Review of wildfire modeling considering effects on land surfaces
Wildfires are part of the natural cycle of life in vegetated regions. The apparent increase in size and frequency of recent years reflects land management legacy, expansion of human activity, and changes in climatic conditions. The primary objectives of the review are: (1) to introduce hydrologists,...
Uložené v:
| Vydané v: | Earth-science reviews Ročník 245; s. 104569 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.10.2023
|
| Predmet: | |
| ISSN: | 0012-8252, 1872-6828 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Wildfires are part of the natural cycle of life in vegetated regions. The apparent increase in size and frequency of recent years reflects land management legacy, expansion of human activity, and changes in climatic conditions. The primary objectives of the review are: (1) to introduce hydrologists, soil scientists and ecologists to principles and advances in modeling of wildfire dynamics and rates of spread to improve understanding of capabilities and limitations offered by modern wildfire models; (2) to highlight persistent omissions of wildfire effects on soil processes and how soil and hydrology communities can harness wildfire models to bridge these gaps and provide the necessary boundary conditions for quantifying thermal alterations of soils. The review aims to enhance cross-disciplinary understanding critical for advancing quantitative representation of wildfire impacts on soil and hydrologic processes and formulating boundary conditions for subsequent hydro-ecological recovery of fire-affected landscapes. The review presents key elements used to represent wildfire characteristics, processes and metrics considered in wildfire science. We then provide an overview of wildfire modeling approaches and models used for research and for prescribed burning planning that include wildfire behavior models, semi-physical and mechanistic large eddy simulation models. We highlight key features and assumptions, and common applications of each class of models and their inputs (spatially resolved databases of fuel maps, digital elevation, land cover, and weather). The second section of the review proposes a path towards building a systematic framework for quantifying soil, ecological and hydrological wildfire-induced alterations to parameterize post-fire hydrologic responses and predict landscape recovery rates across seasonal to climatic time scales. |
|---|---|
| AbstractList | Wildfires are part of the natural cycle of life in vegetated regions. The apparent increase in size and frequency of recent years reflects land management legacy, expansion of human activity, and changes in climatic conditions. The primary objectives of the review are: (1) to introduce hydrologists, soil scientists and ecologists to principles and advances in modeling of wildfire dynamics and rates of spread to improve understanding of capabilities and limitations offered by modern wildfire models; (2) to highlight persistent omissions of wildfire effects on soil processes and how soil and hydrology communities can harness wildfire models to bridge these gaps and provide the necessary boundary conditions for quantifying thermal alterations of soils. The review aims to enhance cross-disciplinary understanding critical for advancing quantitative representation of wildfire impacts on soil and hydrologic processes and formulating boundary conditions for subsequent hydro-ecological recovery of fire-affected landscapes. The review presents key elements used to represent wildfire characteristics, processes and metrics considered in wildfire science. We then provide an overview of wildfire modeling approaches and models used for research and for prescribed burning planning that include wildfire behavior models, semi-physical and mechanistic large eddy simulation models. We highlight key features and assumptions, and common applications of each class of models and their inputs (spatially resolved databases of fuel maps, digital elevation, land cover, and weather). The second section of the review proposes a path towards building a systematic framework for quantifying soil, ecological and hydrological wildfire-induced alterations to parameterize post-fire hydrologic responses and predict landscape recovery rates across seasonal to climatic time scales. |
| ArticleNumber | 104569 |
| Author | Shillito, Rose Vahdat-Aboueshagh, Hamid Or, Dani Berli, Markus McKenna, Sean A. Furtak-Cole, Eden Ebrahimian, Hamed |
| Author_xml | – sequence: 1 givenname: Dani surname: Or fullname: Or, Dani email: dani.or@env.ethz.ch organization: Desert Research Institute, Division of Hydrologic Sciences, Las Vegas and Reno, NV, USA – sequence: 2 givenname: Eden surname: Furtak-Cole fullname: Furtak-Cole, Eden organization: Desert Research Institute, Division of Atmospheric Sciences, Reno, NV, USA – sequence: 3 givenname: Markus surname: Berli fullname: Berli, Markus organization: Desert Research Institute, Division of Hydrologic Sciences, Las Vegas and Reno, NV, USA – sequence: 4 givenname: Rose surname: Shillito fullname: Shillito, Rose organization: USACE Research and Development Center, Coastal Hydraulics Lab, Vicksburg, MS, USA – sequence: 5 givenname: Hamed surname: Ebrahimian fullname: Ebrahimian, Hamed organization: University of Nevada, Civil and Environmental Engineering, Reno, NV, USA – sequence: 6 givenname: Hamid surname: Vahdat-Aboueshagh fullname: Vahdat-Aboueshagh, Hamid organization: Desert Research Institute, Division of Hydrologic Sciences, Las Vegas and Reno, NV, USA – sequence: 7 givenname: Sean A. surname: McKenna fullname: McKenna, Sean A. organization: Desert Research Institute, Division of Hydrologic Sciences, Las Vegas and Reno, NV, USA |
| BookMark | eNqNkM1KAzEURoNUsK0-g7N0MzXJNJnMQrAU_6AgqPuQJjeSMk1qMm3x7c0w4sKNrm4SvvOReyZo5IMHhC4JnhFM-PVmBiom7SIcZhTTKr_OGW9O0JiImpZcUDFCY4wJLQVl9AxNUtrgfMdNPUa3L3BwcCyCLY6uNTbXFNtgoHX-vdDBJ2cg9mewFnSXiuCLVnlTpH20SkM6R6dWtQkuvucUvd7fvS0fy9Xzw9NysSpVVZOuZGu-ZsxiprnRABzPeU2BAwNjMVea5inAUFgLZQhnpBEVh8oQsHnJaoquhtZdDB97SJ3cuqShzV-BsE-SNnOKm6bff4rqIapjSCmClbvotip-SoJlb0xu5I8x2RNyMJbJm1-kdp3qXPBdVK79B78YeMgestUocwi8BpOjupMmuD87vgBNrpBv |
| CitedBy_id | crossref_primary_10_1016_j_agrformet_2025_110609 crossref_primary_10_1016_j_ress_2024_110000 crossref_primary_10_1016_j_oneear_2025_101284 crossref_primary_10_3390_fire8040139 crossref_primary_10_1063_5_0268416 crossref_primary_10_1103_PhysRevFluids_10_053801 crossref_primary_10_1016_j_envsoft_2025_106552 crossref_primary_10_1038_s41598_024_78219_3 crossref_primary_10_1080_19475705_2025_2514702 crossref_primary_10_1016_j_jocs_2025_102640 crossref_primary_10_1109_TRO_2025_3559420 crossref_primary_10_3390_fire7120485 crossref_primary_10_1007_s11676_024_01783_x crossref_primary_10_1016_j_dam_2025_07_028 crossref_primary_10_3390_fire8090349 crossref_primary_10_1016_j_envpol_2024_125470 crossref_primary_10_1002_fam_3275 crossref_primary_10_1109_TNSE_2025_3559681 crossref_primary_10_3390_f15050788 crossref_primary_10_3390_f15030563 crossref_primary_10_1080_10095020_2024_2429376 crossref_primary_10_1016_j_ecolind_2025_113694 crossref_primary_10_1016_j_ress_2023_109895 crossref_primary_10_3390_rs16152842 crossref_primary_10_1016_j_jnlssr_2025_100252 |
| Cites_doi | 10.1071/WF06144 10.1016/j.jhydrol.2020.125364 10.1111/gcb.14716 10.1038/s41586-021-04325-1 10.1073/pnas.1504498112 10.1016/j.foreco.2018.10.032 10.1016/j.scitotenv.2017.09.144 10.1029/2020RG000726 10.1071/WF15130 10.1016/j.firesaf.2008.03.004 10.1038/s41564-022-01203-y 10.1002/eap.2431 10.1016/j.combustflame.2004.05.001 10.4996/fireecology.0601036 10.1029/2021JF006108 10.1016/S0022-1694(00)00194-3 10.1080/00102208508960381 10.1071/WF9980001 10.1016/0360-1285(91)90003-6 10.1073/pnas.2208120120 10.3390/rs6031827 10.1071/WF19023 10.1016/j.combustflame.2021.111866 10.1002/fee.2349 10.1029/2018GL078053 10.1071/WF9930031 10.1071/WF9950081 10.1111/j.1442-9993.1980.tb01243.x 10.1071/WF07002 10.1175/1520-0450(1996)035<0875:ACAMCF>2.0.CO;2 10.1139/er-2020-0019 10.1071/WF16178 10.1071/WF18106 10.1038/s41598-019-48411-x 10.1002/eap.2280 10.1071/WF07049 10.1038/s41598-021-88131-9 10.1016/j.combustflame.2020.03.005 10.1016/j.earscirev.2005.10.006 10.1016/j.envsoft.2022.105507 10.3390/f13071050 10.1016/j.scitotenv.2017.05.254 10.1002/2017GL074243 10.1016/S0010-2180(71)80005-6 10.1098/rstb.2015.0345 10.1016/j.firesaf.2017.04.002 10.1007/s10694-010-0160-2 10.1007/s11104-012-1408-z 10.1071/WF18161 10.1080/00102208608923844 10.1007/s00442-004-1788-8 10.1002/aws2.1318 10.1071/WF09146 10.1016/j.pecs.2019.100801 10.1073/pnas.2114069119 10.1071/WF12167 10.1016/j.scitotenv.2018.01.189 10.1111/1365-2745.13403 10.1175/JAMC-D-12-023.1 10.5194/soil-3-31-2017 10.5194/hess-25-685-2021 10.1016/j.ejrh.2017.07.006 10.1109/LGRS.2005.858485 10.5194/acp-16-5229-2016 10.1016/j.combustflame.2009.04.001 10.1071/WF11055 10.2136/sssaj1996.03615995006000010047x 10.1177/003754979606700402 10.1016/S0378-1127(99)00032-8 10.2136/sssaj2010.0322 10.1016/j.foreco.2006.08.155 10.1071/WF03043 10.1023/B:LAND.0000021714.97148.ac 10.1016/j.scitotenv.2023.161714 10.1071/SR9700273 10.1073/pnas.1607171113 10.3390/f13030391 10.1016/j.catena.2006.10.006 10.1016/j.soilbio.2015.04.005 10.1071/WF04047 10.1007/BF01998575 10.1071/WF01005 10.1016/0379-7112(87)90024-5 10.1002/hyp.11288 10.1177/030913339802200204 10.2136/sssaj2011.0046 10.1071/WF02007 10.1071/WF06002 10.1139/X07-077 10.1139/x77-004 10.1088/1748-9326/ac6886 10.1071/WF9950063 10.1002/eap.2433 10.1016/j.envsoft.2019.104616 10.1071/WF11020 10.1016/0010-2180(81)90014-6 10.1139/cjfr-2018-0138 10.1016/j.catena.2014.06.008 10.1139/b82-048 10.1139/x90-124 10.1016/j.earscirev.2013.12.007 10.1016/j.apm.2021.11.010 10.1016/j.ijthermalsci.2019.106242 10.3390/fire6020066 10.1016/S0082-0784(65)80244-2 10.1016/j.envint.2004.02.003 10.1002/hyp.13665 10.1016/j.ecolind.2022.108726 10.1186/s42408-022-00147-2 10.1016/j.foreco.2008.06.048 10.1071/WF07116 10.1016/j.firesaf.2006.01.005 10.1071/WF07072 10.3389/fmech.2021.650580 10.1071/WF08086 10.1016/j.foreco.2021.119558 10.1071/WF17149 10.1016/j.firesaf.2013.08.014 10.1016/j.combustflame.2016.04.004 10.1071/WF06074 10.5194/soil-2-351-2016 10.1071/WF06143 10.1071/WF17097 10.1016/j.ecolind.2021.107735 10.1071/WF13178 10.1029/2021JF006091 10.1071/WF07162 10.5194/hess-16-267-2012 10.1038/s41597-019-0312-2 10.1071/WF20096 10.5194/gmd-4-591-2011 10.1038/s43247-021-00180-0 10.1097/00010694-199506000-00001 10.1029/2020WR027942 10.1071/WF06142 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.earscirev.2023.104569 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1872-6828 |
| ExternalDocumentID | 10_1016_j_earscirev_2023_104569 S0012825223002581 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 186 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9M8 AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGNAY AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PZZ Q38 R2- RIG ROL RPZ RXW SCC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSZ T5K TAE TN5 UQL VH1 WH7 WUQ XJT ZCA ZKB ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a371t-5b6b55f05c6dcee604672e6e5edf06ac2edf8ed2eb8ad16519836e3d1ef0163 |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001085236000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0012-8252 |
| IngestDate | Mon Sep 29 04:52:52 EDT 2025 Sat Nov 29 06:55:29 EST 2025 Tue Nov 18 21:49:04 EST 2025 Fri Feb 23 02:36:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ecology and hydrology of fire-affected landscapes Wildfire effects on soil Physics of wildfire behavior Wildfire models |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a371t-5b6b55f05c6dcee604672e6e5edf06ac2edf8ed2eb8ad16519836e3d1ef0163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2942099202 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2942099202 crossref_primary_10_1016_j_earscirev_2023_104569 crossref_citationtrail_10_1016_j_earscirev_2023_104569 elsevier_sciencedirect_doi_10_1016_j_earscirev_2023_104569 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Earth-science reviews |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Grishin, Gruzin, Vzerev (bb0415) 1981; 17 Clark, Coen, Latham (bb0235) 2004; 13 Gong, Zhai, Yang, Wang (bb0395) 2020; 151 Moody, Martin (bb0635) 2009; 18 Alcaniz, Outeiro, Francos, Úbeda (bb0075) 2018; 613–614 Perry (bib921) 1998; 22 Richards (bb0730) 1995; 5 Araya, Fogel, Berhe (bb0130) 2017; 3 Nelson, Narrowe, Rhoades (bb0675) 2022; 7 Holden, Berhe, Treseder (bb0435) 2015; 87 Mudan (bb0660) 1987; 12 Duane, Miranda, Brotons (bb0310) 2021; 498 Roces-Díaz, Santín, Martínez-Vilalta, Doerr (bb0735) 2022; 20 Zhai, Zhang, Yao (bb0915) 2019; 9 Alexander (bb0085) 1982; 60 McArthur (bb0575) 1967 Burns, Gabet (bb0185) 2015; 135 McArthur (bb0570) 1966 Van Wagner (bb0880) 1967 Manzello, Suzuki, Gollner, Fernandez-Pello (bb0545) 2020; 76 Massman, Frank, Mooney (bb0560) 2010; 6 Morvan, Dupuy, Rigolot, Valette (bb0650) 2006; 234 Albini, Reinhardt (bb0060) 1995; 5 Achtemeier (bb0020) 2013; 22 Rothermel (bb0745) 1972; INT-115 Mell, Charney, Jenkins, Cheney, Gould (bb0595) 2005 Bodí, Martin, Balfour, Santín, Doerr, Pereira, Cerdà, Mataix- (bb0170) 2014; 130 Sun R., Krueger, S. K, Jenkins, M. Ann, Zulauf, M. A, and J.J. Charney. 