication-title: Ore Geol. Rev. – volume: 27 start-page: 663 year: 2012 end-page: 676 ident: bib70 article-title: Neuro-fuzzy modeling based genetic algorithms for identification of geochemical anomalies in mining geochemistry publication-title: Appl. Geochem. – year: 1977 ident: bib41 article-title: Exploratory Data Analysis – volume: 35 start-page: 210 year: 2016 end-page: 216 ident: bib5 article-title: Identification and classification of bad geological bodies based on convolutional neural network publication-title: Geol. Sci. Technol. Inf. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib27 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 26 start-page: 434 year: 2012 end-page: 444 ident: bib63 article-title: LA-ICP-MS zircon U-Pb ages and Hf isotopic compositions of Dayang granite from Longyan, Fujian province publication-title: Geoscience – volume: 45 start-page: 730 year: 2017 end-page: 739 ident: bib20 article-title: A lightweight intrusion detection model based on autoencoder network with feature reduction publication-title: Acta Electron. Sin. – volume: 46 start-page: 203 year: 2019 end-page: 207 ident: bib3 article-title: Semi-supervised intrusion detection algorithm based on depth generation model publication-title: Comput. Sci. – volume: vol. 44 start-page: 450 year: 2015 end-page: 468 ident: bib45 publication-title: Zircon U-Pb Geochronology, Geochemistry and Hf Isotope Compositions of the Dayang and Juzhou Granites in Longyan, Fujian and Their Geological Implications – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: bib18 article-title: An introduction to ROC analysis publication-title: Pattern Recogn. Lett. – volume: 122 start-page: 55 year: 2012 end-page: 70 ident: bib11 article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas publication-title: J. Geochem. Explor. – volume: 21 start-page: 36 year: 2018 end-page: 47 ident: bib50 article-title: Application of isolation forest to extract multivariate anomalies from geochemical exploration data publication-title: Glob. Geol. – volume: 9 start-page: 43 year: 2000 end-page: 52 ident: bib13 article-title: Integrated spatial and spectrum method for geochemical anomaly separation publication-title: Nat. Resour. Res. – volume: 14 start-page: 45 year: 2014 end-page: 58 ident: bib61 article-title: Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping publication-title: Geochem. Explor. Environ. Anal. – volume: 100 start-page: 25 year: 2009 end-page: 36 ident: bib69 article-title: Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies publication-title: J. Geochem. Explor. – volume: 29 start-page: 89 year: 2019 end-page: 113 ident: bib52 article-title: Prospectivity mapping for porphyry Cu-Mo mineralization in the Eastern Tianshan, Xinjiang, northwestern China publication-title: Nat. Resour. Res. – volume: 26 start-page: 457 year: 2017 end-page: 464 ident: bib71 article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods publication-title: Nat. Resour. Res. – volume: 140 start-page: 56 year: 2014 end-page: 63 ident: bib7 article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly publication-title: J. Geochem. Explor. – volume: 203 start-page: 87 year: 2019 end-page: 95 ident: bib59 article-title: Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district publication-title: J. Geochem. Explor. – year: 2014 ident: bib29 article-title: Adam: A Method for Stochastic Optimization – volume: 60 start-page: 99 year: 1997 end-page: 113 ident: bib54 article-title: Geochemical mapping in China publication-title: J. Geochem. Explor. – volume: 71 start-page: 853 year: 2015 end-page: 860 ident: bib36 article-title: Receiver operating characteristics (ROC) as validation tool for prospectivity models-A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland publication-title: Ore Geol. Rev. – volume: 107 start-page: 258 year: 2019 end-page: 265 ident: bib46 article-title: Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method publication-title: Ore Geol. Rev. – volume: 37 start-page: 1217 year: 2012 end-page: 1231 ident: bib64 article-title: Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance publication-title: J. China Univ. Geosci. – start-page: 415 year: 1962 ident: bib26 article-title: Geochemistry in Mineral Exploration – volume: 3 start-page: 47 year: 1981 end-page: 69 ident: bib21 article-title: Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin publication-title: Acta Geosci. Sin. – volume: 27 start-page: 5 year: 2018 end-page: 13 ident: bib75 article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods publication-title: Nat. Resour. Res. – volume: 10 start-page: 3 year: 2010 end-page: 16 ident: bib14 article-title: Major advances in exploration geochemistry, 1998-2007 publication-title: Geochem. Explor. Environ. Anal. – year: 2016 ident: bib15 article-title: Tutorial on Variational Autoencoders – volume: 262 start-page: 533 year: 2007 end-page: 542 ident: bib40 article-title: The golden transformation of the Cretaceous plate subduction in the west Pacific publication-title: Earth Planet Sci. Lett. – volume: 148 start-page: 259 year: 2015 end-page: 269 ident: bib43 article-title: Spatial characteristics of geochemical patterns related to Fe mineralization in the southwestern Fujian province (China) publication-title: J. Geochem. Explor. – volume: 189 start-page: 122 year: 2018 end-page: 137 ident: bib53 article-title: A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China publication-title: J. Geochem. Explor. – start-page: 73 year: 2013 end-page: 75 ident: bib62 article-title: Geochronology of Dapai iron-polymetallic deposit in Yongding city, Fujian province and its geological significance publication-title: Acta Mineral. Sin. – volume: 59 start-page: 556 year: 2015 end-page: 572 ident: bib66 article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China publication-title: Sci. China Earth Sci. – start-page: 416 year: 1986 ident: bib1 article-title: The Statistical Analysis of Compositional Data – volume: 35 start-page: 279 year: 2003 end-page: 300 ident: bib17 article-title: Isometric logratio transformations for compositional data analysis publication-title: Math. Geol. – volume: 157 start-page: 110 year: 2015 end-page: 119 ident: bib42 article-title: Quantifying the spatial characteristics of geochemical patterns via GIS-based geographically weighted statistics publication-title: J. Geochem. Explor. – volume: 130 start-page: 43 year: 2019 end-page: 56 ident: bib65 article-title: Integration of auto-encoder network with density-based spatial clustering for geochemical anomaly detection for mineral exploration publication-title: Comput. Geosci. – year: 2015 ident: bib2 article-title: Variational Autoencoder Based Anomaly Detection Using Reconstruction Probability – volume: 27 start-page: 329 year: 2008 end-page: 335 ident: bib58 article-title: SHRIMP zircon U–Pb dating of quartz porphyry from Zhongjia Tin-polymetallic deposit in Longyan area, Fujian province, and its geological significance publication-title: Miner. Deposits – volume: vol. 1 start-page: 334 year: 1962 ident: bib34 publication-title: Traité de géostatistique appliquée – volume: 30 start-page: 309 year: 1988 end-page: 322 ident: bib31 article-title: Exploratory data analysis: recent advances for the interpretation of geochemical data publication-title: J. Geochem. Explor. – volume: 115 start-page: 24 year: 2012 end-page: 35 ident: bib60 article-title: Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping publication-title: J. Geochem. Explor. – volume: 157 start-page: 81 year: 2015 ident: 10.1016/j.apgeochem.2020.104710_bib22 article-title: Supervised geochemical anomaly detection by pattern recognition publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2015.06.001 – volume: 158 start-page: 9 year: 2016 ident: 10.1016/j.apgeochem.2020.104710_bib73 article-title: Spatial analysis and visualization of exploration geochemical data publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.04.006 – volume: 32 start-page: 314 year: 2007 ident: 10.1016/j.apgeochem.2020.104710_bib10 article-title: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2006.10.002 – volume: 7 start-page: 2094 year: 2014 ident: 10.1016/j.apgeochem.2020.104710_bib8 