Inputs for subject-specific computational fluid dynamics simulation of blood flow in the mouse aorta

Mouse models are an important way for exploring relationships between blood hemodynamics and eventual plaque formation. We have developed a mouse model of aortic regurgitation (AR) that produces large changes in plaque burden with charges in hemodynamics [Zhou et al., 2010, "Aortic Regurgitatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of biomechanical engineering Ročník 136; číslo 10; s. 101008
Hlavní autori: Van Doormaal, Mark, Zhou, Yu-Qing, Zhang, Xiaoli, Steinman, David A, Henkelman, R Mark
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.10.2014
Predmet:
ISSN:1528-8951, 1528-8951
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Mouse models are an important way for exploring relationships between blood hemodynamics and eventual plaque formation. We have developed a mouse model of aortic regurgitation (AR) that produces large changes in plaque burden with charges in hemodynamics [Zhou et al., 2010, "Aortic Regurgitation Dramatically Alters the Distribution of Atherosclerotic Lesions and Enhances Atherogenesis in Mice," Arterioscler. Thromb. Vasc. Biol., 30(6), pp. 1181-1188]. In this paper, we explore the amount of detail needed for realistic computational fluid dynamics (CFD) calculations in this experimental model. The CFD calculations use inputs based on experimental measurements from ultrasound (US), micro computed tomography (CT), and both anatomical magnetic resonance imaging (MRI) and phase contrast MRI (PC-MRI). The adequacy of five different levels of model complexity (a) subject-specific CT data from a single mouse; (b) subject-specific CT centerlines with radii from US; (c) same as (b) but with MRI derived centerlines; (d) average CT centerlines and averaged vessel radius and branching vessels; and (e) same as (d) but with averaged MRI centerlines) is evaluated by demonstrating their impact on relative residence time (RRT) outputs. The paper concludes by demonstrating the necessity of subject-specific geometry and recommends for inputs the use of CT or anatomical MRI for establishing the aortic centerlines, M-mode US for scaling the aortic diameters, and a combination of PC-MRI and Doppler US for estimating the spatial and temporal characteristics of the input wave forms.
AbstractList Mouse models are an important way for exploring relationships between blood hemodynamics and eventual plaque formation. We have developed a mouse model of aortic regurgitation (AR) that produces large changes in plaque burden with charges in hemodynamics [Zhou et al., 2010, "Aortic Regurgitation Dramatically Alters the Distribution of Atherosclerotic Lesions and Enhances Atherogenesis in Mice," Arterioscler. Thromb. Vasc. Biol., 30(6), pp. 1181-1188]. In this paper, we explore the amount of detail needed for realistic computational fluid dynamics (CFD) calculations in this experimental model. The CFD calculations use inputs based on experimental measurements from ultrasound (US), micro computed tomography (CT), and both anatomical magnetic resonance imaging (MRI) and phase contrast MRI (PC-MRI). The adequacy of five different levels of model complexity (a) subject-specific CT data from a single mouse; (b) subject-specific CT centerlines with radii from US; (c) same as (b) but with MRI derived centerlines; (d) average CT centerlines and averaged vessel radius and branching vessels; and (e) same as (d) but with averaged MRI centerlines) is evaluated by demonstrating their impact on relative residence time (RRT) outputs. The paper concludes by demonstrating the necessity of subject-specific geometry and recommends for inputs the use of CT or anatomical MRI for establishing the aortic centerlines, M-mode US for scaling the aortic diameters, and a combination of PC-MRI and Doppler US for estimating the spatial and temporal characteristics of the input wave forms.