2009. The importance of fire-atmosphere coupling and boundary-layer turbulence to wildfire spread. Int. J. Wildland Fire, 18, 50–60. Johnston, Wooster, Paugom, Wang, Lynham, Johnston (bb0460) 2017; 26 Abolafia-Rosenzweig, He, Chen (bb0015) 2022; 17 Mandel, Beezley, Kochanski (bb0540) 2011; 4 Anderson (bb0095) 1969 Cruz, Martin, Sullivan (bb0270) 2018; 27 Campbell, Jungbauer, Bristow, Hungerford (bb0200) 1995; 159 Finney, Cohen, Forthofer, McAllister, Gollner, Gorham, Saito, Akafuah, Adam, English (bb0365) 2015; 112 Morvan, Meradji, Accary (bb0655) 2009; 44 Sullivan (bb0820) 2009; 18 Jian, Berli, Ghezzehei (bb0455) 2018; 45 Shillito, Berli, Ghezzehei (bb0775) 2020; 56 Egorova, Trucchia, Pagnini (bb0330) 2022; 104 Fons (bb0370) 1946; 72 Dillon, Menakis, Fay (bb0300) 2015 Thomas, Mueller, Gallagher, Clark, Skowronski, Simeoni, Hadden (bb0850) 2021; 7 Parot, Rivera, Reszka, Torero, Fuentes (bb0700) 2022; 237 Carslaw, Jaeger (bb0205) 1959 Roy, Boschetti, Trigg (bb0755) 2006; 3 Price, Germino (bb0715) 2022; 18 Shakesby, Doerr (bb0770) 2006; 74 Reeves, Ryan, Rollins, Thompson (bb0725) 2009; 18 Anderson (bb0100) 1982 Li, Banerjee (bb0510) 2021; 11 Coleman, Sullivan (bb0260) 1996; 67 McGrattan, Baum, Rehm, Hamins, Forney, Floyd, Hostikka, Prasad (bb0580) 2010; 1018 (accessed on 21 September 2023). Sullivan (bb0830) 2009; 18 Andrews (bb0110) 2018 Emmons (bb0335) 1964; 5 Mell, Jenkins, Gould, Cheney (bb0600) 2007; 16 Mclauchlan, Higuera, Miesel, Rogers, Schweitzer, Shuman, Tepley, Varner, Veblen, Adalsteinsson, Balch, Baker, Batllori, Bigio, Brando, Cattau, Chipman, Coen, Crandall, Watts (bb0590) 2020; 108 Linn, Goodrick, Brambilla, Brown, Middleton, O'Brien, Hiers (bb0530) 2020; 125 Lautenberger, Fernandez-Pello (bb0505) 2009; 156 Jain, Coogan, Ganapathi Subramanian, Crowley, Taylor, Flannigan (bb0450) 2020; 28 Koo, Linn, Pagni, Edminster (bb0490) 2012; 21 Clark, Fletcher, Linn (bb0240) 2010; 19 Kenward, Sanford, Bronsan (bb0480) 2016 Doerr, Santín (bb0305) 2016; 371 Lamb, Scheingross, Amidon, Swanson, Limaye (bb0495) 2011; 116 Coen (bb0250) 2013; 52 Albini (bb0055) 1996; 32 Certini (bb0210) 2005; 143 Mell, Simeoni, Morvan, Hiers, Skowronski, Hadden (bb0615) 2018; 27 Keeley (bb0470) 2009; 18 Scotter (bb0765) 1970; 8 Steward, Peter (bib922) 1990; 20 Zhang, Wang, Liu (bb0920) 2021; 127 Williams, Livneh, McKinnon, Hansen, Mankin, Cook, Smerdon, Varuolo-Clarke, Bjarke, Juang, Lettenmaier (bb0910) 2022; 119 Tymstra, Bryce, Wotton, Taylor, Armitage (bb0860) 2010 Albini, Amin, Hungerford, Frandsen, Ryan (bb0065) 1996 Clark, Jenkins, Coen, Packham (bb0230) 1996; 35 Colman, Linn (bb0265) 2007; 16 Atchley, Linn, Jonko, Hoffman, Hyman, Pimont, Sieg, Middleton (bb0145) 2021; 30 Cheney, Gould, Catchpole (bb0220) 1998; 8 Sullivan (bb0825) 2009; 18 Jones, Abatzoglou, Veraverbeke, Andela, Lasslop, Forkel, Smith, Burton, Betts, van der Werf, Sitch, Canadell, Santin, Kolden, Doerr, Le Quere (bb0465) 2022; 60 Noble, Bary, Gill (bb0685) 1980; 5 Prichard, Hessburg, Hagmann, Povak, Dobrowski, Hurteau, Kane Van, Keane, Kobziar, Kolden, North, Parks, Safford, Stevens, Yocom, Churchill, Gray, Huffman, Lake, Khatri-Chhetri (bb0720) 2021; 31 Morvan (bb0640) 2011; 47 Grishin (bb0410) 1997 Tyukavina, Potapov, Hansen, Pickens, Stehman, Turubanova, Parker, Zalles, Lima, Kommareddy, Song, Wang, Harris (bb0865) 2022; 3 Albini (bb0030) 1976 Keeley, Bond, Bradstock, Pausas, Rundel (bb0475) 2012 Parks, Dillon, Miller (bb0695) 2014; 6 Finney (bb0355) 2006 Ulery, Graham, Bowen (bb0870) 1996; 60 Khanmohammadi, Arashpour, Mohammadi Golafshani, Cruz, Rajabifard, Bai (bb0485) 2022; 156 Lautenberger (bb0500) 2013; 62 Albini, Alexander, Cruz (bb0070) 2012; 21 Burrows (bb0190) 2001; 10 CWFGM Steering Committee. 2004. Prometheus User Manual v. 3.0.1. Canadian Forest Service. Available online Linn, Cunningham (bb0520) 2005; 110 Whelton, Seidel, Wham, Fischer, Isaacson, Jankowski, MacArthur, McKenna, Ley (bb0900) 2023 Ma, Bales, Rungee, Conklin, Collins, Goulden (bb0535) 2020; 590 Stenzel, Bartowitz, Hartman, Lutz, Kolden, Smith, Law, Swanson, Larson, Parton (bb0795) 2019; 25 Gochis, Yu, Yates (bb0385) 2015 Meradji, Accary, Morvan, Bessonov, Fougère (bb0620) 2016 Neary, Ryan, DeBano (bb0670) 2005 Parson, Robichaud, Lewis, Napper, Clark (bb0705) 2010 Scott, Burgan (bb0760) 2005 Bova, Mell, Hoffman (bb0180) 2016; 25 Linn (bb0515) 1997 Ottmar, Sandberg, Riccardi, Prichard (bb0690) 2007; 37 Neary, Klopatek, DeBano, Ffolliott (bb0665) 1999; 122 Massman (bb0555) 2021; 25 Linn, Reisner, Colman, Winterkamp (bb0525) 2002; 11 Thomas, Rengers, Kean, McGuire, Staley, Barnhart, Ebel (bb0855) 2021; 126 Andrews (bb0105) 2014; 23 Ebel, Martin (bb0320) 2017; 31 Smith, Sparks, Kolden, Abatzoglou, Talhelm, Johnson, Boschetti, Lutz, Apostol, Yedinak, Tinkham, Klemens (bb0790) 2016; 25 Goldammer, Furyaev (bb0390) 1996; vol. 48 Wieting, Ebel, Singha (bb0905) 2017; 13 Shmuel, Heifetz (bb0780) 2022; 13 Hagmann, Hessburg, Prichard, Povak, Brown, Fule, Keane, Knapp, Lydersen, Metlen, Reilly, Sanchez Meador, Stephens, Stevens, Taylor, Yocom, Battaglia, Churchill, Daniels, Falk, Henson, Johnston, Krawchuk, Levine, Meigs, Merschel, North, Safford, Swetnam, Waltz (bb0425) 2021; 31 Thomas, Mueller, Santamaria, Gallagher, El houssami, Filkov, Clark, Skowronski, Hadden, Mell, Simeoni (bb0845) 2017; 91 Albini (bb0035) 1979; INT-56 Niemeyer, Bladon, Woodsmith (bb0680) 2020; 34 Van Wagner (bb0885) 1977; 7 Albini (bb0045) 1985; 42 Badía, López-García, Martí, Ortíz-Perpiñá, Girona-García, Casanova-Gascón (bb0150) 2017; 601–602 Merino, Fonturbel, Fernández, Chávez-Vergara, García-Oliva, Vega (bb0625) 2018; 627 Duncan, Schmalzer (bb0315) 2004; 19 Morvan, Dupuy (bb0645) 2004; 138 Roshan, Biswas (bb0740) 2023; 868 Rothermel, Anderson (bb0750) 1966 Baetens, Oom, San-Miguel-Ayanz, Artes (bb0155) 2022 Albini (bb0040) 1981; 43 Byram (bb0195) 1959 Davis, Robles, Kemp, Higuera, Chapman, Metlen, Peeler, Rodman, Woolley, Addington, Buma, Cansler, Case, Collins, Coop, Dobrowski, Gill, Haffey, Harris, Harvey, Haugo, Hurteau, Kulakowski, Littlefield, McCauley, Povak, Shive, Smith, Stevens, Stevens-Rumann, Taylor, Tepley, Young, Andrus, Battaglia, Berkey, Busby, Carlson, Chambers, Dodson, Donato, Downing, Fornwalt, Halofsky, Hoffman, Holz, Iniguez, Krawchuk, Kreider, Larson, Meigs, Roccaforte, Rother, Safford, Schaedel, Sibold, Singleton, Turner, Urza, Clark-Wolf, Yocom, Fontaine, Campbell (bb0285) 2023; 120 González-Pérez, González-Vila, Almendros, Knicker (bb0405) 2004; 30 Aparício, Pereira, Santos, Bruni, Sá (bb0120) 2022; 137 Wagenbrenner, Forthofer, Lamb, Shannon, Butler (bb0890) 2016; 16 DeBano (bb0290) 2000; 231–232 Frandsen (bb0375) 1971; 16 Harmon, Hanson, DellaSala (bb0430) 2022; 13 Stewart, van Mantgem, Young, Shive, Preisler, Das, Stephenson, Keeley, Safford, Wright, Welch, Thorne (bb0800) 2021; 31 Alessio, Dunne, Morell (bb0080) 2021; 126 Araya, Meding, Berhe (bb0125) 2016; 2 DeBano, Neary, Ffolliott (bb0295) 1998 Bonetti, Wei, Or (bb0175) 2021; 2 Finney, Andrews (bb0360) 1999; 59 Tarifa, del Notario, Moreno (bb0840) 1965; 10 Freeborn, Wooster, Hao, Ryan, Nordgren, Baker, Ichoku (bb0380) 2008; 113 Mayor, Bautista, Llovet, Bellot (bb0565) 2007; 71 McGuire, Rengers, Kean, Staley (bb0585) 2017; 44 Albini (bb0050) 1986; 45 Van Wagner (bb0875) 1962; 63 Cruz, Alexander, Sullivan (bb0275) 2017; 26 Houssami, Thomas, Lamorlette, Morvan, Chaos, Hadden (bb0445) 2016; 168 Massman (bb0550) 2012; 48 Finney (bb0350) 2001; 47 Abatzoglou, Williams (bb0005) 2016; 113 Albalasmeh, Berli, Shafer, Ghezzehei (bb0025) 2013; 362 Bakhshaii, Johnson (bb0160) 2019; 49 Alexander, Cruz (bb0090) 2019 Molchanov (bb0630) 1957; 10 Ebel, Shephard, Walvoord, Murphy, Partridge, Perkins (bb0325) 2023; 11 Weber (bb0895) 1991; 17 Coffield, Graff, Chen, Smyth, Foufoula-Georgiou, Randerson (bb0255) 2019; 28 CWFGM Project Steering Committee (bb0280) 2009 Stoof, Moore, Ritsema, Dekker (bb0805) 2011; 75 Enninful, Torvi (bb0340) 2008; 17 Stoof, Vervoort, Iwema, van den Elsen, Ferreira, Ritsema (bb0815) 2012; 16 Anthenien, Tse, Fernandez-Pello (bb0115) 2006; 41 Artés, Oom, de Rigo, Durrant, Maianti, Liberta, San-Miguel-Ayanz (bb0140) 2019; 6 Arroyo, Pascual, Manzanera (bb0135) 2008; 256 Finney (bb0345) 1998 Stoof, De Kort, Bishop, Moore, Wesseling, Ritsema (bb0810) 2011; 75 Abatzoglou, Balch, Bradley, Kolden (bb0010) 2018; 27 Clark, Bobbe (bb0225) 2006 Balch, Abatzoglou, Joseph (bb0165) 2022; 602 Sion, Samburova, Berli, Baish, Bustarde, Houseman (bb0785) 2023; 6 Pingree, Kobziar (bb0710) 2019; 432 Gong, Zhai, Cao, Li, Yang, Zhou, Wang (bb0400) 2020; 216 Cheney, Gould, Catchpole (bb0215) 1993; 3 Coen (bb0245) 2005; 14 Hottel, Williams, Steward (bb0440) 1965 Scotter (10.1016/j.earscirev.2023.104569_bb0765) 1970; 8 Alexander (10.1016/j.earscirev.2023.104569_bb0085) 1982; 60 Stenzel (10.1016/j.earscirev.2023.104569_bb0795) 2019; 25 Parson (10.1016/j.earscirev.2023.104569_bb0705) 2010 Roshan (10.1016/j.earscirev.2023.104569_bb0740) 2023; 868 Molchanov (10.1016/j.earscirev.2023.104569_bb0630) 1957; 10 Fons (10.1016/j.earscirev.2023.104569_bb0370) 1946; 72 Noble (10.1016/j.earscirev.2023.104569_bb0685) 1980; 5 Anderson (10.1016/j.earscirev.2023.104569_bb0100) 1982 Finney (10.1016/j.earscirev.2023.104569_bb0360) 1999; 59 Bodí (10.1016/j.earscirev.2023.104569_bb0170) 2014; 130 Emmons (10.1016/j.earscirev.2023.104569_bb0335) 1964; 5 Lautenberger (10.1016/j.earscirev.2023.104569_bb0505) 2009; 156 Van Wagner (10.1016/j.earscirev.2023.104569_bb0875) 1962; 63 Balch (10.1016/j.earscirev.2023.104569_bb0165) 2022; 602 Linn (10.1016/j.earscirev.2023.104569_bb0525) 2002; 11 Wagenbrenner (10.1016/j.earscirev.2023.104569_bb0890) 2016; 16 Badía (10.1016/j.earscirev.2023.104569_bb0150) 2017; 601–602 Grishin (10.1016/j.earscirev.2023.104569_bb0415) 1981; 17 Morvan (10.1016/j.earscirev.2023.104569_bb0655) 2009; 44 Shillito (10.1016/j.earscirev.2023.104569_bb0775) 2020; 56 Stoof (10.1016/j.earscirev.2023.104569_bb0810) 2011; 75 Mell (10.1016/j.earscirev.2023.104569_bb0615) 2018; 27 Perry (10.1016/j.earscirev.2023.104569_bib921) 1998; 22 Johnston (10.1016/j.earscirev.2023.104569_bb0460) 2017; 26 Koo (10.1016/j.earscirev.2023.104569_bb0490) 2012; 21 Roces-Díaz (10.1016/j.earscirev.2023.104569_bb0735) 2022; 20 Jian (10.1016/j.earscirev.2023.104569_bb0455) 2018; 45 Rothermel (10.1016/j.earscirev.2023.104569_bb0745) 1972; INT-115 Cruz (10.1016/j.earscirev.2023.104569_bb0270) 2018; 27 Sion (10.1016/j.earscirev.2023.104569_bb0785) 2023; 6 Nelson (10.1016/j.earscirev.2023.104569_bb0675) 2022; 7 Tymstra (10.1016/j.earscirev.2023.104569_bb0860) 2010 Coleman (10.1016/j.earscirev.2023.104569_bb0260) 1996; 67 Holden (10.1016/j.earscirev.2023.104569_bb0435) 2015; 87 Ottmar (10.1016/j.earscirev.2023.104569_bb0690) 2007; 37 Pingree (10.1016/j.earscirev.2023.104569_bb0710) 2019; 432 Andrews (10.1016/j.earscirev.2023.104569_bb0110) 2018 Finney (10.1016/j.earscirev.2023.104569_bb0355) 2006 Hottel (10.1016/j.earscirev.2023.104569_bb0440) 1965 Campbell (10.1016/j.earscirev.2023.104569_bb0200) 1995; 159 Finney (10.1016/j.earscirev.2023.104569_bb0365) 2015; 112 Jones (10.1016/j.earscirev.2023.104569_bb0465) 2022; 60 Egorova (10.1016/j.earscirev.2023.104569_bb0330) 2022; 104 Van Wagner (10.1016/j.earscirev.2023.104569_bb0880) 1967 Price (10.1016/j.earscirev.2023.104569_bb0715) 2022; 18 Massman (10.1016/j.earscirev.2023.104569_bb0555) 2021; 25 Smith (10.1016/j.earscirev.2023.104569_bb0790) 2016; 25 Mudan (10.1016/j.earscirev.2023.104569_bb0660) 1987; 12 Rothermel (10.1016/j.earscirev.2023.104569_bb0750) 1966 Araya (10.1016/j.earscirev.2023.104569_bb0130) 2017; 3 Freeborn (10.1016/j.earscirev.2023.104569_bb0380) 2008; 113 Albini (10.1016/j.earscirev.2023.104569_bb0070) 2012; 21 Araya (10.1016/j.earscirev.2023.104569_bb0125) 2016; 2 Linn (10.1016/j.earscirev.2023.104569_bb0530) 2020; 125 Keeley (10.1016/j.earscirev.2023.104569_bb0470) 2009; 18 Finney (10.1016/j.earscirev.2023.104569_bb0350) 2001; 47 Thomas (10.1016/j.earscirev.2023.104569_bb0855) 2021; 126 Carslaw (10.1016/j.earscirev.2023.104569_bb0205) 1959 CWFGM Project Steering Committee (10.1016/j.earscirev.2023.104569_bb0280) 2009 Anderson (10.1016/j.earscirev.2023.104569_bb0095) 1969 Anthenien (10.1016/j.earscirev.2023.104569_bb0115) 2006; 41 Baetens (10.1016/j.earscirev.2023.104569_bb0155) 2022 Abatzoglou (10.1016/j.earscirev.2023.104569_bb0005) 2016; 113 Sullivan (10.1016/j.earscirev.2023.104569_bb0825) 2009; 18 Neary (10.1016/j.earscirev.2023.104569_bb0665) 1999; 122 Lamb (10.1016/j.earscirev.2023.104569_bb0495) 2011; 116 Byram (10.1016/j.earscirev.2023.104569_bb0195) 1959 Clark (10.1016/j.earscirev.2023.104569_bb0240) 2010; 19 Albini (10.1016/j.earscirev.2023.104569_bb0065) 1996 Roy (10.1016/j.earscirev.2023.104569_bb0755) 2006; 3 Bonetti (10.1016/j.earscirev.2023.104569_bb0175) 2021; 2 Albini (10.1016/j.earscirev.2023.104569_bb0030) 1976 Alexander (10.1016/j.earscirev.2023.104569_bb0090) 2019 Duncan (10.1016/j.earscirev.2023.104569_bb0315) 2004; 19 Dillon (10.1016/j.earscirev.2023.104569_bb0300) 2015 Merino (10.1016/j.earscirev.2023.104569_bb0625) 2018; 627 McArthur (10.1016/j.earscirev.2023.104569_bb0575) 1967 Kenward (10.1016/j.earscirev.2023.104569_bb0480) 2016 Weber (10.1016/j.earscirev.2023.104569_bb0895) 1991; 17 Van Wagner (10.1016/j.earscirev.2023.104569_bb0885) 1977; 7 Hagmann (10.1016/j.earscirev.2023.104569_bb0425) 2021; 31 Atchley (10.1016/j.earscirev.2023.104569_bb0145) 2021; 30 Cheney (10.1016/j.earscirev.2023.104569_bb0215) 1993; 3 Parks (10.1016/j.earscirev.2023.104569_bb0695) 2014; 6 Davis (10.1016/j.earscirev.2023.104569_bb0285) 2023; 120 Sullivan (10.1016/j.earscirev.2023.104569_bb0820) 2009; 18 Achtemeier (10.1016/j.earscirev.2023.104569_bb0020) 2013; 22 Linn (10.1016/j.earscirev.2023.104569_bb0515) 1997 Albini (10.1016/j.earscirev.2023.104569_bb0050) 1986; 45 McGrattan (10.1016/j.earscirev.2023.104569_bb0580) 2010; 1018 Cruz (10.1016/j.earscirev.2023.104569_bb0275) 2017; 26 Certini (10.1016/j.earscirev.2023.104569_bb0210) 2005; 143 Gong (10.1016/j.earscirev.2023.104569_bb0395) 2020; 151 Morvan (10.1016/j.earscirev.2023.104569_bb0640) 2011; 47 Sullivan (10.1016/j.earscirev.2023.104569_bb0830) 2009; 18 Lautenberger (10.1016/j.earscirev.2023.104569_bb0500) 2013; 62 Clark (10.1016/j.earscirev.2023.104569_bb0235) 2004; 13 Albalasmeh (10.1016/j.earscirev.2023.104569_bb0025) 2013; 362 Coen (10.1016/j.earscirev.2023.104569_bb0245) 2005; 14 Ulery (10.1016/j.earscirev.2023.104569_bb0870) 1996; 60 Zhang (10.1016/j.earscirev.2023.104569_bb0920) 2021; 127 Morvan (10.1016/j.earscirev.2023.104569_bb0650) 2006; 234 Albini (10.1016/j.earscirev.2023.104569_bb0045) 1985; 42 DeBano (10.1016/j.earscirev.2023.104569_bb0290) 2000; 231–232 Keeley (10.1016/j.earscirev.2023.104569_bb0475) 2012 Mandel (10.1016/j.earscirev.2023.104569_bb0540) 2011; 4 Massman (10.1016/j.earscirev.2023.104569_bb0560) 2010; 6 Clark (10.1016/j.earscirev.2023.104569_bb0230) 1996; 35 Mell (10.1016/j.earscirev.2023.104569_bb0600) 2007; 16 Steward (10.1016/j.earscirev.2023.104569_bib922) 1990; 20 Shmuel (10.1016/j.earscirev.2023.104569_bb0780) 2022; 13 Stoof (10.1016/j.earscirev.2023.104569_bb0805) 2011; 75 Li (10.1016/j.earscirev.2023.104569_bb0510) 2021; 11 Shakesby (10.1016/j.earscirev.2023.104569_bb0770) 2006; 74 González-Pérez (10.1016/j.earscirev.2023.104569_bb0405) 2004; 30 10.1016/j.earscirev.2023.104569_bb9000 Bakhshaii (10.1016/j.earscirev.2023.104569_bb0160) 2019; 49 Bova (10.1016/j.earscirev.2023.104569_bb0180) 2016; 25 Burrows (10.1016/j.earscirev.2023.104569_bb0190) 2001; 10 Colman (10.1016/j.earscirev.2023.104569_bb0265) 2007; 16 McArthur (10.1016/j.earscirev.2023.104569_bb0570) 1966 Parot (10.1016/j.earscirev.2023.104569_bb0700) 2022; 237 Tyukavina (10.1016/j.earscirev.2023.104569_bb0865) 2022; 3 Houssami (10.1016/j.earscirev.2023.104569_bb0445) 2016; 168 10.1016/j.earscirev.2023.104569_bb0835 Artés (10.1016/j.earscirev.2023.104569_bb0140) 2019; 6 Ebel (10.1016/j.earscirev.2023.104569_bb0320) 2017; 31 Tarifa (10.1016/j.earscirev.2023.104569_bb0840) 1965; 10 Gong (10.1016/j.earscirev.2023.104569_bb0400) 2020; 216 Wieting (10.1016/j.earscirev.2023.104569_bb0905) 2017; 13 Arroyo (10.1016/j.earscirev.2023.104569_bb0135) 2008; 256 Alessio (10.1016/j.earscirev.2023.104569_bb0080) 2021; 126 Abolafia-Rosenzweig (10.1016/j.earscirev.2023.104569_bb0015) 2022; 17 Albini (10.1016/j.earscirev.2023.104569_bb0040) 1981; 43 Frandsen (10.1016/j.earscirev.2023.104569_bb0375) 1971; 16 Albini (10.1016/j.earscirev.2023.104569_bb0035) 1979; INT-56 Enninful (10.1016/j.earscirev.2023.104569_bb0340) 2008; 17 Harmon (10.1016/j.earscirev.2023.104569_bb0430) 2022; 13 Scott (10.1016/j.earscirev.2023.104569_bb0760) 2005 Niemeyer (10.1016/j.earscirev.2023.104569_bb0680) 2020; 34 McGuire (10.1016/j.earscirev.2023.104569_bb0585) 2017; 44 Moody (10.1016/j.earscirev.2023.104569_bb0635) 2009; 18 Mell (10.1016/j.earscirev.2023.104569_bb0595) 2005 Andrews (10.1016/j.earscirev.2023.104569_bb0105) 2014; 23 Ebel (10.1016/j.earscirev.2023.104569_bb0325) 2023; 11 Goldammer (10.1016/j.earscirev.2023.104569_bb0390) 1996; vol. 48 Richards (10.1016/j.earscirev.2023.104569_bb0730) 1995; 5 Prichard (10.1016/j.earscirev.2023.104569_bb0720) 2021; 31 Neary (10.1016/j.earscirev.2023.104569_bb0670) 2005 Reeves (10.1016/j.earscirev.2023.104569_bb0725) 2009; 18 Grishin (10.1016/j.earscirev.2023.104569_bb0410) 1997 Linn (10.1016/j.earscirev.2023.104569_bb0520) 2005; 110 Thomas (10.1016/j.earscirev.2023.104569_bb0850) 2021; 7 Morvan (10.1016/j.earscirev.2023.104569_bb0645) 2004; 138 Williams (10.1016/j.earscirev.2023.104569_bb0910) 2022; 119 Burns (10.1016/j.earscirev.2023.104569_bb0185) 2015; 135 Albini (10.1016/j.earscirev.2023.104569_bb0060) 1995; 5 Thomas (10.1016/j.earscirev.2023.104569_bb0845) 2017; 91 Stewart (10.1016/j.earscirev.2023.104569_bb0800) 2021; 31 Duane (10.1016/j.earscirev.2023.104569_bb0310) 2021; 498 Alcaniz (10.1016/j.earscirev.2023.104569_bb0075) 2018; 613–614 Gochis (10.1016/j.earscirev.2023.104569_bb0385) 2015 Mayor (10.1016/j.earscirev.2023.104569_bb0565) 2007; 71 Manzello (10.1016/j.earscirev.2023.104569_bb0545) 2020; 76 Coffield (10.1016/j.earscirev.2023.104569_bb0255) 2019; 28 Aparício (10.1016/j.earscirev.2023.104569_bb0120) 2022; 137 Ma (10.1016/j.earscirev.2023.104569_bb0535) 2020; 590 Mclauchlan (10.1016/j.earscirev.2023.104569_bb0590) 2020; 108 Doerr (10.1016/j.earscirev.2023.104569_bb0305) 2016; 371 Khanmohammadi (10.1016/j.earscirev.2023.104569_bb0485) 2022; 156 Jain (10.1016/j.earscirev.2023.104569_bb0450) 2020; 28 Whelton (10.1016/j.earscirev.2023.104569_bb0900) 2023; 5 Abatzoglou (10.1016/j.earscirev.2023.104569_bb0010) 2018; 27 Meradji (10.1016/j.earscirev.2023.104569_bb0620) 2016 Cheney (10.1016/j.earscirev.2023.104569_bb0220) 1998; 8 Stoof (10.1016/j.earscirev.2023.104569_bb0815) 2012; 16 Massman (10.1016/j.earscirev.2023.104569_bb0550) 2012; 48 Zhai (10.10 |
| References_xml | – volume: 21 start-page: 609 year: 2012 end-page: 627 ident: bb0070 article-title: A mathematical model for predicting the maximum potential spotting distance from a crown fire publication-title: Int. J. Wildland Fire – volume: 27 start-page: 770 year: 2018 end-page: 775 ident: bb0615 article-title: Clarifying the meaning of mantras in wildland fire behaviour modelling: reply to Cruz et al. (2017) publication-title: Int. J. Wildland Fire – volume: 3 start-page: 112 year: 2006 end-page: 116 ident: bb0755 article-title: Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio publication-title: Geosci. Remote Sens. Letters, IEEE. – volume: 590 start-page: 125364 year: 2020 ident: bb0535 article-title: Wildfire controls on evapotranspiration in California’s Sierra Nevada publication-title: J. Hydrol. – volume: 613–614 start-page: 944 year: 2018 end-page: 957 ident: bb0075 article-title: Effects of prescribed fires on soil properties: A review publication-title: Sci. Total Environ. – volume: 16 start-page: 5229 year: 2016 end-page: 5241 ident: bb0890 article-title: Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja publication-title: Atmos. Chem. Phys. – volume: 156 start-page: 1503 year: 2009 end-page: 1513 ident: bb0505 article-title: A model for the oxidative pyrolysis of wood publication-title: Combust. Flame – volume: 28 start-page: 861 year: 2019 end-page: 873 ident: bb0255 article-title: Machine learning to predict final fire size at time of ignition publication-title: Int. J. Wildland Fire – volume: 59 start-page: 13 year: 1999 end-page: 15 ident: bb0360 article-title: : Fire Area Simulator—a program for fire growth simulation publication-title: Fire Management Notes – volume: 21 start-page: 396 year: 2012 end-page: 417 ident: bb0490 article-title: Modelling firebrand transport in wildfires using HIGRAD/FIRETEC publication-title: Int. J. Wildland Fire – volume: 23 start-page: 21 year: 2014 end-page: 33 ident: bb0105 article-title: Current status and future needs of the BehavePlus Fire Modeling System publication-title: Int. J. Wildland Fire – volume: 75 start-page: 2283 year: 2011 end-page: 2295 ident: bb0805 article-title: Natural and fire-induced soil water repellency in a Portuguese shrubland publication-title: Soil Sci. Soc. Am. J. – volume: 3 start-page: 31 year: 1993 end-page: 44 ident: bb0215 article-title: The influence of fuel weather and fire shape variables on fire spread in grasslands publication-title: Int. J. Wildland Fire – volume: 7 start-page: 650580 year: 2021 ident: bb0850 article-title: Coupled assessment of fire behavior and firebrand dynamics publication-title: Front. Mech. Eng. – volume: 9 start-page: 11958 year: 2019 ident: bb0915 article-title: Analytical study on ignition time of PMMA exposed to time-decreasing thermal radiation using critical mass flux publication-title: Sci. Rep. – volume: 602 start-page: 442 year: 2022 end-page: 448 ident: bb0165 article-title: Warming weakens the night-time barrier to global fire publication-title: Nature – volume: 127 start-page: 107735 year: 2021 ident: bb0920 article-title: Deep neural networks for global wildfire susceptibility modelling publication-title: Ecol. Indic. – volume: 126 year: 2021 ident: bb0080 article-title: Post-wildfire generation of debris-flow slurry by rill erosion on colluvial hillslopes publication-title: J. Geophys. Res. Earth Surf. – start-page: 213 year: 2006 end-page: 220 ident: bb0355 article-title: An Overview of FlamMap fire modeling capabilities publication-title: 2006. Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41 – volume: 13 start-page: 391 year: 2022 ident: bb0430 article-title: Combustion of Above ground wood from live trees in megafires, CA, USA publication-title: Forests – volume: 31 start-page: 3682 year: 2017 end-page: 3696 ident: bb0320 article-title: Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment publication-title: Hydrol. Process. – volume: 16 start-page: 267 year: 2012 end-page: 285 ident: bb0815 article-title: Hydrological response of a small catchment burned by experimental fire publication-title: Hydrol. Earth Syst. Sci. – volume: 19 start-page: 202 year: 2010 end-page: 212 ident: bb0240 article-title: A sub-grid, mixture-fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results publication-title: Int. J. Wildland Fire – volume: 116 start-page: F03006 year: 2011 ident: bb0495 article-title: A model for fire-induced sediment yield by dry ravel in steep landscapes publication-title: J. Geophys. Res. – start-page: 46 year: 2016 ident: bb0480 article-title: Western Wildfires: A Fiery Future publication-title: Climate Central – volume: 76 start-page: 100801 year: 2020 ident: bb0545 article-title: Role of firebrand combustion in large outdoor fire spread publication-title: Prog. Energy Combust. Sci. – year: 2016 ident: bb0620 article-title: Numerical Simulation of Grassland-Fires Behavior Using FireStar3D Model – volume: 113 start-page: D01301 year: 2008 ident: bb0380 article-title: Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires publication-title: J. Geophys. Res. – start-page: 72 year: 2005 ident: bb0760 article-title: Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. Gen. Tech. Rep. RMRS-GTR-153 – volume: 30 start-page: 855 year: 2004 end-page: 870 ident: bb0405 article-title: The effect of fire on soil organic matter—a review publication-title: Environ. Int. – volume: 56 year: 2020 ident: bb0775 article-title: Quantifying the effect of subcritical water repellency on sorptivity: a physically based model publication-title: Water Resour. Res. – volume: 18 start-page: 349 year: 2009 end-page: 368 ident: bb0820 article-title: Wildland surface fire spread modelling, 1990–2007. 1: physical and quasi-physical models publication-title: Int. J. Wildland Fire – volume: 130 start-page: 103 year: 2014 end-page: 127 ident: bb0170 article-title: Wildland fire ash: production, composition and eco-hydro-geomorphic effects publication-title: Earth Sci. Rev. – volume: 52 start-page: 16 year: 2013 end-page: 38 ident: bb0250 article-title: WRF-Fire: coupled weather–wildland fire modeling with the Weather Research and Forecasting Model publication-title: J. Appl. Meteorol. Climatol. – start-page: 47 year: 1998 ident: bb0345 article-title: FARSITE: Fire Area Simulator-model development and evaluation. Res. Pap. RMRS-RP-4, – volume: 35 start-page: 875 year: 1996 end-page: 901 ident: bb0230 article-title: A coupled atmospheric-fire model: convective feedback on fire line dynamics publication-title: J. Appl. Meteorol. – volume: 156 year: 2022 ident: bb0485 article-title: Prediction of wildfire rate of spread in grasslands using machine learning methods publication-title: Environ. Model. Softw. – volume: 91 start-page: 864 year: 2017 end-page: 871 ident: bb0845 article-title: Investigation of firebrand generation from an experimental fire: development of a reliable data collection methodology publication-title: Fire Saf. J. – year: 1959 ident: bb0205 article-title: Conduction of Heat in Solids – volume: 104 start-page: 1 year: 2022 end-page: 20 ident: bb0330 article-title: Fire-spotting generated fires. Part II: The role of flame geometry and slope publication-title: Appl. Math. Model. – volume: 63 start-page: 458 year: 1962 end-page: 459 ident: bb0875 article-title: On the value of a numerical concept of fire intensity publication-title: Pulp and Paper Magazine of Canada, Woodland Review – volume: 17 year: 2022 ident: bb0015 article-title: Winter and spring climate explains a large portion of interannual variability and trend in western U.S. summer fire burned area publication-title: Environ. Res. Lett. – volume: 126 year: 2021 ident: bb0855 article-title: Postwildfire soil-hydraulic recovery and the persistence of debris flow hazards publication-title: J. Geophys. Res. Earth Surf. – year: 1982 ident: bb0100 article-title: Aids to determining fuel models for estimating fire behavior – volume: 498 year: 2021 ident: bb0310 article-title: Forest