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. doi: 10.1109/JSTARS.2014.2329330 – volume: 210 start-page: 106453 year: 2020 ident: 10.1016/j.apgeochem.2020.104710_bib51 article-title: Identifying geochemical anomaly through spatially anisotropic singularity mapping: a case study from silver-gold deposit in Pangxidong district, SE China publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2019.106453 – start-page: 482pp year: 1997 ident: 10.1016/j.apgeochem.2020.104710_bib23 – volume: 180 start-page: 15 year: 2017 ident: 10.1016/j.apgeochem.2020.104710_bib35 article-title: Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at hamich exploration area, east of Iran publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2017.05.008 – start-page: 73 issue: Suppl. l year: 2013 ident: 10.1016/j.apgeochem.2020.104710_bib62 article-title: Geochronology of Dapai iron-polymetallic deposit in Yongding city, Fujian province and its geological significance publication-title: Acta Mineral. Sin. – volume: 10 start-page: 3 year: 2010 ident: 10.1016/j.apgeochem.2020.104710_bib14 article-title: Major advances in exploration geochemistry, 1998-2007 publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/1467-7873/09-215 – volume: 262 start-page: 533 year: 2007 ident: 10.1016/j.apgeochem.2020.104710_bib40 article-title: The golden transformation of the Cretaceous plate subduction in the west Pacific publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2007.08.021 – volume: 27 start-page: 663 year: 2012 ident: 10.1016/j.apgeochem.2020.104710_bib70 article-title: Neuro-fuzzy modeling based genetic algorithms for identification of geochemical anomalies in mining geochemistry publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2011.12.020 – volume: 31 start-page: 579 year: 2005 ident: 10.1016/j.apgeochem.2020.104710_bib19 article-title: Multivariate outlier detection in exploration geochemistry publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.11.013 – volume: vol. 11 year: 2008 ident: 10.1016/j.apgeochem.2020.104710_bib4 – volume: 203 start-page: 87 year: 2019 ident: 10.1016/j.apgeochem.2020.104710_bib59 article-title: Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2019.04.007 – volume: 37 start-page: 1217 year: 2012 ident: 10.1016/j.apgeochem.2020.104710_bib64 article-title: Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance publication-title: J. China Univ. Geosci. – start-page: 258619 year: 2015 ident: 10.1016/j.apgeochem.2020.104710_bib28 article-title: Deep convolutional neural networks for hyperspectral image classification publication-title: J. Sensors – volume: 148 start-page: 259 year: 2015 ident: 10.1016/j.apgeochem.2020.104710_bib43 article-title: Spatial characteristics of geochemical patterns related to Fe mineralization in the southwestern Fujian province (China) publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2014.10.010 – volume: 107 start-page: 258 year: 2019 ident: 10.1016/j.apgeochem.2020.104710_bib46 article-title: Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2019.02.027 – volume: 60 start-page: 99 year: 1997 ident: 10.1016/j.apgeochem.2020.104710_bib54 article-title: Geochemical mapping in China publication-title: J. Geochem. Explor. doi: 10.1016/S0375-6742(97)00029-0 – volume: 164 start-page: 33 year: 2016 ident: 10.1016/j.apgeochem.2020.104710_bib74 article-title: Fractal/multifractal modeling of geochemical data: a review publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2015.04.010 – volume: 12 start-page: 2121 year: 2011 ident: 10.1016/j.apgeochem.2020.104710_bib16 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – year: 1977 ident: 10.1016/j.apgeochem.2020.104710_bib41 – volume: 130 start-page: 43 year: 2019 ident: 10.1016/j.apgeochem.2020.104710_bib65 article-title: Integration of auto-encoder network with density-based spatial clustering for geochemical anomaly detection for mineral exploration publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.05.011 – volume: 27 start-page: 329 year: 2008 ident: 10.1016/j.apgeochem.2020.104710_bib58 article-title: SHRIMP zircon U–Pb dating of quartz porphyry from Zhongjia