Mouse models are an important way for exploring relationships between blood hemodynamics and eventual plaque formation. We have developed a mouse model of aortic regurgitation (AR) that produces large changes in plaque burden with charges in hemodynamics [Zhou et al., 2010, "Aortic Regurgitation Dramatically Alters the Distribution of Atherosclerotic Lesions and Enhances Atherogenesis in Mice," Arterioscler. Thromb. Vasc. Biol., 30(6), pp. 1181-1188]. In this paper, we explore the amount of detail needed for realistic computational fluid dynamics (CFD) calculations in this experimental model. The CFD calculations use inputs based on experimental measurements from ultrasound (US), micro computed tomography (CT), and both anatomical magnetic resonance imaging (MRI) and phase contrast MRI (PC-MRI). The adequacy of five different levels of model complexity (a) subject-specific CT data from a single mouse; (b) subject-specific CT centerlines with radii from US; (c) same as (b) but with MRI derived centerlines; (d) average CT centerlines and averaged vessel radius and branching vessels; and (e) same as (d) but with averaged MRI centerlines) is evaluated by demonstrating their impact on relative residence time (RRT) outputs. The paper concludes by demonstrating the necessity of subject-specific geometry and recommends for inputs the use of CT or anatomical MRI for establishing the aortic centerlines, M-mode US for scaling the aortic diameters, and a combination of PC-MRI and Doppler US for estimating the spatial and temporal characteristics of the input wave forms.Mouse models are an important way for exploring relationships between blood hemodynamics and eventual plaque formation. We have developed a mouse model of aortic regurgitation (AR) that produces large changes in plaque burden with charges in hemodynamics [Zhou et al., 2010, "Aortic Regurgitation Dramatically Alters the Distribution of Atherosclerotic Lesions and Enhances Atherogenesis in Mice," Arterioscler. Thromb. Vasc. Biol., 30(6), pp. 1181-1188]. In this paper, we explore the amount of detail needed for realistic computational fluid dynamics (CFD) calculations in this experimental model. The CFD calculations use inputs based on experimental measurements from ultrasound (US), micro computed tomography (CT), and both anatomical magnetic resonance imaging (MRI) and phase contrast MRI (PC-MRI). The adequacy of five different levels of model complexity (a) subject-specific CT data from a single mouse; (b) subject-specific CT centerlines with radii from US; (c) same as (b) but with MRI derived centerlines; (d) average CT centerlines and averaged vessel radius and branching vessels; and (e) same as (d) but with averaged MRI centerlines) is evaluated by demonstrating their impact on relative residence time (RRT) outputs. The paper concludes by demonstrating the necessity of subject-specific geometry and recommends for inputs the use of CT or anatomical MRI for establishing the aortic centerlines, M-mode US for scaling the aortic diameters, and a combination of PC-MRI and Doppler US for estimating the spatial and temporal characteristics of the input wave forms.
Author Steinman, David A
Zhang, Xiaoli
Zhou, Yu-Qing
Henkelman, R Mark
Van Doormaal, Mark
Author_xml – sequence: 1
  givenname: Mark
  surname: Van Doormaal
  fullname: Van Doormaal, Mark
– sequence: 2
  givenname: Yu-Qing
  surname: Zhou
  fullname: Zhou, Yu-Qing
– sequence: 3
  givenname: Xiaoli
  surname: Zhang
  fullname: Zhang, Xiaoli
– sequence: 4
  givenname: David A
  surname: Steinman
  fullname: Steinman, David A
– sequence: 5
  givenname: R Mark
  surname: Henkelman
  fullname: Henkelman, R Mark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25070260$$D View this record in MEDLINE/PubMed
BookMark eNpNkE9LxDAUxIOsuH_04BeQHL10zUuTTT3K4urCghc9l9fkFbM0TW1aZL-9q67gaQbmxzDMnE3a2BJj1yCWAKDvYKmELECoMzYDLYusuNcw-eenbJ7SXgiAQokLNpVaGCFXYsbctu3GIfE69jyN1Z7skKWOrK-95TaGY4iDjy02vG5G77g7tBi8TTz5MDY_GY81r5oY3RGJn9y3fHgnHuKYiGPsB7xk5zU2ia5OumBvm8fX9XO2e3narh92GeYGhqwC6Yx2KEy-KtCCVjlVhUMUtiZSijRUukaSIBUIhJUpkHJnrbOVU6jlgt3-9nZ9_BgpDWXwyVLTYEvHNSVonecSjPlGb07oWAVyZdf7gP2h_HtGfgEm9mfv
CitedBy_id crossref_primary_10_1007_s13239_021_00600_4
crossref_primary_10_1002_cnm_3457
crossref_primary_10_1098_rsos_171447
crossref_primary_10_1016_j_ultrasmedbio_2025_01_012
crossref_primary_10_1007_s10439_015_1310_y
crossref_primary_10_1186_s12938_016_0270_2
crossref_primary_10_1016_j_jbiomech_2016_06_010
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1115/1.4028104
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Engineering
Forestry
EISSN 1528-8951
ExternalDocumentID 25070260
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: MOP-10290
GroupedDBID ---
-~X
.DC
.GJ
29J
4.4
53G
5AI
5GY
6TJ
AAYJJ
ABJNI
ACBEA
ACGFO
ACGFS
ACKMT
ACXMS
ADPDT
AI.
ALEEW
ALMA_UNASSIGNED_HOLDINGS
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
H~9
L7B
NPM
P2P
RAI
RNS
RXW
TAE
TN5
UKR
VH1
WHG
ZE2
7X8
AGNGV
ID FETCH-LOGICAL-a371t-b12d75da07368ac1543eb8daa0cfee44e51b5fae212410a1678ae3dccdcbd4a52
IEDL.DBID 7X8
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341298400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1528-8951
IngestDate Thu Jul 10 20:46:10 EDT 2025
Thu Apr 03 07:09:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a371t-b12d75da07368ac1543eb8daa0cfee44e51b5fae212410a1678ae3dccdcbd4a52
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25070260
PQID 1553321775
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1553321775
pubmed_primary_25070260
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomechanical engineering
PublicationTitleAlternate J Biomech Eng
PublicationYear 2014
SSID ssj0011840
Score 2.14142
Snippet Mouse models are an important way for exploring relationships between blood hemodynamics and eventual plaque formation. We have developed a mouse model of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 101008
SubjectTerms Animals
Aorta - physiology
Aorta, Thoracic - physiology
Hemodynamics
Hydrodynamics
Image Processing, Computer-Assisted
Mice
Models, Cardiovascular
Title Inputs for subject-specific computational fluid dynamics simulation of blood flow in the mouse aorta
URI https://www.ncbi.nlm.nih.gov/pubmed/25070260
https://www.proquest.com/docview/1553321775
Volume 136
WOSCitedRecordID wos000341298400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEMeDWhE9-Kiv-iKC1-hmN9ukJxGxKNjSg0pvZfJYKOhudVv9-k52U-pFELwse9iFkMfkl5nJ_Am5iKLMJLiGmBLcMiFtzDRSBNNSQtxWAFlVvvjlUfb7ajjsDILDrQxplXObWBlqWxjvI7_y-jYJ8rNMryfvzKtG-ehqkNBYJo0EUcandMnhIorgTy9VvdRYMYUoESoLIQRd8Us8OCle6bP9QpbVDtPd-m_btslmYEt6U0-GHbLk8ibZ-FFxsEnWvBSn13fD114Iq-8S-5BPZtOSIsDScqa9a4b5K5g-jYiaSvch-Axp9jobW2prHfuSluO3oP9Fi4xWWfD4SfFFxzlFtKTeseAoeMbfI8_du6fbexbkFxgkkk-Z5rGVqQU0AjhoBlkrcVpZgMhkzgnhUq7TDBxufoJHwHHbA5dYY6zRVkAa75OVvMjdIaExHjNBdNqaQyxcx4DlCcRK8YwrF2nRIufzjh3h9PYxC8gdtnC06NoWOahHZzSp63CMkN6kL4l29Ie_j8k6oo6o0_BOSCPDxe1Oyar5nI7Lj7Nq3uCzP-h9A6GUzj0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inputs+for+subject-specific+computational+fluid+dynamics+simulation+of+blood+flow+in+the+mouse+aorta&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Van+Doormaal%2C+Mark&rft.au=Zhou%2C+Yu-Qing&rft.au=Zhang%2C+Xiaoli&rft.au=Steinman%2C+David+A&rft.date=2014-10-01&rft.eissn=1528-8951&rft.volume=136&rft.issue=10&rft.spage=101008&rft_id=info:doi/10.1115%2F1.4028104&rft_id=info%3Apmid%2F25070260&rft_id=info%3Apmid%2F25070260&rft.externalDocID=25070260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-8951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-8951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-8951&client=summon