connectivity percolation thresholds for fire spread under different weather conditions publication-title: For. Ecol. Manag. – year: 1998 ident: bb0295 article-title: Fire's Effects on Ecosystems – volume: 362 start-page: 335 year: 2013 end-page: 344 ident: bb0025 article-title: Degradation of moist soil aggregates by rapid temperature rise under low intensity fire publication-title: Plant Soil – volume: 18 start-page: 23 year: 2022 ident: bb0715 article-title: Modeling of fire spread in sagebrush steppe using FARSITE: an approach to improving input data and simulation accuracy publication-title: Fire Ecol. – year: 1965 ident: bb0440 article-title: The modeling of fire spread through a fuel bed publication-title: 10 – volume: 34 start-page: 1182 year: 2020 end-page: 1197 ident: bb0680 article-title: Long-term hydrologic recovery after wildfire and post-fire forest management in the interior Pacific Northwest publication-title: Hydrol. Process. – volume: 135 start-page: 350 year: 2015 end-page: 357 ident: bb0185 article-title: The effective viscosity of slurries laden with vegetative ash publication-title: Catena – start-page: 61 year: 1959 end-page: 89 ident: bb0195 article-title: Combustion of forest fuels publication-title: Forest Fire: Control and Use – start-page: 1318 year: 2023 ident: bb0900 article-title: The Marshall Fire: Scientific and policy needs for water system disaster response publication-title: AWWA Water Sci. – volume: 17 start-page: 205 year: 2008 end-page: 213 ident: bb0340 article-title: A variable property heat transfer model for predicting soil temperature profiles during simulated wildland fire conditions publication-title: Int. J. Wildland Fire – volume: 12 start-page: 89 year: 1987 end-page: 96 ident: bb0660 article-title: Geometric view factors for thermal radiation hazard assessment publication-title: Fire Saf. J. – volume: 30 year: 2021 ident: bb0145 article-title: Effects of fuel spatial distribution on wildland fire behaviour publication-title: Int. J. Wildland Fire – volume: 151 year: 2020 ident: bb0395 article-title: Ignition of polymers under exponential heat flux considering both surface and in-depth absorptions publication-title: Int. J. Therm. Sci. – volume: 60 year: 2022 ident: bb0465 article-title: Global and regional trends and drivers of fire under climate change publication-title: Rev. Geophys. – volume: 32 start-page: 534 year: 1996 end-page: 543 ident: bb0055 article-title: Iterative solution of the radiation transport equations governing spread of fire in wildland fuel publication-title: Combust. Explos. Shock Waves – volume: 26 start-page: 668 year: 2017 end-page: 684 ident: bb0460 article-title: Direct estimation of Byram’s fire intensity from infrared remote sensing imagery publication-title: Int. J. Wildland Fire – volume: 108 start-page: 2047 year: 2020 end-page: 2069 ident: bb0590 article-title: Fire as a fundamental ecological process: research advances and frontiers publication-title: J. Ecol. – volume: vol. 48 year: 1996 ident: bb0390 article-title: Fire in Ecosystems of Boreal Eurasia: Ecological Impacts and Links to the Global System publication-title: Fire in Ecosystems of Boreal Eurasia. Forestry Sciences – volume: 71 start-page: 68 year: 2007 end-page: 75 ident: bb0565 article-title: Post-fire hydrological and erosional responses of a Mediterranean landscpe: seven years of catchment-scale dynamics publication-title: Catena – volume: 125 start-page: 104616 year: 2020 ident: bb0530 article-title: QUIC-fire: A fast-running simulation tool for prescribed fire planning publication-title: Environ. Model. Softw. – volume: 43 start-page: 155 year: 1981 end-page: 174 ident: bb0040 article-title: A model for the wind-blown flame from a line fire publication-title: Combust. Flame – reference: Sun R., Krueger, S. K, Jenkins, M. Ann, Zulauf, M. A, and J.J. Charney. 2009. The importance of fire-atmosphere coupling and boundary-layer turbulence to wildfire spread. Int. J. Wildland Fire, 18, 50–60. – volume: 13 start-page: 49 year: 2004 end-page: 64 ident: bb0235 article-title: Description of a coupled atmosphere-fire model publication-title: Int. J. Wildland Fire – year: 1969 ident: bb0095 article-title: Heat transfer and fire spread – volume: 6 start-page: 296 year: 2019 ident: bb0140 article-title: A global wildfire dataset for the analysis of fire regimes and fire behaviour publication-title: Scientific Data – volume: 22 start-page: 148 year: 2013 end-page: 156 ident: bb0020 article-title: Field validation of a free-agent cellular automata model of fire spread with fire–atmosphere coupling publication-title: Int. J. Wildland Fire – volume: 14 start-page: 49 year: 2005 end-page: 59 ident: bb0245 article-title: Simulation of the Big Elk Fire using coupled atmosphere-fire modeling publication-title: Int. J. Wildland Fire – volume: 27 start-page: 776 year: 2018 end-page: 780 ident: bb0270 article-title: A response to ‘Clarifying the meaning of mantras in wildland fire behaviour modelling: a reply to Cruz et al. (2017)’ publication-title: Int. J. Wildland Fire – volume: 62 start-page: 289 year: 2013 end-page: 298 ident: bb0500 article-title: Wildland fire modeling with an Eulerian level set method and automated calibration publication-title: Fire Saf. J. – start-page: 49 year: 2010 ident: bb0705 article-title: Field guide for mapping post-fire soil burn severity. Gen. Tech. Rep. RMRS-GTR-243. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station – volume: 42 start-page: 229 year: 1985 end-page: 258 ident: bb0045 article-title: A model for fire spread in wildland fuels by radiation publication-title: Combust. Sci. Technol. – year: 2010 ident: bb0860 article-title: Development and structure of Prometheus: the Canadian Wildland Fire Growth Simulation Model. Nat. Resour. Can., Can. For. Serv., North. For. Cent., Edmonton, AB. Inf. Rep. NOR-X-417 – volume: 2 start-page: 107 year: 2021 ident: bb0175 article-title: A framework for quantifying hydrologic effects of soil structure across scales publication-title: Commun. Earth Environ. – volume: 231–232 start-page: 195 year: 2000 end-page: 206 ident: bb0290 article-title: The role of fire and soil heating on water repellency in wildland environments: a review publication-title: J. Hydrol. – volume: 87 start-page: 1 year: 2015 end-page: 9 ident: bb0435 article-title: Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire publication-title: Soil Biol. Biochem. – volume: 31 year: 2021 ident: bb0800 article-title: Effects of postfire climate and seed availability on postfire conifer regeneration publication-title: Ecol. Appl. – volume: 601–602 start-page: 1119 year: 2017 end-page: 1128 ident: bb0150 article-title: Burn effects on soil properties associated to heat transfer under contrasting moisture content publication-title: Sci. Total Environ. – year: 2006 ident: bb0225 article-title: Using remote sensing to map and monitor fire damage in forest ecosystems publication-title: Understanding Forest Disturbance and Spatial Patterns: Remote Sensing and GIS Approaches – volume: 11 start-page: 233 year: 2002 end-page: 246 ident: bb0525 article-title: Studying wildfire behavior using FIRETEC, Int. J publication-title: Wildland Fire – volume: 6 start-page: 1827 year: 2014 end-page: 1844 ident: bb0695 article-title: A new metric for quantifying burn severity: the relativized burn ratio publication-title: Remote Sens. – volume: 48 year: 2012 ident: bb0550 article-title: Modeling soil heating and moisture transport under extreme conditions: forest fires and slash pile burns, Water Resour publication-title: Res. – volume: 47 start-page: 437 year: 2011 end-page: 460 ident: bb0640 article-title: Physical phenomena and length scales governing the behavior of wildfires: a case for physical modelling publication-title: Fire. Technol – year: 1997 ident: bb0515 article-title: A transport model for prediction of wildfire behavior, Sci. Rep. LA-13334-T, 195 pp., Los Alamos Natl. Lab., Los Alamos, N. M – volume: 18 start-page: 369 year: 2009 end-page: 386 ident: bb0825 article-title: Wildland surface fire spread modelling, 1990–2007. 2: empirical and quasi-empirical models publication-title: Int. J. Wildland Fire – volume: 26 start-page: 973 year: 2017 end-page: 981 ident: bb0275 article-title: Mantras of wildland fire behaviour modelling: facts or fallacies? publication-title: Int. J. Wildland Fire – volume: 119 year: 2022 ident: bb0910 article-title: Growing impact of wildfire on western US water supply publication-title: Proc. Nat. Acad. Sci. – volume: 20 start-page: 919 year: 1990 end-page: 926 ident: bib922 article-title: A method for predicting the depth of lethal heat penetration into mineral soils exposed to fires of various intensities publication-title: Canadian Journal of Forest Research – start-page: 1 year: 2019 end-page: 8 ident: bb0090 article-title: Fireline intensity publication-title: Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) fires – volume: 7 start-page: 23 year: 1977 end-page: 34 ident: bb0885 article-title: Conditions for the start of crown fire publication-title: Can. J. For. Res. – volume: 868 start-page: 161714 year: 2023 ident: bb0740 article-title: Fire-induced geochemical changes in soil: implication for the element cycling publication-title: Sci. Total Environ. – volume: 627 start-page: 622 year: 2018 end-page: 632 ident: bb0625 article-title: Inferring changes in soil organic matter in post-wildfire soil burn severity levels in a temperate climate publication-title: Sci. Total Environ. – volume: 28 start-page: 478 year: 2020 end-page: 505 ident: bb0450 article-title: A review of machine learning applications in wildfire science and management publication-title: Environ. Rev. – volume: 138 start-page: 199 year: 2004 end-page: 210 ident: bb0645 article-title: Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation publication-title: Combust. Flame – volume: 17 start-page: 67 year: 1991 end-page: 82 ident: bb0895 article-title: Modelling fire spread through fuel beds publication-title: Prog. Energy Combust. Sci. – volume: 113 start-page: 11770 year: 2016 end-page: 11775 ident: bb0005 article-title: Impact of anthropogenic climate change on wildfire across western US forests publication-title: Proc. Nat. Acad. Sci. USA – volume: 49 start-page: 565 year: 2019 end-page: 574 ident: bb0160 article-title: A review of a new generation of wildfire–atmosphere modeling publication-title: Can. J. For. Res. – volume: 168 start-page: 113 year: 2016 end-page: 126 ident: bb0445 article-title: Experimental and Numerical Studies Characterizing the Burning Dynamics of Wildland Fuels publication-title: Combust. Flame – volume: 16 start-page: 9 year: 1971 end-page: 16 ident: bb0375 article-title: Fire spread through porous fuels from the conservation of energy publication-title: Combust Flame – volume: 20 start-page: 170 year: 2022 end-page: 178 ident: bb0735 article-title: A global synthesis of fire effects on ecosystem services of forests and woodlands publication-title: Front. Ecol. Environ. – volume: 5 start-page: 81 year: 1995 end-page: 91 ident: bb0060 article-title: Modeling ignition and burning rate of large woody natural fuels publication-title: Int. J. Wildland Fire – year: 2009 ident: bb0280 article-title: Prometheus COM programmer’s manual – volume: 75 start-page: 1133 year: 2011 end-page: 1143 ident: bb0810 article-title: How rock fragments and moisture affect soil temperatures during fire publication-title: Soil Sci. Soc. Am. J. – volume: 8 start-page: 1 year: 1998 end-page: 13 ident: bb0220 article-title: Prediction of fire spread in grasslands publication-title: Int. J. Wildland Fire – year: 1997 ident: bb0410 article-title: Mathematical Modeling of Forest Fires and New Methods of Fighting Them. English Translation Edition.’ (Ed. F Albini) – year: 1966 ident: bb0750 article-title: Fire spread characteristics determined in the laboratory, USDA For. Serv. Res. Pap. INT30, Intermt. For. and Range Exp. Sta., Ogden, Utah – year: 2018 ident: bb0110 article-title: The Rothermel surface fire spread model and associated developments: a comprehensive explanation. USDA Forest Service, Rocky Mountain Research Station – volume: 5 start-page: 63 year: 1995 end-page: 72 ident: bb0730 article-title: A general mathematical framework for modeling two-dimensional wildland fire spread publication-title: Int. J. Wildland Fire – volume: 25 start-page: 229 year: 2016 end-page: 241 ident: bb0180 article-title: A comparison of level set and marker methods for the simulation of wildland fire front propagation publication-title: Int. J. Wildland Fire – volume: 44 start-page: 7310 year: 2017 end-page: 7319 ident: bb0585 article-title: Debris flow initiation by runoff in a recently burned basin: Is grain-by-grain sediment bulking or en masse failure to blame? publication-title: Geophys. Res. Lett. – volume: 112 start-page: 9833 year: 2015 end-page: 9838 ident: bb0365 article-title: Role of Buoyant flame dynamics in wildfire spread publication-title: Proc. Natl. Acad. Sci. – volume: 110 year: 2005 ident: bb0520 article-title: Numerical simulations of grass fires using a coupled atmosphere–fire model: Basic fire behavior and dependence on wind speed publication-title: J. Geophys. Res. – year: 2015 ident: bb0300 article-title: Wildland Fire Potential: A Tool for Assessing Wildfire Risk and Fuels Management Needs. pp 60-76 publication-title: Proceedings of the large wildland fires conference; May 19-23, 2014; Missoula, MT. Proc. RMRS-P-73 – year: 1976 ident: bb0030 article-title: Estimating wildfire behavior and effects. USDA Forest Service, Intermountain Forest and Range Experiment Station – volume: 4 start-page: 591 year: 2011 end-page: 610 ident: bb0540 article-title: Coupled atmosphere–wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci publication-title: Model Dev. – volume: 13 start-page: 43 year: 2017 end-page: 57 ident: bb0905 article-title: Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory publication-title: J. Hydrol. Reg. Stud. – volume: INT-56 year: 1979 ident: bb0035 article-title: Spot fire distance from burning trees: a predictive model publication-title: USDA Forest Service; Res Pap – year: 2012 ident: bb0475 article-title: Fire in Mediterranean Ecosystems: Ecology, Evolution and Management – volume: 18 start-page: 387 year: 2009 end-page: 403 ident: bb0830 article-title: Wildland surface fire spread modelling, 1990–2007. 3: simulation and mathematical analogue models publication-title: Int. J. Wildland Fire – volume: 72 start-page: 93 year: 1946 end-page: 121 ident: bb0370 article-title: Analysis of fire spread in light forest fuels publication-title: J. Agric. Res. – volume: 37 start-page: 2383 year: 2007 end-page: 2393 ident: bb0690 article-title: An overview of the Fuel characteristic classification system — quantifying, classifying, and creating fuelbeds for resource planning publication-title: Can. J. For. Res. – volume: 11 start-page: 8779 year: 2021 ident: bb0510 article-title: Spatial and temporal pattern of wildfires in California from 2000 to 2019 publication-title: Sci. Rep. – volume: 159 start-page: 363 year: 1995 end-page: 374 ident: bb0200 article-title: Soil temperature and water content beneath a surface fire publication-title: Soil Sci. – volume: 67 start-page: 230 year: 1996 end-page: 240 ident: bb0260 article-title: A real-time computer application for the prediction of fire spread across the Australian landscape publication-title: Simulation – volume: 120 year: 2023 ident: bb0285 article-title: Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western United States publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 143 start-page: 1 year: 2005 end-page: 10 ident: bb0210 article-title: Effects of fire on properties of forest soils: a review publication-title: Oecologia – volume: INT-115 year: 1972 ident: bb0745 article-title: A mathematical model for predicting fire spread in wildland fuels publication-title: USDA Forest Service; Res Pap – volume: 47 start-page: 219 year: 2001 end-page: 228 ident: bb0350 article-title: Design of regular landscape fuel treatment patterns for modifying fire growth and behavior publication-title: For. Sci. – year: 2005 ident: bb0595 article-title: Numerical simulations of grassland fire behaviour from the LANL-FIRETEC and NIST-WFDS models publication-title: Proceeding of EastFIRE conference, George Mason University, Fairfax, VA, 11–13 May 2005 – volume: 25 start-page: 3985 year: 2019 end-page: 3994 ident: bb0795 article-title: Fixing a snag in carbon emissions estimates from wildfires publication-title: Glob. Chang. Biol. – volume: 17 start-page: 78 year: 1981 end-page: 84 ident: bb0415 article-title: Heat and mass transport and the propagation of burning particles in the surface layer of the atmosphere during upstream forest fires publication-title: Fizika Gorenia i Vzryva – volume: 371 start-page: 20150345 year: 2016 ident: bb0305 article-title: Global trends in wildfire and its impacts: Perceptions versus realities in a changing world publication-title: Philos. Trans. Roy. Soc. B: Biol. Sci. – year: 2015 ident: bb0385 article-title: The WRF-Hydro model technical description and user’s guide, version 3.0 – volume: 432 start-page: 1022 year: 2019 end-page: 1029 ident: bb0710 article-title: The myth of the biological threshold: a review of biological responses to soil heating associated with wildland fire publication-title: For. Ecol. Manag. – volume: 8 start-page: 273 year: 1970 end-page: 279 ident: bb0765 article-title: Soil temperature under grass fires publication-title: Aus. J. Soil Res. – volume: 6 year: 2023 ident: bb0785 article-title: Assessment of the effects of the 2021 Caldor megafire on soil physical properties, eastern Sierra Nevada, USA publication-title: Fire – volume: 10 start-page: 137 year: 2001 end-page: 143 ident: bb0190 article-title: Flame residence times and rates of weight loss of eucalypt. forest fuel particles publication-title: Int. J. Wildland Fire – volume: 137 year: 2022 ident: bb0120 article-title: Combining wildfire behaviour simulations and network analysis to support wildfire management: A Mediterranean landscape case study publication-title: Ecol. Indic. – volume: 256 start-page: 1239 year: 2008 end-page: 1252 ident: bb0135 article-title: Fire models and methods to map fuel types: the role of remote sensing publication-title: For. Ecol. Manag. – volume: 22 start-page: 222 year: 1998 end-page: 245 ident: bib921 article-title: Current approaches to modelling the spread of wildland fire: a review publication-title: Progress in Physical Geography: Earth and Environment – reference: CWFGM Steering Committee. 2004. Prometheus User Manual v. 3.0.1. Canadian Forest Service. Available online: – year: 2005 ident: bb0670 article-title: Wildland fire in ecosystems: effects of fire on soils and water. Gen. Tech. Rep. RMRS-GTR-42-vol.4 – reference: (accessed on 21 September 2023). – volume: 45 start-page: 101 year: 1986 end-page: 113 ident: bb0050 article-title: Wildland fire spread by radiation, a model including fuel cooling by convection publication-title: Combust. Sci. Technol. – volume: 45 start-page: 5553 year: 2018 end-page: 5561 ident: bb0455 article-title: Soil structural degradation during low-severity burns publication-title: Geophys. Res. Lett. – volume: 74 start-page: 269 year: 2006 end-page: 307 ident: bb0770 article-title: Wildfire as a hydrological and geomorphological agent publication-title: Earth Sci. Rev. – volume: 25 start-page: 685 year: 2021 end-page: 709 ident: bb0555 article-title: The challenges of an in situ validation of a nonequilibrium model of soil heat and moisture dynamics during fires publication-title: Hydrol. Earth Syst. Sci. – year: 2022 ident: bb0155 article-title: Pan-European wildfire risk assessment. Publications Office of the European Union – volume: 16 start-page: 1 year: 2007 end-page: 22 ident: bb0600 article-title: A physics-based approach to modeling grassland fires publication-title: Int. J. Wildland Fire – volume: 60 start-page: 349 year: 1982 end-page: 357 ident: bb0085 article-title: Calculating and interpreting forest fire intensities publication-title: Can. J. Bot. – volume: 1018 year: 2010 ident: bb0580 article-title: Fire Dynamics Simulator (Version 5) Technical Reference Guide publication-title: NIST Special Publication. – volume: 25 start-page: 158 year: 2016 end-page: 166 ident: bb0790 article-title: Towards a new paradigm in fire severity research using dose-response experiments publication-title: Int. J. Wildland Fire – volume: 5 start-page: 163 year: 1964 end-page: 178 ident: bb0335 article-title: Fire in the forest publication-title: Fire Res Abs Rev. – volume: 237 start-page: 111866 year: 2022 ident: bb0700 article-title: A simplified analytical model for radiation dominated ignition of solid fuels exposed to multiple non-steady heat fluxes publication-title: Combust. Flame – year: 1996 ident: bb0065 article-title: Models for fire-driven heat and moisture transport in soils publication-title: USDA, Intermountain Research Station, General Technical Report INT-GTR-335. (Ogden, UT) – volume: 11 year: 2023 ident: bb0325 article-title: Modeling post-wildfire hydrologic response: Review and future directions for applications of physically based distributed simulation. Earth's publication-title: Future – volume: 216 start-page: 232 year: 2020 end-page: 244 ident: bb0400 article-title: Auto-ignition of thermally thick PMMA exposed to linearly decreasing thermal radiation publication-title: Combust. Flame – year: 1967 ident: bb0575 article-title: Fire behaviour in Eucaliptus forests. Forest Research Institute, Forest and Timber Bureau of Australia; Leaflet No. 107 – volume: 41 start-page: 349 year: 2006 end-page: 363 ident: bb0115 article-title: On the trajectories of embers initially elevated or lofted by small scale ground fire plumes in high winds publication-title: Fire Saf. J. – volume: 31 year: 2021 ident: bb0425 article-title: Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests publication-title: Ecol. Appl. – volume: 19 start-page: 153 year: 2004 end-page: 165 ident: bb0315 article-title: Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA publication-title: Landsc. Ecol. – year: 1966 ident: bb0570 article-title: Weather and Grassland Fire Behaviour – volume: 3 year: 2022 ident: bb0865 article-title: Global Trends of Forest Loss Due to Fire From 2001 to 2019 publication-title: Fron. Remote Sens. – volume: 31 start-page: 28 year: 2021 end-page: 58 ident: bb0720 article-title: Adapting western North American forests to climate change and wildfires: 10 common questions publication-title: Ecol. Appl. – volume: 234 start-page: S114 year: 2006 ident: bb0650 article-title: FIRESTAR: A Physically based model to study wildfire behaviour publication-title: Forest Ecol. Manag. – volume: 44 start-page: 50 year: 2009 end-page: 61 ident: bb0655 article-title: Physical modelling of fire spread in Grasslands publication-title: Fire Saf. J. – volume: 16 start-page: 493 year: 2007 end-page: 502 ident: bb0265 article-title: Separating combustion from pyrolysis in HIGRAD/FIRETEC publication-title: Int. J. Wildland Fire – volume: 122 start-page: 51 year: 1999 end-page: 71 ident: bb0665 article-title: Fire effects on belowground sustainability: a review and synthesis publication-title: For. Ecol. Manag. – volume: 6 start-page: 36 year: 2010 end-page: 54 ident: bb0560 article-title: Advancing investigation and physical modeling of first-order fire effects on soils publication-title: Fire ecol – volume: 3 start-page: 31 year: 2017 end-page: 44 ident: bb0130 article-title: Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires publication-title: Soil – volume: 18 start-page: 96 year: 2009 end-page: 115 ident: bb0635 article-title: Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States publication-title: Int. J. Wildland Fire – volume: 10 start-page: 1021 year: 1965 end-page: 1037 ident: bb0840 article-title: On the flight paths and lifetimes of burning particles of wood publication-title: Symp. Combust. – volume: 60 start-page: 309 year: 1996 end-page: 315 ident: bb0870 article-title: Forest fire effects on soil phyllosilicates in California publication-title: Soil Sci. Soc. Am. J. – volume: 5 start-page: 201 year: 1980 end-page: 203 ident: bb0685 article-title: McArthur’s fire danger meters expressed as equations publication-title: Aust. J. Ecol. – volume: 18 start-page: 250 year: 2009 end-page: 267 ident: bb0725 article-title: Spatial fuel data products of the LANDFIRE Project publication-title: Int. J. Wildland Fire – volume: 7 start-page: 1419 year: 2022 end-page: 1430 ident: bb0675 article-title: Wildfire-dependent changes in soil microbiome diversity and function publication-title: Nat. Microbiol. – volume: 18 start-page: 116 year: 2009 end-page: 126 ident: bb0470 article-title: Fire intensity, fire severity and burn severity: a brief review and suggested usage publication-title: Int. J. Wildland Fire – volume: 27 start-page: 377 year: 2018 end-page: 386 ident: bb0010 article-title: Human-related ignitions concurrent with high winds promote large wildfires across the USA publication-title: Int. J. Wildland Fire – volume: 10 start-page: 50 year: 1957 end-page: 63 ident: bb0630 article-title: Conditions for the spread of crown fire in pine forest publication-title: Lesnoe Khozydystvo – volume: 13 start-page: 1050 year: 2022 ident: bb0780 article-title: Global wildfire susceptibility mapping based on machine learning models publication-title: Forests – volume: 2 start-page: 351 year: 2016 end-page: 366 ident: bb0125 article-title: Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires publication-title: Soil – year: 1967 ident: bb0880 article-title: Calculations on forest fire spread by flame radiation. Canadian Department of Forestry – volume: 18 start-page: 387 issue: 4 year: 2009 ident: 10.1016/j.earscirev.2023.104569_bb0830 article-title: Wildland surface fire spread modelling, 1990–2007. 3: simulation and mathematical analogue models publication-title: Int. J. Wildland Fire doi: 10.1071/WF06144 – year: 2015 ident: 10.1016/j.earscirev.2023.104569_bb0300 article-title: Wildland Fire Potential: A Tool for Assessing Wildfire Risk and Fuels Management Needs. pp 60-76 – volume: 590 start-page: 125364 year: 2020 ident: 10.1016/j.earscirev.2023.104569_bb0535 article-title: Wildfire controls on evapotranspiration in California’s Sierra Nevada publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125364 – volume: 25 start-page: 3985 year: 2019 ident: 10.1016/j.earscirev.2023.104569_bb0795 article-title: Fixing a snag in carbon emissions estimates from wildfires publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14716 – volume: 602 start-page: 442 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0165 article-title: Warming weakens the night-time barrier to global fire publication-title: Nature doi: 10.1038/s41586-021-04325-1 – volume: 112 start-page: 9833 year: 2015 ident: 10.1016/j.earscirev.2023.104569_bb0365 article-title: Role of Buoyant flame dynamics in wildfire spread publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1504498112 – start-page: 213 year: 2006 ident: 10.1016/j.earscirev.2023.104569_bb0355 article-title: An Overview of FlamMap fire modeling capabilities – start-page: 72 year: 2005 ident: 10.1016/j.earscirev.2023.104569_bb0760 – volume: 432 start-page: 1022 year: 2019 ident: 10.1016/j.earscirev.2023.104569_bb0710 article-title: The myth of the biological threshold: a review of biological responses to soil heating associated with wildland fire publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2018.10.032 – volume: 613–614 start-page: 944 year: 2018 ident: 10.1016/j.earscirev.2023.104569_bb0075 article-title: Effects of prescribed fires on soil properties: A review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.144 – volume: 1018 year: 2010 ident: 10.1016/j.earscirev.2023.104569_bb0580 article-title: Fire Dynamics Simulator (Version 5) Technical Reference Guide publication-title: NIST Special Publication. – year: 2009 ident: 10.1016/j.earscirev.2023.104569_bb0280 – volume: 60 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0465 article-title: Global and regional trends and drivers of fire under climate change publication-title: Rev. Geophys. doi: 10.1029/2020RG000726 – year: 1967 ident: 10.1016/j.earscirev.2023.104569_bb0575 – volume: 25 start-page: 158 year: 2016 ident: 10.1016/j.earscirev.2023.104569_bb0790 article-title: Towards a new paradigm in fire severity research using dose-response experiments publication-title: Int. J. Wildland Fire doi: 10.1071/WF15130 – year: 2015 ident: 10.1016/j.earscirev.2023.104569_bb0385 – volume: 44 start-page: 50 year: 2009 ident: 10.1016/j.earscirev.2023.104569_bb0655 article-title: Physical modelling of fire spread in Grasslands publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2008.03.004 – volume: 7 start-page: 1419 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0675 article-title: Wildfire-dependent changes in soil microbiome diversity and function publication-title: Nat. Microbiol. doi: 10.1038/s41564-022-01203-y – volume: 31 issue: 8 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0425 article-title: Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests publication-title: Ecol. Appl. doi: 10.1002/eap.2431 – volume: 138 start-page: 199 year: 2004 ident: 10.1016/j.earscirev.2023.104569_bb0645 article-title: Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation publication-title: Combust. Flame doi: 10.1016/j.combustflame.2004.05.001 – year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0155 – start-page: 46 year: 2016 ident: 10.1016/j.earscirev.2023.104569_bb0480 article-title: Western Wildfires: A Fiery Future publication-title: Climate Central – volume: INT-115 year: 1972 ident: 10.1016/j.earscirev.2023.104569_bb0745 article-title: A mathematical model for predicting fire spread in wildland fuels publication-title: USDA Forest Service; Res Pap – volume: 6 start-page: 36 year: 2010 ident: 10.1016/j.earscirev.2023.104569_bb0560 article-title: Advancing investigation and physical modeling of first-order fire effects on soils publication-title: Fire ecol doi: 10.4996/fireecology.0601036 – volume: 126 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0080 article-title: Post-wildfire generation of debris-flow slurry by rill erosion on colluvial hillslopes publication-title: J. Geophys. Res. Earth Surf. doi: 10.1029/2021JF006108 – volume: 231–232 start-page: 195 year: 2000 ident: 10.1016/j.earscirev.2023.104569_bb0290 article-title: The role of fire and soil heating on water repellency in wildland environments: a review publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00194-3 – volume: 42 start-page: 229 year: 1985 ident: 10.1016/j.earscirev.2023.104569_bb0045 article-title: A model for fire spread in wildland fuels by radiation publication-title: Combust. Sci. Technol. doi: 10.1080/00102208508960381 – year: 1969 ident: 10.1016/j.earscirev.2023.104569_bb0095 – volume: 8 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.earscirev.2023.104569_bb0220 article-title: Prediction of fire spread in grasslands publication-title: Int. J. Wildland Fire doi: 10.1071/WF9980001 – volume: 17 start-page: 67 year: 1991 ident: 10.1016/j.earscirev.2023.104569_bb0895 article-title: Modelling fire spread through fuel beds publication-title: Prog. Energy Combust. Sci. doi: 10.1016/0360-1285(91)90003-6 – volume: 120 issue: 11 year: 2023 ident: 10.1016/j.earscirev.2023.104569_bb0285 article-title: Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western United States publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2208120120 – volume: 47 start-page: 219 issue: 2 year: 2001 ident: 10.1016/j.earscirev.2023.104569_bb0350 article-title: Design of regular landscape fuel treatment patterns for modifying fire growth and behavior publication-title: For. Sci. – volume: 6 start-page: 1827 issue: 3 year: 2014 ident: 10.1016/j.earscirev.2023.104569_bb0695 article-title: A new metric for quantifying burn severity: the relativized burn ratio publication-title: Remote Sens. doi: 10.3390/rs6031827 – volume: 28 start-page: 861 year: 2019 ident: 10.1016/j.earscirev.2023.104569_bb0255 article-title: Machine learning to predict final fire size at time of ignition publication-title: Int. J. Wildland Fire doi: 10.1071/WF19023 – volume: 237 start-page: 111866 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0700 article-title: A simplified analytical model for radiation dominated ignition of solid fuels exposed to multiple non-steady heat fluxes publication-title: Combust. Flame doi: 10.1016/j.combustflame.2021.111866 – year: 1966 ident: 10.1016/j.earscirev.2023.104569_bb0570 – volume: 20 start-page: 170 issue: 3 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0735 article-title: A global synthesis of fire effects on ecosystem services of forests and woodlands publication-title: Front. Ecol. Environ. doi: 10.1002/fee.2349 – year: 2010 ident: 10.1016/j.earscirev.2023.104569_bb0860 – volume: 45 start-page: 5553 year: 2018 ident: 10.1016/j.earscirev.2023.104569_bb0455 article-title: Soil structural degradation during low-severity burns publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL078053 – year: 2012 ident: 10.1016/j.earscirev.2023.104569_bb0475 – volume: 3 start-page: 31 issue: 1 year: 1993 ident: 10.1016/j.earscirev.2023.104569_bb0215 article-title: The influence of fuel weather and fire shape variables on fire spread in grasslands publication-title: Int. J. Wildland Fire doi: 10.1071/WF9930031 – volume: vol. 48 year: 1996 ident: 10.1016/j.earscirev.2023.104569_bb0390 article-title: Fire in Ecosystems of Boreal Eurasia: Ecological Impacts and Links to the Global System – volume: 5 start-page: 81 year: 1995 ident: 10.1016/j.earscirev.2023.104569_bb0060 article-title: Modeling ignition and burning rate of large woody natural fuels publication-title: Int. J. Wildland Fire doi: 10.1071/WF9950081 – volume: 5 start-page: 201 year: 1980 ident: 10.1016/j.earscirev.2023.104569_bb0685 article-title: McArthur’s fire danger meters expressed as equations publication-title: Aust. J. Ecol. doi: 10.1111/j.1442-9993.1980.tb01243.x – volume: 17 start-page: 205 year: 2008 ident: 10.1016/j.earscirev.2023.104569_bb0340 article-title: A variable property heat transfer model for predicting soil temperature profiles during simulated wildland fire conditions publication-title: Int. J. Wildland Fire doi: 10.1071/WF07002 – volume: 35 start-page: 875 year: 1996 ident: 10.1016/j.earscirev.2023.104569_bb0230 article-title: A coupled atmospheric-fire model: convective feedback on fire line dynamics publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1996)035<0875:ACAMCF>2.0.CO;2 – volume: 28 start-page: 478 issue: 4 year: 2020 ident: 10.1016/j.earscirev.2023.104569_bb0450 article-title: A review of machine learning applications in wildfire science and management publication-title: Environ. Rev. doi: 10.1139/er-2020-0019 – volume: 3 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0865 article-title: Global Trends of Forest Loss Due to Fire From 2001 to 2019 publication-title: Fron. Remote Sens. – volume: 26 start-page: 668 year: 2017 ident: 10.1016/j.earscirev.2023.104569_bb0460 article-title: Direct estimation of Byram’s fire intensity from infrared remote sensing imagery publication-title: Int. J. Wildland Fire doi: 10.1071/WF16178 – volume: 27 start-page: 770 year: 2018 ident: 10.1016/j.earscirev.2023.104569_bb0615 article-title: Clarifying the meaning of mantras in wildland fire behaviour modelling: reply to Cruz et al. (2017) publication-title: Int. J. Wildland Fire doi: 10.1071/WF18106 – volume: 9 start-page: 11958 year: 2019 ident: 10.1016/j.earscirev.2023.104569_bb0915 article-title: Analytical study on ignition time of PMMA exposed to time-decreasing thermal radiation using critical mass flux publication-title: Sci. Rep. doi: 10.1038/s41598-019-48411-x – volume: 31 issue: 3 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0800 article-title: Effects of postfire climate and seed availability on postfire conifer regeneration publication-title: Ecol. Appl. doi: 10.1002/eap.2280 – volume: 18 start-page: 116 year: 2009 ident: 10.1016/j.earscirev.2023.104569_bb0470 article-title: Fire intensity, fire severity and burn severity: a brief review and suggested usage publication-title: Int. J. Wildland Fire doi: 10.1071/WF07049 – volume: 11 start-page: 8779 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0510 article-title: Spatial and temporal pattern of wildfires in California from 2000 to 2019 publication-title: Sci. Rep. doi: 10.1038/s41598-021-88131-9 – volume: 113 start-page: D01301 year: 2008 ident: 10.1016/j.earscirev.2023.104569_bb0380 article-title: Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires publication-title: J. Geophys. Res. – volume: 216 start-page: 232 year: 2020 ident: 10.1016/j.earscirev.2023.104569_bb0400 article-title: Auto-ignition of thermally thick PMMA exposed to linearly decreasing thermal radiation publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.03.005 – volume: 74 start-page: 269 issue: 3–4 year: 2006 ident: 10.1016/j.earscirev.2023.104569_bb0770 article-title: Wildfire as a hydrological and geomorphological agent publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2005.10.006 – year: 1996 ident: 10.1016/j.earscirev.2023.104569_bb0065 article-title: Models for fire-driven heat and moisture transport in soils – volume: 156 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0485 article-title: Prediction of wildfire rate of spread in grasslands using machine learning methods publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2022.105507 – volume: 110 year: 2005 ident: 10.1016/j.earscirev.2023.104569_bb0520 article-title: Numerical simulations of grass fires using a coupled atmosphere–fire model: Basic fire behavior and dependence on wind speed publication-title: J. Geophys. Res. – volume: 13 start-page: 1050 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0780 article-title: Global wildfire susceptibility mapping based on machine learning models publication-title: Forests doi: 10.3390/f13071050 – year: 1998 ident: 10.1016/j.earscirev.2023.104569_bb0295 – volume: 601–602 start-page: 1119 year: 2017 ident: 10.1016/j.earscirev.2023.104569_bb0150 article-title: Burn effects on soil properties associated to heat transfer under contrasting moisture content publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.254 – volume: 44 start-page: 7310 year: 2017 ident: 10.1016/j.earscirev.2023.104569_bb0585 article-title: Debris flow initiation by runoff in a recently burned basin: Is grain-by-grain sediment bulking or en masse failure to blame? publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074243 – year: 1967 ident: 10.1016/j.earscirev.2023.104569_bb0880 – year: 1997 ident: 10.1016/j.earscirev.2023.104569_bb0410 – volume: 16 start-page: 9 year: 1971 ident: 10.1016/j.earscirev.2023.104569_bb0375 article-title: Fire spread through porous fuels from the conservation of energy publication-title: Combust Flame doi: 10.1016/S0010-2180(71)80005-6 – volume: 371 start-page: 20150345 issue: 1696 year: 2016 ident: 10.1016/j.earscirev.2023.104569_bb0305 article-title: Global trends in wildfire and its impacts: Perceptions versus realities in a changing world publication-title: Philos. Trans. Roy. Soc. B: Biol. Sci. doi: 10.1098/rstb.2015.0345 – volume: 91 start-page: 864 year: 2017 ident: 10.1016/j.earscirev.2023.104569_bb0845 article-title: Investigation of firebrand generation from an experimental fire: development of a reliable data collection methodology publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2017.04.002 – volume: 47 start-page: 437 year: 2011 ident: 10.1016/j.earscirev.2023.104569_bb0640 article-title: Physical phenomena and length scales governing the behavior of wildfires: a case for physical modelling publication-title: Fire. Technol doi: 10.1007/s10694-010-0160-2 – volume: 362 start-page: 335 year: 2013 ident: 10.1016/j.earscirev.2023.104569_bb0025 article-title: Degradation of moist soil aggregates by rapid temperature rise under low intensity fire publication-title: Plant Soil doi: 10.1007/s11104-012-1408-z – volume: 27 start-page: 776 issue: 11 year: 2018 ident: 10.1016/j.earscirev.2023.104569_bb0270 article-title: A response to ‘Clarifying the meaning of mantras in wildland fire behaviour modelling: a reply to Cruz et al. (2017)’ publication-title: Int. J. Wildland Fire doi: 10.1071/WF18161 – volume: 45 start-page: 101 year: 1986 ident: 10.1016/j.earscirev.2023.104569_bb0050 article-title: Wildland fire spread by radiation, a model including fuel cooling by convection publication-title: Combust. Sci. Technol. doi: 10.1080/00102208608923844 – volume: 143 start-page: 1 year: 2005 ident: 10.1016/j.earscirev.2023.104569_bb0210 article-title: Effects of fire on properties of forest soils: a review publication-title: Oecologia doi: 10.1007/s00442-004-1788-8 – volume: 5 start-page: 1318 issue: 1 year: 2023 ident: 10.1016/j.earscirev.2023.104569_bb0900 article-title: The Marshall Fire: Scientific and policy needs for water system disaster response publication-title: AWWA Water Sci. doi: 10.1002/aws2.1318 – volume: 21 start-page: 396 issue: 4 year: 2012 ident: 10.1016/j.earscirev.2023.104569_bb0490 article-title: Modelling firebrand transport in wildfires using HIGRAD/FIRETEC publication-title: Int. J. Wildland Fire doi: 10.1071/WF09146 – year: 2018 ident: 10.1016/j.earscirev.2023.104569_bb0110 – ident: 10.1016/j.earscirev.2023.104569_bb9000 – volume: 76 start-page: 100801 year: 2020 ident: 10.1016/j.earscirev.2023.104569_bb0545 article-title: Role of firebrand combustion in large outdoor fire spread publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2019.100801 – volume: 119 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0910 article-title: Growing impact of wildfire on western US water supply publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.2114069119 – volume: 23 start-page: 21 year: 2014 ident: 10.1016/j.earscirev.2023.104569_bb0105 article-title: Current status and future needs of the BehavePlus Fire Modeling System publication-title: Int. J. Wildland Fire doi: 10.1071/WF12167 – volume: 627 start-page: 622 year: 2018 ident: 10.1016/j.earscirev.2023.104569_bb0625 article-title: Inferring changes in soil organic matter in post-wildfire soil burn severity levels in a temperate climate publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.189 – year: 1966 ident: 10.1016/j.earscirev.2023.104569_bb0750 – volume: 5 start-page: 163 year: 1964 ident: 10.1016/j.earscirev.2023.104569_bb0335 article-title: Fire in the forest publication-title: Fire Res Abs Rev. – volume: 108 start-page: 2047 year: 2020 ident: 10.1016/j.earscirev.2023.104569_bb0590 article-title: Fire as a fundamental ecological process: research advances and frontiers publication-title: J. Ecol. doi: 10.1111/1365-2745.13403 – volume: 52 start-page: 16 year: 2013 ident: 10.1016/j.earscirev.2023.104569_bb0250 article-title: WRF-Fire: coupled weather–wildland fire modeling with the Weather Research and Forecasting Model publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-12-023.1 – volume: 3 start-page: 31 year: 2017 ident: 10.1016/j.earscirev.2023.104569_bb0130 article-title: Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires publication-title: Soil doi: 10.5194/soil-3-31-2017 – volume: 25 start-page: 685 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0555 article-title: The challenges of an in situ validation of a nonequilibrium model of soil heat and moisture dynamics during fires publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-685-2021 – volume: 13 start-page: 43 year: 2017 ident: 10.1016/j.earscirev.2023.104569_bb0905 article-title: Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2017.07.006 – start-page: 61 year: 1959 ident: 10.1016/j.earscirev.2023.104569_bb0195 article-title: Combustion of forest fuels – volume: 63 start-page: 458 year: 1962 ident: 10.1016/j.earscirev.2023.104569_bb0875 article-title: On the value of a numerical concept of fire intensity publication-title: Pulp and Paper Magazine of Canada, Woodland Review – volume: 3 start-page: 112 year: 2006 ident: 10.1016/j.earscirev.2023.104569_bb0755 article-title: Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio publication-title: Geosci. Remote Sens. Letters, IEEE. doi: 10.1109/LGRS.2005.858485 – volume: 16 start-page: 5229 year: 2016 ident: 10.1016/j.earscirev.2023.104569_bb0890 article-title: Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-5229-2016 – volume: 10 start-page: 50 year: 1957 ident: 10.1016/j.earscirev.2023.104569_bb0630 article-title: Conditions for the spread of crown fire in pine forest publication-title: Lesnoe Khozydystvo – volume: 156 start-page: 1503 issue: 8 year: 2009 ident: 10.1016/j.earscirev.2023.104569_bb0505 article-title: A model for the oxidative pyrolysis of wood publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.04.001 – volume: 22 start-page: 148 year: 2013 ident: 10.1016/j.earscirev.2023.104569_bb0020 article-title: Field validation of a free-agent cellular automata model of fire spread with fire–atmosphere coupling publication-title: Int. J. Wildland Fire doi: 10.1071/WF11055 – volume: 60 start-page: 309 year: 1996 ident: 10.1016/j.earscirev.2023.104569_bb0870 article-title: Forest fire effects on soil phyllosilicates in California publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1996.03615995006000010047x – volume: 67 start-page: 230 issue: 4 year: 1996 ident: 10.1016/j.earscirev.2023.104569_bb0260 article-title: A real-time computer application for the prediction of fire spread across the Australian landscape publication-title: Simulation doi: 10.1177/003754979606700402 – volume: 122 start-page: 51 issue: 1–2 year: 1999 ident: 10.1016/j.earscirev.2023.104569_bb0665 article-title: Fire effects on belowground sustainability: a review and synthesis publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(99)00032-8 – volume: 75 start-page: 1133 year: 2011 ident: 10.1016/j.earscirev.2023.104569_bb0810 article-title: How rock fragments and moisture affect soil temperatures during fire publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0322 – year: 2005 ident: 10.1016/j.earscirev.2023.104569_bb0670 – volume: 234 start-page: S114 year: 2006 ident: 10.1016/j.earscirev.2023.104569_bb0650 article-title: FIRESTAR: A Physically based model to study wildfire behaviour publication-title: Forest Ecol. Manag. doi: 10.1016/j.foreco.2006.08.155 – volume: 13 start-page: 49 year: 2004 ident: 10.1016/j.earscirev.2023.104569_bb0235 article-title: Description of a coupled atmosphere-fire model publication-title: Int. J. Wildland Fire doi: 10.1071/WF03043 – volume: 19 start-page: 153 year: 2004 ident: 10.1016/j.earscirev.2023.104569_bb0315 article-title: Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA publication-title: Landsc. Ecol. doi: 10.1023/B:LAND.0000021714.97148.ac – volume: 59 start-page: 13 issue: 2 year: 1999 ident: 10.1016/j.earscirev.2023.104569_bb0360 article-title: FARSITE: Fire Area Simulator—a program for fire growth simulation publication-title: Fire Management Notes – volume: 868 start-page: 161714 year: 2023 ident: 10.1016/j.earscirev.2023.104569_bb0740 article-title: Fire-induced geochemical changes in soil: implication for the element cycling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.161714 – volume: 8 start-page: 273 year: 1970 ident: 10.1016/j.earscirev.2023.104569_bb0765 article-title: Soil temperature under grass fires publication-title: Aus. J. Soil Res. doi: 10.1071/SR9700273 – volume: 113 start-page: 11770 year: 2016 ident: 10.1016/j.earscirev.2023.104569_bb0005 article-title: Impact of anthropogenic climate change on wildfire across western US forests publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.1607171113 – year: 1965 ident: 10.1016/j.earscirev.2023.104569_bb0440 article-title: The modeling of fire spread through a fuel bed – volume: 13 start-page: 391 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0430 article-title: Combustion of Above ground wood from live trees in megafires, CA, USA publication-title: Forests doi: 10.3390/f13030391 – volume: 71 start-page: 68 year: 2007 ident: 10.1016/j.earscirev.2023.104569_bb0565 article-title: Post-fire hydrological and erosional responses of a Mediterranean landscpe: seven years of catchment-scale dynamics publication-title: Catena doi: 10.1016/j.catena.2006.10.006 – volume: 87 start-page: 1 year: 2015 ident: 10.1016/j.earscirev.2023.104569_bb0435 article-title: Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.04.005 – volume: 14 start-page: 49 year: 2005 ident: 10.1016/j.earscirev.2023.104569_bb0245 article-title: Simulation of the Big Elk Fire using coupled atmosphere-fire modeling publication-title: Int. J. Wildland Fire doi: 10.1071/WF04047 – volume: 32 start-page: 534 issue: 5 year: 1996 ident: 10.1016/j.earscirev.2023.104569_bb0055 article-title: Iterative solution of the radiation transport equations governing spread of fire in wildland fuel publication-title: Combust. Explos. Shock Waves doi: 10.1007/BF01998575 – volume: 10 start-page: 137 year: 2001 ident: 10.1016/j.earscirev.2023.104569_bb0190 article-title: Flame residence times and rates of weight loss of eucalypt. forest fuel particles publication-title: Int. J. Wildland Fire doi: 10.1071/WF01005 – volume: 12 start-page: 89 issue: 2 year: 1987 ident: 10.1016/j.earscirev.2023.104569_bb0660 article-title: Geometric view factors for thermal radiation hazard assessment publication-title: Fire Saf. J. doi: 10.1016/0379-7112(87)90024-5 – volume: 31 start-page: 3682 year: 2017 ident: 10.1016/j.earscirev.2023.104569_bb0320 article-title: Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment publication-title: Hydrol. Process. doi: 10.1002/hyp.11288 – volume: 22 start-page: 222 issue: 2 year: 1998 ident: 10.1016/j.earscirev.2023.104569_bib921 article-title: Current approaches to modelling the spread of wildland fire: a review publication-title: Progress in Physical Geography: Earth and Environment doi: 10.1177/030913339802200204 – year: 2005 ident: 10.1016/j.earscirev.2023.104569_bb0595 article-title: Numerical simulations of grassland fire behaviour from the LANL-FIRETEC and NIST-WFDS models – volume: 75 start-page: 2283 year: 2011 ident: 10.1016/j.earscirev.2023.104569_bb0805 article-title: Natural and fire-induced soil water repellency in a Portuguese shrubland publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0046 – start-page: 1 year: 2019 ident: 10.1016/j.earscirev.2023.104569_bb0090 article-title: Fireline intensity – volume: 11 start-page: 233 year: 2002 ident: 10.1016/j.earscirev.2023.104569_bb0525 article-title: Studying wildfire behavior using FIRETEC, Int. J publication-title: Wildland Fire doi: 10.1071/WF02007 – volume: 16 start-page: 1 year: 2007 ident: 10.1016/j.earscirev.2023.104569_bb0600 article-title: A physics-based approach to modeling grassland fires publication-title: Int. J. Wildland Fire doi: 10.1071/WF06002 – year: 2016 ident: 10.1016/j.earscirev.2023.104569_bb0620 – volume: 37 start-page: 2383 issue: 12 year: 2007 ident: 10.1016/j.earscirev.2023.104569_bb0690 article-title: An overview of the Fuel characteristic classification system — quantifying, classifying, and creating fuelbeds for resource planning publication-title: Can. J. For. Res. doi: 10.1139/X07-077 – volume: 7 start-page: 23 year: 1977 ident: 10.1016/j.earscirev.2023.104569_bb0885 article-title: Conditions for the start of crown fire publication-title: Can. J. For. Res. doi: 10.1139/x77-004 – volume: 17 issue: 5 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0015 article-title: Winter and spring climate explains a large portion of interannual variability and trend in western U.S. summer fire burned area publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac6886 – volume: 5 start-page: 63 issue: 2 year: 1995 ident: 10.1016/j.earscirev.2023.104569_bb0730 article-title: A general mathematical framework for modeling two-dimensional wildland fire spread publication-title: Int. J. Wildland Fire doi: 10.1071/WF9950063 – volume: 31 start-page: 28 issue: 8 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0720 article-title: Adapting western North American forests to climate change and wildfires: 10 common questions publication-title: Ecol. Appl. doi: 10.1002/eap.2433 – volume: 125 start-page: 104616 year: 2020 ident: 10.1016/j.earscirev.2023.104569_bb0530 article-title: QUIC-fire: A fast-running simulation tool for prescribed fire planning publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.104616 – volume: 21 start-page: 609 year: 2012 ident: 10.1016/j.earscirev.2023.104569_bb0070 article-title: A mathematical model for predicting the maximum potential spotting distance from a crown fire publication-title: Int. J. Wildland Fire doi: 10.1071/WF11020 – start-page: 49 year: 2010 ident: 10.1016/j.earscirev.2023.104569_bb0705 – volume: 43 start-page: 155 year: 1981 ident: 10.1016/j.earscirev.2023.104569_bb0040 article-title: A model for the wind-blown flame from a line fire publication-title: Combust. Flame doi: 10.1016/0010-2180(81)90014-6 – volume: 49 start-page: 565 issue: 6 year: 2019 ident: 10.1016/j.earscirev.2023.104569_bb0160 article-title: A review of a new generation of wildfire–atmosphere modeling publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2018-0138 – volume: 135 start-page: 350 year: 2015 ident: 10.1016/j.earscirev.2023.104569_bb0185 article-title: The effective viscosity of slurries laden with vegetative ash publication-title: Catena doi: 10.1016/j.catena.2014.06.008 – volume: 116 start-page: F03006 year: 2011 ident: 10.1016/j.earscirev.2023.104569_bb0495 article-title: A model for fire-induced sediment yield by dry ravel in steep landscapes publication-title: J. Geophys. Res. – volume: 60 start-page: 349 year: 1982 ident: 10.1016/j.earscirev.2023.104569_bb0085 article-title: Calculating and interpreting forest fire intensities publication-title: Can. J. Bot. doi: 10.1139/b82-048 – start-page: 47 year: 1998 ident: 10.1016/j.earscirev.2023.104569_bb0345 – volume: 20 start-page: 919 year: 1990 ident: 10.1016/j.earscirev.2023.104569_bib922 article-title: A method for predicting the depth of lethal heat penetration into mineral soils exposed to fires of various intensities publication-title: Canadian Journal of Forest Research doi: 10.1139/x90-124 – volume: 130 start-page: 103 year: 2014 ident: 10.1016/j.earscirev.2023.104569_bb0170 article-title: Wildland fire ash: production, composition and eco-hydro-geomorphic effects publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2013.12.007 – year: 1959 ident: 10.1016/j.earscirev.2023.104569_bb0205 – volume: 104 start-page: 1 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0330 article-title: Fire-spotting generated fires. Part II: The role of flame geometry and slope publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.11.010 – volume: 151 year: 2020 ident: 10.1016/j.earscirev.2023.104569_bb0395 article-title: Ignition of polymers under exponential heat flux considering both surface and in-depth absorptions publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2019.106242 – volume: 48 year: 2012 ident: 10.1016/j.earscirev.2023.104569_bb0550 article-title: Modeling soil heating and moisture transport under extreme conditions: forest fires and slash pile burns, Water Resour publication-title: Res. – volume: 11 year: 2023 ident: 10.1016/j.earscirev.2023.104569_bb0325 article-title: Modeling post-wildfire hydrologic response: Review and future directions for applications of physically based distributed simulation. Earth's publication-title: Future – volume: 6 year: 2023 ident: 10.1016/j.earscirev.2023.104569_bb0785 article-title: Assessment of the effects of the 2021 Caldor megafire on soil physical properties, eastern Sierra Nevada, USA publication-title: Fire doi: 10.3390/fire6020066 – volume: 10 start-page: 1021 year: 1965 ident: 10.1016/j.earscirev.2023.104569_bb0840 article-title: On the flight paths and lifetimes of burning particles of wood publication-title: Symp. Combust. doi: 10.1016/S0082-0784(65)80244-2 – volume: 30 start-page: 855 issue: 6 year: 2004 ident: 10.1016/j.earscirev.2023.104569_bb0405 article-title: The effect of fire on soil organic matter—a review publication-title: Environ. Int. doi: 10.1016/j.envint.2004.02.003 – year: 2006 ident: 10.1016/j.earscirev.2023.104569_bb0225 article-title: Using remote sensing to map and monitor fire damage in forest ecosystems – volume: 34 start-page: 1182 year: 2020 ident: 10.1016/j.earscirev.2023.104569_bb0680 article-title: Long-term hydrologic recovery after wildfire and post-fire forest management in the interior Pacific Northwest publication-title: Hydrol. Process. doi: 10.1002/hyp.13665 – volume: 137 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0120 article-title: Combining wildfire behaviour simulations and network analysis to support wildfire management: A Mediterranean landscape case study publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2022.108726 – volume: 18 start-page: 23 year: 2022 ident: 10.1016/j.earscirev.2023.104569_bb0715 article-title: Modeling of fire spread in sagebrush steppe using FARSITE: an approach to improving input data and simulation accuracy publication-title: Fire Ecol. doi: 10.1186/s42408-022-00147-2 – volume: 256 start-page: 1239 issue: 6 year: 2008 ident: 10.1016/j.earscirev.2023.104569_bb0135 article-title: Fire models and methods to map fuel types: the role of remote sensing publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2008.06.048 – volume: 19 start-page: 202 year: 2010 ident: 10.1016/j.earscirev.2023.104569_bb0240 article-title: A sub-grid, mixture-fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results publication-title: Int. J. Wildland Fire doi: 10.1071/WF07116 – volume: 17 start-page: 78 year: 1981 ident: 10.1016/j.earscirev.2023.104569_bb0415 article-title: Heat and mass transport and the propagation of burning particles in the surface layer of the atmosphere during upstream forest fires publication-title: Fizika Gorenia i Vzryva – volume: 41 start-page: 349 year: 2006 ident: 10.1016/j.earscirev.2023.104569_bb0115 article-title: On the trajectories of embers initially elevated or lofted by small scale ground fire plumes in high winds publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2006.01.005 – ident: 10.1016/j.earscirev.2023.104569_bb0835 doi: 10.1071/WF07072 – volume: 7 start-page: 650580 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0850 article-title: Coupled assessment of fire behavior and firebrand dynamics publication-title: Front. Mech. Eng. doi: 10.3389/fmech.2021.650580 – volume: 18 start-page: 250 year: 2009 ident: 10.1016/j.earscirev.2023.104569_bb0725 article-title: Spatial fuel data products of the LANDFIRE Project publication-title: Int. J. Wildland Fire doi: 10.1071/WF08086 – volume: 498 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0310 article-title: Forest connectivity percolation thresholds for fire spread under different weather conditions publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2021.119558 – volume: 27 start-page: 377 year: 2018 ident: 10.1016/j.earscirev.2023.104569_bb0010 article-title: Human-related ignitions concurrent with high winds promote large wildfires across the USA publication-title: Int. J. Wildland Fire doi: 10.1071/WF17149 – volume: 62 start-page: 289 year: 2013 ident: 10.1016/j.earscirev.2023.104569_bb0500 article-title: Wildland fire modeling with an Eulerian level set method and automated calibration publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2013.08.014 – volume: 168 start-page: 113 year: 2016 ident: 10.1016/j.earscirev.2023.104569_bb0445 article-title: Experimental and Numerical Studies Characterizing the Burning Dynamics of Wildland Fuels publication-title: Combust. Flame doi: 10.1016/j.combustflame.2016.04.004 – volume: 16 start-page: 493 issue: 4 year: 2007 ident: 10.1016/j.earscirev.2023.104569_bb0265 article-title: Separating combustion from pyrolysis in HIGRAD/FIRETEC publication-title: Int. J. Wildland Fire doi: 10.1071/WF06074 – volume: 2 start-page: 351 year: 2016 ident: 10.1016/j.earscirev.2023.104569_bb0125 article-title: Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires publication-title: Soil doi: 10.5194/soil-2-351-2016 – volume: 72 start-page: 93 issue: 3 year: 1946 ident: 10.1016/j.earscirev.2023.104569_bb0370 article-title: Analysis of fire spread in light forest fuels publication-title: J. Agric. Res. – volume: 18 start-page: 349 issue: 4 year: 2009 ident: 10.1016/j.earscirev.2023.104569_bb0820 article-title: Wildland surface fire spread modelling, 1990–2007. 1: physical and quasi-physical models publication-title: Int. J. Wildland Fire doi: 10.1071/WF06143 – year: 1982 ident: 10.1016/j.earscirev.2023.104569_bb0100 – volume: 26 start-page: 973 year: 2017 ident: 10.1016/j.earscirev.2023.104569_bb0275 article-title: Mantras of wildland fire behaviour modelling: facts or fallacies? publication-title: Int. J. Wildland Fire doi: 10.1071/WF17097 – volume: INT-56 year: 1979 ident: 10.1016/j.earscirev.2023.104569_bb0035 article-title: Spot fire distance from burning trees: a predictive model publication-title: USDA Forest Service; Res Pap – year: 1997 ident: 10.1016/j.earscirev.2023.104569_bb0515 – volume: 127 start-page: 107735 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0920 article-title: Deep neural networks for global wildfire susceptibility modelling publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107735 – volume: 25 start-page: 229 year: 2016 ident: 10.1016/j.earscirev.2023.104569_bb0180 article-title: A comparison of level set and marker methods for the simulation of wildland fire front propagation publication-title: Int. J. Wildland Fire doi: 10.1071/WF13178 – volume: 126 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0855 article-title: Postwildfire soil-hydraulic recovery and the persistence of debris flow hazards publication-title: J. Geophys. Res. Earth Surf. doi: 10.1029/2021JF006091 – volume: 18 start-page: 96 year: 2009 ident: 10.1016/j.earscirev.2023.104569_bb0635 article-title: Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States publication-title: Int. J. Wildland Fire doi: 10.1071/WF07162 – volume: 16 start-page: 267 year: 2012 ident: 10.1016/j.earscirev.2023.104569_bb0815 article-title: Hydrological response of a small catchment burned by experimental fire publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-267-2012 – volume: 6 start-page: 296 year: 2019 ident: 10.1016/j.earscirev.2023.104569_bb0140 article-title: A global wildfire dataset for the analysis of fire regimes and fire behaviour publication-title: Scientific Data doi: 10.1038/s41597-019-0312-2 – volume: 30 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0145 article-title: Effects of fuel spatial distribution on wildland fire behaviour publication-title: Int. J. Wildland Fire doi: 10.1071/WF20096 – volume: 4 start-page: 591 year: 2011 ident: 10.1016/j.earscirev.2023.104569_bb0540 article-title: Coupled atmosphere–wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci publication-title: Model Dev. doi: 10.5194/gmd-4-591-2011 – volume: 2 start-page: 107 year: 2021 ident: 10.1016/j.earscirev.2023.104569_bb0175 article-title: A framework for quantifying hydrologic effects of soil structure across scales publication-title: Commun. Earth Environ. doi: 10.1038/s43247-021-00180-0 – year: 1976 ident: 10.1016/j.earscirev.2023.104569_bb0030 – volume: 159 start-page: 363 issue: 6 year: 1995 ident: 10.1016/j.earscirev.2023.104569_bb0200 article-title: Soil temperature and water content beneath a surface fire publication-title: Soil Sci. doi: 10.1097/00010694-199506000-00001 – volume: 56 year: 2020 ident: 10.1016/j.earscirev.2023.104569_bb0775 article-title: Quantifying the effect of subcritical water repellency on sorptivity: a physically based model publication-title: Water Resour. Res. doi: 10.1029/2020WR027942 – volume: 18 start-page: 369 issue: 4 year: 2009 ident: 10.1016/j.earscirev.2023.104569_bb0825 article-title: Wildland surface fire spread modelling, 1990–2007. 2: empirical and quasi-empirical models publication-title: Int. J. Wildland Fire doi: 10.1071/WF06142 |
| SSID | ssj0001097 |
| Score | 2.5568767 |
| SecondaryResourceType | review_article |
| Snippet | Wildfires are part of the natural cycle of life in vegetated regions. The apparent increase in size and frequency of recent years reflects land management... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104569 |
| SubjectTerms | Ecology and hydrology of fire-affected landscapes fuels humans hydrology land cover land management landscapes mathematical models Physics of wildfire behavior soil weather Wildfire effects on soil Wildfire models wildfires |
| Title | Review of wildfire modeling considering effects on land surfaces |
| URI | https://dx.doi.org/10.1016/j.earscirev.2023.104569 https://www.proquest.com/docview/2942099202 |
| Volume | 245 |
| WOSCitedRecordID | wos001085236000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1872-6828 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001097 issn: 0012-8252 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA66q-CLeMX1RgTxZYi0ySRtfXJZZr2wjOKOMG-huRRdpR1nprL-e0-ay-zIyq4PQmlLaTLT86XnnOackw-h55lS2mjOCWe2JmOqclLzXBGmwL6X1jQ5rQeyiWI6Lefz6mNg21wNdAJF25anp9Xiv0IN1wBsVzr7D3CnTuECnAPosAfYYX8p4D-lYhRwg00DKs3T3fjqWk_P6c5TJkfrJi3NaNUvG5eftTVXD_1_IbH0J6xcmuZll7FGPQ2CHnz5b-Sg8znKE7OpMxuW1YrFQX3q43gIRgxUTiNH8nh2EoJu0tmSYs1BsVK-pVjpmI8WLojMRUXOVdd-5uDkJSANj-JId1znocnGQsWo_PSDPPx8dCRnk_nsxeIHcdxhLsYeiFSuol1a8Ap02-7-u8n8fbLILsruLbL_k1t5fuf-9t-8lD_s9eCEzG6hm-HrAe971G-jK7a9g66_GdiZf91Frz32uGtwxB5H7PEZ7HHAHnctdtjjiP09dHw4mR28JYEig9SsyNeEK6E4bzKuhQF3R2Rg96gVlsNblolaUzjCG0etKmuTC3DXSyYsM7lt4OnZfbTTdq19gHCtS9aISnMmzNjSQsFWc1HoqmEKvN49JKJApA6rxzsSk-8ypgmeyCRJ6SQpvST3UJYaLvwCKhc3eRUlLsMI9_6dhHFzceNnESMJmtKFv-rWdv1K0mrs6sTh3oeXuOcRurEZ6I_RznrZ2yfomv65_rpaPg0j7Ddps41I |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+wildfire+modeling+considering+effects+on+land+surfaces&rft.jtitle=Earth-science+reviews&rft.au=Or%2C+Dani&rft.au=Furtak-Cole%2C+Eden&rft.au=Berli%2C+Markus&rft.au=Shillito%2C+Rose&rft.date=2023-10-01&rft.issn=0012-8252&rft.volume=245+p.104569-&rft_id=info:doi/10.1016%2Fj.earscirev.2023.104569&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-8252&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-8252&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-8252&client=summon |