Tin-polymetallic deposit in Longyan area, Fujian province, and its geological significance publication-title: Miner. Deposits – volume: 123 start-page: 5120 year: 2018 ident: 10.1016/j.apgeochem.2020.104710_bib37 article-title: P wave arrival picking and first-motion polarity determination with deep learning publication-title: J. Geophys. Res. doi: 10.1029/2017JB015251 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.apgeochem.2020.104710_bib27 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 30 start-page: 309 year: 1988 ident: 10.1016/j.apgeochem.2020.104710_bib31 article-title: Exploratory data analysis: recent advances for the interpretation of geochemical data publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(88)90066-0 – volume: 59 start-page: 556 year: 2015 ident: 10.1016/j.apgeochem.2020.104710_bib66 article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-015-5178-3 – volume: 10 start-page: 27 year: 2018 ident: 10.1016/j.apgeochem.2020.104710_bib38 article-title: Fault diagnosis method based on deep convolution variational self-encoding network publication-title: J. Instrum. – volume: 46 start-page: 203 year: 2019 ident: 10.1016/j.apgeochem.2020.104710_bib3 article-title: Semi-supervised intrusion detection algorithm based on depth generation model publication-title: Comput. Sci. – volume: 189 start-page: 122 year: 2018 ident: 10.1016/j.apgeochem.2020.104710_bib53 article-title: A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2017.03.017 – volume: 57 start-page: 72 year: 2018 ident: 10.1016/j.apgeochem.2020.104710_bib25 article-title: Random noise removal of seismic data based on deep learning convolutional neural networks publication-title: Geophys. Prospect. Pet. – volume: 34 start-page: 3173 year: 2018 ident: 10.1016/j.apgeochem.2020.104710_bib68 article-title: Machine learning, deep learning and Python language in field of geology publication-title: Acta Petrol. Sin. – year: 2014 ident: 10.1016/j.apgeochem.2020.104710_bib29 – start-page: 415 year: 1962 ident: 10.1016/j.apgeochem.2020.104710_bib26 – volume: 14 start-page: 597 year: 2017 ident: 10.1016/j.apgeochem.2020.104710_bib33 article-title: Transferred deep learning for anomaly detection in hyperspectral imagery publication-title: Geosci. Rem. Sens. Lett. IEEE doi: 10.1109/LGRS.2017.2657818 – volume: 86 start-page: 75 year: 2016 ident: 10.1016/j.apgeochem.2020.104710_bib56 article-title: Recognition of geochemical anomalies using a deep autoencoder network publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.10.006 – volume: 140 start-page: 56 year: 2014 ident: 10.1016/j.apgeochem.2020.104710_bib7 article-title: Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2014.02.013 – volume: 21 start-page: 36 year: 2018 ident: 10.1016/j.apgeochem.2020.104710_bib50 article-title: Application of isolation forest to extract multivariate anomalies from geochemical exploration data publication-title: Glob. Geol. – year: 2020 ident: 10.1016/j.apgeochem.2020.104710_bib72 article-title: Geodata science-based mineral prospectivity mapping: a review publication-title: Nat. Resour. Res. doi: 10.1007/s11053-020-09700-9 – volume: vol. 44 start-page: 450 year: 2015 ident: 10.1016/j.apgeochem.2020.104710_bib45 – volume: 326 start-page: 269 year: 2000 ident: 10.1016/j.apgeochem.2020.104710_bib67 article-title: Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas publication-title: Tectonophysics doi: 10.1016/S0040-1951(00)00120-7 – volume: 35 start-page: 279 year: 2003 ident: 10.1016/j.apgeochem.2020.104710_bib17 article-title: Isometric logratio transformations for compositional data analysis publication-title: Math. Geol. doi: 10.1023/A:1023818214614 – volume: 119 start-page: 104668 year: 2020 ident: 10.1016/j.apgeochem.2020.104710_bib49 article-title: Assessing geochemical anomalies using geographically weighted lasso publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2020.104668 – volume: 9 start-page: 270 year: 2019 ident: 10.1016/j.apgeochem.2020.104710_bib6 article-title: A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition publication-title: Minerals doi: 10.3390/min9050270 – volume: 157 start-page: 110 year: 2015 ident: 10.1016/j.apgeochem.2020.104710_bib42 article-title: Quantifying the spatial characteristics of geochemical patterns via GIS-based geographically weighted statistics publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2015.06.004 – volume: 29 start-page: 89 year: 2019 ident: 10.1016/j.apgeochem.2020.104710_bib52 article-title: Prospectivity mapping for porphyry Cu-Mo mineralization in the Eastern Tianshan, Xinjiang, northwestern China publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09486-5 – volume: 27 start-page: 5 year: 2018 ident: 10.1016/j.apgeochem.2020.104710_bib75 article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9357-0 – volume: 9 start-page: 43 year: 2000 ident: 10.1016/j.apgeochem.2020.104710_bib13 article-title: Integrated spatial and spectrum method for geochemical anomaly separation publication-title: Nat. Resour. Res. doi: 10.1023/A:1010109829861 – volume: 14 start-page: 45 year: 2014 ident: 10.1016/j.apgeochem.2020.104710_bib61 article-title: Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2012-144 – volume: 71 start-page: 853 year: 2015 ident: 10.1016/j.apgeochem.2020.104710_bib36 article-title: Receiver operating characteristics (ROC) as validation tool for prospectivity models-A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2014.09.007 – volume: 27 start-page: 861 year: 2006 ident: 10.1016/j.apgeochem.2020.104710_bib18 article-title: An introduction to ROC analysis publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 10 start-page: 27 year: 2010 ident: 10.1016/j.apgeochem.2020.104710_bib24 article-title: The interpretation of geochemical survey data publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/1467-7873/09-210 – volume: 104679 year: 2020 ident: 10.1016/j.apgeochem.2020.104710_bib48 article-title: Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: a case study from Ag-Pb-Zn deposits in north-western Zhejiang, China publication-title: Appl. Geochem. – volume: 155 start-page: 84 year: 2015 ident: 10.1016/j.apgeochem.2020.104710_bib44 article-title: A comparative study of trend surface analysis and spectrum-area multifractal model to identify geochemical anomalies publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2015.04.013 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.apgeochem.2020.104710_bib32 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2015 ident: 10.1016/j.apgeochem.2020.104710_bib2 – volume: 3 start-page: 47 year: 1981 ident: 10.1016/j.apgeochem.2020.104710_bib21 article-title: Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin publication-title: Acta Geosci. Sin. – volume: 71 start-page: 502 year: 2015 ident: 10.1016/j.apgeochem.2020.104710_bib77 article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2014.09.024 – volume: 122 start-page: 55 year: 2012 ident: 10.1016/j.apgeochem.2020.104710_bib11 article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2012.07.007 – volume: 51 start-page: 109 year: 1994 ident: 10.1016/j.apgeochem.2020.104710_bib12 article-title: The separation of geochemical anomalies from background by fractal methods publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(94)90013-2 – volume: 140 start-page: 104484 year: 2020 ident: 10.1016/j.apgeochem.2020.104710_bib57 article-title: Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104484 – volume: 45 start-page: 730 year: 2017 ident: 10.1016/j.apgeochem.2020.104710_bib20 article-title: A lightweight intrusion detection model based on autoencoder network with feature reduction publication-title: Acta Electron. Sin. – volume: 8 start-page: 333 year: 2008 ident: 10.1016/j.apgeochem.2020.104710_bib55 article-title: Multiscale geochemical mapping in China publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/1467-7873/08-184 – year: 2013 ident: 10.1016/j.apgeochem.2020.104710_bib30 – volume: 209 start-page: 106431 year: 2020 ident: 10.1016/j.apgeochem.2020.104710_bib76 article-title: Geodata science and geochemical mapping publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2019.106431 – volume: 26 start-page: 457 year: 2017 ident: 10.1016/j.apgeochem.2020.104710_bib71 article-title: Machine learning of mineralization-related geochemical anomalies: a review of potential methods publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9345-4 – volume: 28 start-page: 1285 year: 2019 ident: 10.1016/j.apgeochem.2020.104710_bib47 article-title: Mapping geochemical anomalies through integrating random forest and metric learning methods publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09471-y – volume: 26 start-page: 434 year: 2012 ident: 10.1016/j.apgeochem.2020.104710_bib63 article-title: LA-ICP-MS zircon U-Pb ages and Hf isotopic compositions of Dayang granite from Longyan, Fujian province publication-title: Geoscience – volume: 192 start-page: 1 year: 2019 ident: 10.1016/j.apgeochem.2020.104710_bib78 article-title: Deep learning and its application in geochemical mapping publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2019.02.023 – volume: 35 start-page: 210 year: 2016 ident: 10.1016/j.apgeochem.2020.104710_bib5 article-title: Identification and classification of bad geological bodies based on convolutional neural network publication-title: Geol. Sci. Technol. Inf. – start-page: 416 year: 1986 ident: 10.1016/j.apgeochem.2020.104710_bib1 – volume: 17 start-page: 231 year: 2017 ident: 10.1016/j.apgeochem.2020.104710_bib9 article-title: Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data publication-title: Geochem. Explor. Environ. Anal. doi: 10.1144/geochem2016-024 – year: 2016 ident: 10.1016/j.apgeochem.2020.104710_bib15 – volume: 100 start-page: 25 year: 2009 ident: 10.1016/j.apgeochem.2020.104710_bib69 article-title: Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2008.03.004 – volume: 3 start-page: 129 year: 1974 ident: 10.1016/j.apgeochem.2020.104710_bib39 article-title: Selection of threshold values in geochemical data using probability graphs publication-title: J. Geochem. Explor. doi: 10.1016/0375-6742(74)90030-2 – volume: vol. 1 start-page: 334 year: 1962 ident: 10.1016/j.apgeochem.2020.104710_bib34 – volume: 115 start-page: 24 year: 2012 ident: 10.1016/j.apgeochem.2020.104710_bib60 article-title: Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2012.02.002 |
| SSID | ssj0005702 |
| Score | 2.5792937 |
| Snippet | Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104710 |
| SubjectTerms | algorithms China copper Deep learning ferric oxide Geochemical mapping geochemistry iron lead manganese Mineral exploration mineralization mining probability spatial data Variational autoencoder network zinc |
| Title | Recognition of geochemical anomalies using a deep variational autoencoder network |
| URI | https://dx.doi.org/10.1016/j.apgeochem.2020.104710 https://www.proquest.com/docview/2477628961 |
| Volume | 122 |
| WOSCitedRecordID | wos000587914200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005702 issn: 0883-2927 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBhIviE-x8SEj8Valaj4cJ7xN09hA1QRjoMCLZSc2pNqSak2q8d_vHNtpyocGQrxEiWPH7d35_PP57ozQy6SAOY6E3JOJoF4UKurxMIDHApbPQUGVSVb9aUaPj5MsS9-NRjMXC7M6o1WVXF6mi__KaigDZuvQ2b9gd_9RKIB7YDpcge1w_SPGnziXIIMEv0p9JpZLClCfA-6Wy3HbmQj4uJByMV7BetnZBHnb1Dq3pU4xURkX8SF-daDVfXXZrN2IZ21ndv1Szt10CIVZaX1-P5ff2rI3U5uqJ1IbS21la3qAdaa_YXroY2LWDkhGbenT4UzE_0QatZrQoNvj39C7JiD5Jx1uzAnzCV_Y_zLRfevNaGo9YDcTZH_QPeoOA1BYUDW7gbYDSlLQcdt7bw6yt2uXH9r5oPa_cMPf75fd_Q6t_DBvd2Dk9C66Y1cReM9w_x4ayeo-unXYndL8_QF6P5ABXCs8kAHcywDuZABzrGUAD2QAD2QAWxl4iD6-PjjdP_Ls2Rkw1KjfeIUACvCISMILyWUkolRQBQ85hzUuz2MqixywoR_nNCK55CKaikClShEZwrvwEdqq6ko-RhgwoiAkSKdcAdyLBY_j1C8SSackT3wldlDsaMRym1hen29yxpwH4Zz1xGWauMwQdwdN-4YLk1vl-iavHBOYhYgG-jGQnusbv3BsYzBA9M4Yr2TdLlkQUQAFSRr7u__SwRN0ez1MnqKt5qKVz9DNfNWUy4vnVhqvAJqKnsU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+geochemical+anomalies+using+a+deep+variational+autoencoder+network&rft.jtitle=Applied+geochemistry&rft.au=Luo%2C+Zijing&rft.au=Xiong%2C+Yihui&rft.au=Zuo%2C+Renguang&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0883-2927&rft.eissn=1872-9134&rft.volume=122&rft_id=info:doi/10.1016%2Fj.apgeochem.2020.104710&rft.externalDocID=S088329272030202X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |