Review of wildfire modeling considering effects on land surfaces

Wildfires are part of the natural cycle of life in vegetated regions. The apparent increase in size and frequency of recent years reflects land management legacy, expansion of human activity, and changes in climatic conditions. The primary objectives of the review are: (1) to introduce hydrologists,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Earth-science reviews Ročník 245; s. 104569
Hlavní autori: Or, Dani, Furtak-Cole, Eden, Berli, Markus, Shillito, Rose, Ebrahimian, Hamed, Vahdat-Aboueshagh, Hamid, McKenna, Sean A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2023
Predmet:
ISSN:0012-8252, 1872-6828
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Wildfires are part of the natural cycle of life in vegetated regions. The apparent increase in size and frequency of recent years reflects land management legacy, expansion of human activity, and changes in climatic conditions. The primary objectives of the review are: (1) to introduce hydrologists, soil scientists and ecologists to principles and advances in modeling of wildfire dynamics and rates of spread to improve understanding of capabilities and limitations offered by modern wildfire models; (2) to highlight persistent omissions of wildfire effects on soil processes and how soil and hydrology communities can harness wildfire models to bridge these gaps and provide the necessary boundary conditions for quantifying thermal alterations of soils. The review aims to enhance cross-disciplinary understanding critical for advancing quantitative representation of wildfire impacts on soil and hydrologic processes and formulating boundary conditions for subsequent hydro-ecological recovery of fire-affected landscapes. The review presents key elements used to represent wildfire characteristics, processes and metrics considered in wildfire science. We then provide an overview of wildfire modeling approaches and models used for research and for prescribed burning planning that include wildfire behavior models, semi-physical and mechanistic large eddy simulation models. We highlight key features and assumptions, and common applications of each class of models and their inputs (spatially resolved databases of fuel maps, digital elevation, land cover, and weather). The second section of the review proposes a path towards building a systematic framework for quantifying soil, ecological and hydrological wildfire-induced alterations to parameterize post-fire hydrologic responses and predict landscape recovery rates across seasonal to climatic time scales.
AbstractList Wildfires are part of the natural cycle of life in vegetated regions. The apparent increase in size and frequency of recent years reflects land management legacy, expansion of human activity, and changes in climatic conditions. The primary objectives of the review are: (1) to introduce hydrologists, soil scientists and ecologists to principles and advances in modeling of wildfire dynamics and rates of spread to improve understanding of capabilities and limitations offered by modern wildfire models; (2) to highlight persistent omissions of wildfire effects on soil processes and how soil and hydrology communities can harness wildfire models to bridge these gaps and provide the necessary boundary conditions for quantifying thermal alterations of soils. The review aims to enhance cross-disciplinary understanding critical for advancing quantitative representation of wildfire impacts on soil and hydrologic processes and formulating boundary conditions for subsequent hydro-ecological recovery of fire-affected landscapes. The review presents key elements used to represent wildfire characteristics, processes and metrics considered in wildfire science. We then provide an overview of wildfire modeling approaches and models used for research and for prescribed burning planning that include wildfire behavior models, semi-physical and mechanistic large eddy simulation models. We highlight key features and assumptions, and common applications of each class of models and their inputs (spatially resolved databases of fuel maps, digital elevation, land cover, and weather). The second section of the review proposes a path towards building a systematic framework for quantifying soil, ecological and hydrological wildfire-induced alterations to parameterize post-fire hydrologic responses and predict landscape recovery rates across seasonal to climatic time scales.
ArticleNumber 104569
Author Shillito, Rose
Vahdat-Aboueshagh, Hamid
Or, Dani
Berli, Markus
McKenna, Sean A.
Furtak-Cole, Eden
Ebrahimian, Hamed
Author_xml – sequence: 1
  givenname: Dani
  surname: Or
  fullname: Or, Dani
  email: dani.or@env.ethz.ch
  organization: Desert Research Institute, Division of Hydrologic Sciences, Las Vegas and Reno, NV, USA
– sequence: 2
  givenname: Eden
  surname: Furtak-Cole
  fullname: Furtak-Cole, Eden
  organization: Desert Research Institute, Division of Atmospheric Sciences, Reno, NV, USA
– sequence: 3
  givenname: Markus
  surname: Berli
  fullname: Berli, Markus
  organization: Desert Research Institute, Division of Hydrologic Sciences, Las Vegas and Reno, NV, USA
– sequence: 4
  givenname: Rose
  surname: Shillito
  fullname: Shillito, Rose
  organization: USACE Research and Development Center, Coastal Hydraulics Lab, Vicksburg, MS, USA
– sequence: 5
  givenname: Hamed
  surname: Ebrahimian
  fullname: Ebrahimian, Hamed
  organization: University of Nevada, Civil and Environmental Engineering, Reno, NV, USA
– sequence: 6
  givenname: Hamid
  surname: Vahdat-Aboueshagh
  fullname: Vahdat-Aboueshagh, Hamid
  organization: Desert Research Institute, Division of Hydrologic Sciences, Las Vegas and Reno, NV, USA
– sequence: 7
  givenname: Sean A.
  surname: McKenna
  fullname: McKenna, Sean A.
  organization: Desert Research Institute, Division of Hydrologic Sciences, Las Vegas and Reno, NV, USA
BookMark eNqNkM1KAzEURoNUsK0-g7N0MzXJNJnMQrAU_6AgqPuQJjeSMk1qMm3x7c0w4sKNrm4SvvOReyZo5IMHhC4JnhFM-PVmBiom7SIcZhTTKr_OGW9O0JiImpZcUDFCY4wJLQVl9AxNUtrgfMdNPUa3L3BwcCyCLY6uNTbXFNtgoHX-vdDBJ2cg9mewFnSXiuCLVnlTpH20SkM6R6dWtQkuvucUvd7fvS0fy9Xzw9NysSpVVZOuZGu-ZsxiprnRABzPeU2BAwNjMVea5inAUFgLZQhnpBEVh8oQsHnJaoquhtZdDB97SJ3cuqShzV-BsE-SNnOKm6bff4rqIapjSCmClbvotip-SoJlb0xu5I8x2RNyMJbJm1-kdp3qXPBdVK79B78YeMgestUocwi8BpOjupMmuD87vgBNrpBv
CitedBy_id crossref_primary_10_1016_j_agrformet_2025_110609
crossref_primary_10_1016_j_ress_2024_110000
crossref_primary_10_1016_j_oneear_2025_101284
crossref_primary_10_3390_fire8040139
crossref_primary_10_1063_5_0268416
crossref_primary_10_1103_PhysRevFluids_10_053801
crossref_primary_10_1016_j_envsoft_2025_106552
crossref_primary_10_1038_s41598_024_78219_3
crossref_primary_10_1080_19475705_2025_2514702
crossref_primary_10_1016_j_jocs_2025_102640
crossref_primary_10_1109_TRO_2025_3559420
crossref_primary_10_3390_fire7120485
crossref_primary_10_1007_s11676_024_01783_x
crossref_primary_10_1016_j_dam_2025_07_028
crossref_primary_10_3390_fire8090349
crossref_primary_10_1016_j_envpol_2024_125470
crossref_primary_10_1002_fam_3275
crossref_primary_10_1109_TNSE_2025_3559681
crossref_primary_10_3390_f15050788
crossref_primary_10_3390_f15030563
crossref_primary_10_1080_10095020_2024_2429376
crossref_primary_10_1016_j_ecolind_2025_113694
crossref_primary_10_1016_j_ress_2023_109895
crossref_primary_10_3390_rs16152842
crossref_primary_10_1016_j_jnlssr_2025_100252
Cites_doi 10.1071/WF06144
10.1016/j.jhydrol.2020.125364
10.1111/gcb.14716
10.1038/s41586-021-04325-1
10.1073/pnas.1504498112
10.1016/j.foreco.2018.10.032
10.1016/j.scitotenv.2017.09.144
10.1029/2020RG000726
10.1071/WF15130
10.1016/j.firesaf.2008.03.004
10.1038/s41564-022-01203-y
10.1002/eap.2431
10.1016/j.combustflame.2004.05.001
10.4996/fireecology.0601036
10.1029/2021JF006108
10.1016/S0022-1694(00)00194-3
10.1080/00102208508960381
10.1071/WF9980001
10.1016/0360-1285(91)90003-6
10.1073/pnas.2208120120
10.3390/rs6031827
10.1071/WF19023
10.1016/j.combustflame.2021.111866
10.1002/fee.2349
10.1029/2018GL078053
10.1071/WF9930031
10.1071/WF9950081
10.1111/j.1442-9993.1980.tb01243.x
10.1071/WF07002
10.1175/1520-0450(1996)035<0875:ACAMCF>2.0.CO;2
10.1139/er-2020-0019
10.1071/WF16178
10.1071/WF18106
10.1038/s41598-019-48411-x
10.1002/eap.2280
10.1071/WF07049
10.1038/s41598-021-88131-9
10.1016/j.combustflame.2020.03.005
10.1016/j.earscirev.2005.10.006
10.1016/j.envsoft.2022.105507
10.3390/f13071050
10.1016/j.scitotenv.2017.05.254
10.1002/2017GL074243
10.1016/S0010-2180(71)80005-6
10.1098/rstb.2015.0345
10.1016/j.firesaf.2017.04.002
10.1007/s10694-010-0160-2
10.1007/s11104-012-1408-z
10.1071/WF18161
10.1080/00102208608923844
10.1007/s00442-004-1788-8
10.1002/aws2.1318
10.1071/WF09146
10.1016/j.pecs.2019.100801
10.1073/pnas.2114069119
10.1071/WF12167
10.1016/j.scitotenv.2018.01.189
10.1111/1365-2745.13403
10.1175/JAMC-D-12-023.1
10.5194/soil-3-31-2017
10.5194/hess-25-685-2021
10.1016/j.ejrh.2017.07.006
10.1109/LGRS.2005.858485
10.5194/acp-16-5229-2016
10.1016/j.combustflame.2009.04.001
10.1071/WF11055
10.2136/sssaj1996.03615995006000010047x
10.1177/003754979606700402
10.1016/S0378-1127(99)00032-8
10.2136/sssaj2010.0322
10.1016/j.foreco.2006.08.155
10.1071/WF03043
10.1023/B:LAND.0000021714.97148.ac
10.1016/j.scitotenv.2023.161714
10.1071/SR9700273
10.1073/pnas.1607171113
10.3390/f13030391
10.1016/j.catena.2006.10.006
10.1016/j.soilbio.2015.04.005
10.1071/WF04047
10.1007/BF01998575
10.1071/WF01005
10.1016/0379-7112(87)90024-5
10.1002/hyp.11288
10.1177/030913339802200204
10.2136/sssaj2011.0046
10.1071/WF02007
10.1071/WF06002
10.1139/X07-077
10.1139/x77-004
10.1088/1748-9326/ac6886
10.1071/WF9950063
10.1002/eap.2433
10.1016/j.envsoft.2019.104616
10.1071/WF11020
10.1016/0010-2180(81)90014-6
10.1139/cjfr-2018-0138
10.1016/j.catena.2014.06.008
10.1139/b82-048
10.1139/x90-124
10.1016/j.earscirev.2013.12.007
10.1016/j.apm.2021.11.010
10.1016/j.ijthermalsci.2019.106242
10.3390/fire6020066
10.1016/S0082-0784(65)80244-2
10.1016/j.envint.2004.02.003
10.1002/hyp.13665
10.1016/j.ecolind.2022.108726
10.1186/s42408-022-00147-2
10.1016/j.foreco.2008.06.048
10.1071/WF07116
10.1016/j.firesaf.2006.01.005
10.1071/WF07072
10.3389/fmech.2021.650580
10.1071/WF08086
10.1016/j.foreco.2021.119558
10.1071/WF17149
10.1016/j.firesaf.2013.08.014
10.1016/j.combustflame.2016.04.004
10.1071/WF06074
10.5194/soil-2-351-2016
10.1071/WF06143
10.1071/WF17097
10.1016/j.ecolind.2021.107735
10.1071/WF13178
10.1029/2021JF006091
10.1071/WF07162
10.5194/hess-16-267-2012
10.1038/s41597-019-0312-2
10.1071/WF20096
10.5194/gmd-4-591-2011
10.1038/s43247-021-00180-0
10.1097/00010694-199506000-00001
10.1029/2020WR027942
10.1071/WF06142
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.earscirev.2023.104569
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-6828
ExternalDocumentID 10_1016_j_earscirev_2023_104569
S0012825223002581
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGNAY
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PZZ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
TAE
TN5
UQL
VH1
WH7
WUQ
XJT
ZCA
ZKB
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a371t-5b6b55f05c6dcee604672e6e5edf06ac2edf8ed2eb8ad16519836e3d1ef0163
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001085236000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-8252
IngestDate Mon Sep 29 04:52:52 EDT 2025
Sat Nov 29 06:55:29 EST 2025
Tue Nov 18 21:49:04 EST 2025
Fri Feb 23 02:36:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ecology and hydrology of fire-affected landscapes
Wildfire effects on soil
Physics of wildfire behavior
Wildfire models
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a371t-5b6b55f05c6dcee604672e6e5edf06ac2edf8ed2eb8ad16519836e3d1ef0163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2942099202
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2942099202
crossref_primary_10_1016_j_earscirev_2023_104569
crossref_citationtrail_10_1016_j_earscirev_2023_104569
elsevier_sciencedirect_doi_10_1016_j_earscirev_2023_104569
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Earth-science reviews
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Grishin, Gruzin, Vzerev (bb0415) 1981; 17
Clark, Coen, Latham (bb0235) 2004; 13
Gong, Zhai, Yang, Wang (bb0395) 2020; 151
Moody, Martin (bb0635) 2009; 18
Alcaniz, Outeiro, Francos, Úbeda (bb0075) 2018; 613–614
Perry (bib921) 1998; 22
Richards (bb0730) 1995; 5
Araya, Fogel, Berhe (bb0130) 2017; 3
Nelson, Narrowe, Rhoades (bb0675) 2022; 7
Holden, Berhe, Treseder (bb0435) 2015; 87
Mudan (bb0660) 1987; 12
Duane, Miranda, Brotons (bb0310) 2021; 498
Roces-Díaz, Santín, Martínez-Vilalta, Doerr (bb0735) 2022; 20
Zhai, Zhang, Yao (bb0915) 2019; 9
Alexander (bb0085) 1982; 60
McArthur (bb0575) 1967
Burns, Gabet (bb0185) 2015; 135
McArthur (bb0570) 1966
Van Wagner (bb0880) 1967
Manzello, Suzuki, Gollner, Fernandez-Pello (bb0545) 2020; 76
Massman, Frank, Mooney (bb0560) 2010; 6
Morvan, Dupuy, Rigolot, Valette (bb0650) 2006; 234
Albini, Reinhardt (bb0060) 1995; 5
Achtemeier (bb0020) 2013; 22
Rothermel (bb0745) 1972; INT-115
Mell, Charney, Jenkins, Cheney, Gould (bb0595) 2005
Bodí, Martin, Balfour, Santín, Doerr, Pereira, Cerdà, Mataix- (bb0170) 2014; 130
Sun R., Krueger, S. K, Jenkins, M. Ann, Zulauf, M. A, and J.J. Charney. 2009. The importance of fire-atmosphere coupling and boundary-layer turbulence to wildfire spread. Int. J. Wildland Fire, 18, 50–60.
Johnston, Wooster, Paugom, Wang, Lynham, Johnston (bb0460) 2017; 26
Abolafia-Rosenzweig, He, Chen (bb0015) 2022; 17
Mandel, Beezley, Kochanski (bb0540) 2011; 4
Anderson (bb0095) 1969
Cruz, Martin, Sullivan (bb0270) 2018; 27
Campbell, Jungbauer, Bristow, Hungerford (bb0200) 1995; 159
Finney, Cohen, Forthofer, McAllister, Gollner, Gorham, Saito, Akafuah, Adam, English (bb0365) 2015; 112
Morvan, Meradji, Accary (bb0655) 2009; 44
Sullivan (bb0820) 2009; 18
Jian, Berli, Ghezzehei (bb0455) 2018; 45
Shillito, Berli, Ghezzehei (bb0775) 2020; 56
Egorova, Trucchia, Pagnini (bb0330) 2022; 104
Fons (bb0370) 1946; 72
Dillon, Menakis, Fay (bb0300) 2015
Thomas, Mueller, Gallagher, Clark, Skowronski, Simeoni, Hadden (bb0850) 2021; 7
Parot, Rivera, Reszka, Torero, Fuentes (bb0700) 2022; 237
Carslaw, Jaeger (bb0205) 1959
Roy, Boschetti, Trigg (bb0755) 2006; 3
Price, Germino (bb0715) 2022; 18
Shakesby, Doerr (bb0770) 2006; 74
Reeves, Ryan, Rollins, Thompson (bb0725) 2009; 18
Anderson (bb0100) 1982
Li, Banerjee (bb0510) 2021; 11
Coleman, Sullivan (bb0260) 1996; 67
McGrattan, Baum, Rehm, Hamins, Forney, Floyd, Hostikka, Prasad (bb0580) 2010; 1018
(accessed on 21 September 2023).
Sullivan (bb0830) 2009; 18
Andrews (bb0110) 2018
Emmons (bb0335) 1964; 5
Mell, Jenkins, Gould, Cheney (bb0600) 2007; 16
Mclauchlan, Higuera, Miesel, Rogers, Schweitzer, Shuman, Tepley, Varner, Veblen, Adalsteinsson, Balch, Baker, Batllori, Bigio, Brando, Cattau, Chipman, Coen, Crandall, Watts (bb0590) 2020; 108
Linn, Goodrick, Brambilla, Brown, Middleton, O'Brien, Hiers (bb0530) 2020; 125
Lautenberger, Fernandez-Pello (bb0505) 2009; 156
Jain, Coogan, Ganapathi Subramanian, Crowley, Taylor, Flannigan (bb0450) 2020; 28
Koo, Linn, Pagni, Edminster (bb0490) 2012; 21
Clark, Fletcher, Linn (bb0240) 2010; 19
Kenward, Sanford, Bronsan (bb0480) 2016
Doerr, Santín (bb0305) 2016; 371
Lamb, Scheingross, Amidon, Swanson, Limaye (bb0495) 2011; 116
Coen (bb0250) 2013; 52
Albini (bb0055) 1996; 32
Certini (bb0210) 2005; 143
Mell, Simeoni, Morvan, Hiers, Skowronski, Hadden (bb0615) 2018; 27
Keeley (bb0470) 2009; 18
Scotter (bb0765) 1970; 8
Steward, Peter (bib922) 1990; 20
Zhang, Wang, Liu (bb0920) 2021; 127
Williams, Livneh, McKinnon, Hansen, Mankin, Cook, Smerdon, Varuolo-Clarke, Bjarke, Juang, Lettenmaier (bb0910) 2022; 119
Tymstra, Bryce, Wotton, Taylor, Armitage (bb0860) 2010
Albini, Amin, Hungerford, Frandsen, Ryan (bb0065) 1996
Clark, Jenkins, Coen, Packham (bb0230) 1996; 35
Colman, Linn (bb0265) 2007; 16
Atchley, Linn, Jonko, Hoffman, Hyman, Pimont, Sieg, Middleton (bb0145) 2021; 30
Cheney, Gould, Catchpole (bb0220) 1998; 8
Sullivan (bb0825) 2009; 18
Jones, Abatzoglou, Veraverbeke, Andela, Lasslop, Forkel, Smith, Burton, Betts, van der Werf, Sitch, Canadell, Santin, Kolden, Doerr, Le Quere (bb0465) 2022; 60
Noble, Bary, Gill (bb0685) 1980; 5
Prichard, Hessburg, Hagmann, Povak, Dobrowski, Hurteau, Kane Van, Keane, Kobziar, Kolden, North, Parks, Safford, Stevens, Yocom, Churchill, Gray, Huffman, Lake, Khatri-Chhetri (bb0720) 2021; 31
Morvan (bb0640) 2011; 47
Grishin (bb0410) 1997
Tyukavina, Potapov, Hansen, Pickens, Stehman, Turubanova, Parker, Zalles, Lima, Kommareddy, Song, Wang, Harris (bb0865) 2022; 3
Albini (bb0030) 1976
Keeley, Bond, Bradstock, Pausas, Rundel (bb0475) 2012
Parks, Dillon, Miller (bb0695) 2014; 6
Finney (bb0355) 2006
Ulery, Graham, Bowen (bb0870) 1996; 60
Khanmohammadi, Arashpour, Mohammadi Golafshani, Cruz, Rajabifard, Bai (bb0485) 2022; 156
Lautenberger (bb0500) 2013; 62
Albini, Alexander, Cruz (bb0070) 2012; 21
Burrows (bb0190) 2001; 10
CWFGM Steering Committee. 2004. Prometheus User Manual v. 3.0.1. Canadian Forest Service. Available online
Linn, Cunningham (bb0520) 2005; 110
Whelton, Seidel, Wham, Fischer, Isaacson, Jankowski, MacArthur, McKenna, Ley (bb0900) 2023
Ma, Bales, Rungee, Conklin, Collins, Goulden (bb0535) 2020; 590
Stenzel, Bartowitz, Hartman, Lutz, Kolden, Smith, Law, Swanson, Larson, Parton (bb0795) 2019; 25
Gochis, Yu, Yates (bb0385) 2015
Meradji, Accary, Morvan, Bessonov, Fougère (bb0620) 2016
Neary, Ryan, DeBano (bb0670) 2005
Parson, Robichaud, Lewis, Napper, Clark (bb0705) 2010
Scott, Burgan (bb0760) 2005
Bova, Mell, Hoffman (bb0180) 2016; 25
Linn (bb0515) 1997
Ottmar, Sandberg, Riccardi, Prichard (bb0690) 2007; 37
Neary, Klopatek, DeBano, Ffolliott (bb0665) 1999; 122
Massman (bb0555) 2021; 25
Linn, Reisner, Colman, Winterkamp (bb0525) 2002; 11
Thomas, Rengers, Kean, McGuire, Staley, Barnhart, Ebel (bb0855) 2021; 126
Andrews (bb0105) 2014; 23
Ebel, Martin (bb0320) 2017; 31
Smith, Sparks, Kolden, Abatzoglou, Talhelm, Johnson, Boschetti, Lutz, Apostol, Yedinak, Tinkham, Klemens (bb0790) 2016; 25
Goldammer, Furyaev (bb0390) 1996; vol. 48
Wieting, Ebel, Singha (bb0905) 2017; 13
Shmuel, Heifetz (bb0780) 2022; 13
Hagmann, Hessburg, Prichard, Povak, Brown, Fule, Keane, Knapp, Lydersen, Metlen, Reilly, Sanchez Meador, Stephens, Stevens, Taylor, Yocom, Battaglia, Churchill, Daniels, Falk, Henson, Johnston, Krawchuk, Levine, Meigs, Merschel, North, Safford, Swetnam, Waltz (bb0425) 2021; 31
Thomas, Mueller, Santamaria, Gallagher, El houssami, Filkov, Clark, Skowronski, Hadden, Mell, Simeoni (bb0845) 2017; 91
Albini (bb0035) 1979; INT-56
Niemeyer, Bladon, Woodsmith (bb0680) 2020; 34
Van Wagner (bb0885) 1977; 7
Albini (bb0045) 1985; 42
Badía, López-García, Martí, Ortíz-Perpiñá, Girona-García, Casanova-Gascón (bb0150) 2017; 601–602
Merino, Fonturbel, Fernández, Chávez-Vergara, García-Oliva, Vega (bb0625) 2018; 627
Duncan, Schmalzer (bb0315) 2004; 19
Morvan, Dupuy (bb0645) 2004; 138
Roshan, Biswas (bb0740) 2023; 868
Rothermel, Anderson (bb0750) 1966
Baetens, Oom, San-Miguel-Ayanz, Artes (bb0155) 2022
Albini (bb0040) 1981; 43
Byram (bb0195) 1959
Davis, Robles, Kemp, Higuera, Chapman, Metlen, Peeler, Rodman, Woolley, Addington, Buma, Cansler, Case, Collins, Coop, Dobrowski, Gill, Haffey, Harris, Harvey, Haugo, Hurteau, Kulakowski, Littlefield, McCauley, Povak, Shive, Smith, Stevens, Stevens-Rumann, Taylor, Tepley, Young, Andrus, Battaglia, Berkey, Busby, Carlson, Chambers, Dodson, Donato, Downing, Fornwalt, Halofsky, Hoffman, Holz, Iniguez, Krawchuk, Kreider, Larson, Meigs, Roccaforte, Rother, Safford, Schaedel, Sibold, Singleton, Turner, Urza, Clark-Wolf, Yocom, Fontaine, Campbell (bb0285) 2023; 120
González-Pérez, González-Vila, Almendros, Knicker (bb0405) 2004; 30
Aparício, Pereira, Santos, Bruni, Sá (bb0120) 2022; 137
Wagenbrenner, Forthofer, Lamb, Shannon, Butler (bb0890) 2016; 16
DeBano (bb0290) 2000; 231–232
Frandsen (bb0375) 1971; 16
Harmon, Hanson, DellaSala (bb0430) 2022; 13
Stewart, van Mantgem, Young, Shive, Preisler, Das, Stephenson, Keeley, Safford, Wright, Welch, Thorne (bb0800) 2021; 31
Alessio, Dunne, Morell (bb0080) 2021; 126
Araya, Meding, Berhe (bb0125) 2016; 2
DeBano, Neary, Ffolliott (bb0295) 1998
Bonetti, Wei, Or (bb0175) 2021; 2
Finney, Andrews (bb0360) 1999; 59
Tarifa, del Notario, Moreno (bb0840) 1965; 10
Freeborn, Wooster, Hao, Ryan, Nordgren, Baker, Ichoku (bb0380) 2008; 113
Mayor, Bautista, Llovet, Bellot (bb0565) 2007; 71
McGuire, Rengers, Kean, Staley (bb0585) 2017; 44
Albini (bb0050) 1986; 45
Van Wagner (bb0875) 1962; 63
Cruz, Alexander, Sullivan (bb0275) 2017; 26
Houssami, Thomas, Lamorlette, Morvan, Chaos, Hadden (bb0445) 2016; 168
Massman (bb0550) 2012; 48
Finney (bb0350) 2001; 47
Abatzoglou, Williams (bb0005) 2016; 113
Albalasmeh, Berli, Shafer, Ghezzehei (bb0025) 2013; 362
Bakhshaii, Johnson (bb0160) 2019; 49
Alexander, Cruz (bb0090) 2019
Molchanov (bb0630) 1957; 10
Ebel, Shephard, Walvoord, Murphy, Partridge, Perkins (bb0325) 2023; 11
Weber (bb0895) 1991; 17
Coffield, Graff, Chen, Smyth, Foufoula-Georgiou, Randerson (bb0255) 2019; 28
CWFGM Project Steering Committee (bb0280) 2009
Stoof, Moore, Ritsema, Dekker (bb0805) 2011; 75
Enninful, Torvi (bb0340) 2008; 17
Stoof, Vervoort, Iwema, van den Elsen, Ferreira, Ritsema (bb0815) 2012; 16
Anthenien, Tse, Fernandez-Pello (bb0115) 2006; 41
Artés, Oom, de Rigo, Durrant, Maianti, Liberta, San-Miguel-Ayanz (bb0140) 2019; 6
Arroyo, Pascual, Manzanera (bb0135) 2008; 256
Finney (bb0345) 1998
Stoof, De Kort, Bishop, Moore, Wesseling, Ritsema (bb0810) 2011; 75
Abatzoglou, Balch, Bradley, Kolden (bb0010) 2018; 27
Clark, Bobbe (bb0225) 2006
Balch, Abatzoglou, Joseph (bb0165) 2022; 602
Sion, Samburova, Berli, Baish, Bustarde, Houseman (bb0785) 2023; 6
Pingree, Kobziar (bb0710) 2019; 432
Gong, Zhai, Cao, Li, Yang, Zhou, Wang (bb0400) 2020; 216
Cheney, Gould, Catchpole (bb0215) 1993; 3
Coen (bb0245) 2005; 14
Hottel, Williams, Steward (bb0440) 1965
Scotter (10.1016/j.earscirev.2023.104569_bb0765) 1970; 8
Alexander (10.1016/j.earscirev.2023.104569_bb0085) 1982; 60
Stenzel (10.1016/j.earscirev.2023.104569_bb0795) 2019; 25
Parson (10.1016/j.earscirev.2023.104569_bb0705) 2010
Roshan (10.1016/j.earscirev.2023.104569_bb0740) 2023; 868
Molchanov (10.1016/j.earscirev.2023.104569_bb0630) 1957; 10
Fons (10.1016/j.earscirev.2023.104569_bb0370) 1946; 72
Noble (10.1016/j.earscirev.2023.104569_bb0685) 1980; 5
Anderson (10.1016/j.earscirev.2023.104569_bb0100) 1982
Finney (10.1016/j.earscirev.2023.104569_bb0360) 1999; 59
Bodí (10.1016/j.earscirev.2023.104569_bb0170) 2014; 130
Emmons (10.1016/j.earscirev.2023.104569_bb0335) 1964; 5
Lautenberger (10.1016/j.earscirev.2023.104569_bb0505) 2009; 156
Van Wagner (10.1016/j.earscirev.2023.104569_bb0875) 1962; 63
Balch (10.1016/j.earscirev.2023.104569_bb0165) 2022; 602
Linn (10.1016/j.earscirev.2023.104569_bb0525) 2002; 11
Wagenbrenner (10.1016/j.earscirev.2023.104569_bb0890) 2016; 16
Badía (10.1016/j.earscirev.2023.104569_bb0150) 2017; 601–602
Grishin (10.1016/j.earscirev.2023.104569_bb0415) 1981; 17
Morvan (10.1016/j.earscirev.2023.104569_bb0655) 2009; 44
Shillito (10.1016/j.earscirev.2023.104569_bb0775) 2020; 56
Stoof (10.1016/j.earscirev.2023.104569_bb0810) 2011; 75
Mell (10.1016/j.earscirev.2023.104569_bb0615) 2018; 27
Perry (10.1016/j.earscirev.2023.104569_bib921) 1998; 22
Johnston (10.1016/j.earscirev.2023.104569_bb0460) 2017; 26
Koo (10.1016/j.earscirev.2023.104569_bb0490) 2012; 21
Roces-Díaz (10.1016/j.earscirev.2023.104569_bb0735) 2022; 20
Jian (10.1016/j.earscirev.2023.104569_bb0455) 2018; 45
Rothermel (10.1016/j.earscirev.2023.104569_bb0745) 1972; INT-115
Cruz (10.1016/j.earscirev.2023.104569_bb0270) 2018; 27
Sion (10.1016/j.earscirev.2023.104569_bb0785) 2023; 6
Nelson (10.1016/j.earscirev.2023.104569_bb0675) 2022; 7
Tymstra (10.1016/j.earscirev.2023.104569_bb0860) 2010
Coleman (10.1016/j.earscirev.2023.104569_bb0260) 1996; 67
Holden (10.1016/j.earscirev.2023.104569_bb0435) 2015; 87
Ottmar (10.1016/j.earscirev.2023.104569_bb0690) 2007; 37
Pingree (10.1016/j.earscirev.2023.104569_bb0710) 2019; 432
Andrews (10.1016/j.earscirev.2023.104569_bb0110) 2018
Finney (10.1016/j.earscirev.2023.104569_bb0355) 2006
Hottel (10.1016/j.earscirev.2023.104569_bb0440) 1965
Campbell (10.1016/j.earscirev.2023.104569_bb0200) 1995; 159
Finney (10.1016/j.earscirev.2023.104569_bb0365) 2015; 112
Jones (10.1016/j.earscirev.2023.104569_bb0465) 2022; 60
Egorova (10.1016/j.earscirev.2023.104569_bb0330) 2022; 104
Van Wagner (10.1016/j.earscirev.2023.104569_bb0880) 1967
Price (10.1016/j.earscirev.2023.104569_bb0715) 2022; 18
Massman (10.1016/j.earscirev.2023.104569_bb0555) 2021; 25
Smith (10.1016/j.earscirev.2023.104569_bb0790) 2016; 25
Mudan (10.1016/j.earscirev.2023.104569_bb0660) 1987; 12
Rothermel (10.1016/j.earscirev.2023.104569_bb0750) 1966
Araya (10.1016/j.earscirev.2023.104569_bb0130) 2017; 3
Freeborn (10.1016/j.earscirev.2023.104569_bb0380) 2008; 113
Albini (10.1016/j.earscirev.2023.104569_bb0070) 2012; 21
Araya (10.1016/j.earscirev.2023.104569_bb0125) 2016; 2
Linn (10.1016/j.earscirev.2023.104569_bb0530) 2020; 125
Keeley (10.1016/j.earscirev.2023.104569_bb0470) 2009; 18
Finney (10.1016/j.earscirev.2023.104569_bb0350) 2001; 47
Thomas (10.1016/j.earscirev.2023.104569_bb0855) 2021; 126
Carslaw (10.1016/j.earscirev.2023.104569_bb0205) 1959
CWFGM Project Steering Committee (10.1016/j.earscirev.2023.104569_bb0280) 2009
Anderson (10.1016/j.earscirev.2023.104569_bb0095) 1969
Anthenien (10.1016/j.earscirev.2023.104569_bb0115) 2006; 41
Baetens (10.1016/j.earscirev.2023.104569_bb0155) 2022
Abatzoglou (10.1016/j.earscirev.2023.104569_bb0005) 2016; 113
Sullivan (10.1016/j.earscirev.2023.104569_bb0825) 2009; 18
Neary (10.1016/j.earscirev.2023.104569_bb0665) 1999; 122
Lamb (10.1016/j.earscirev.2023.104569_bb0495) 2011; 116
Byram (10.1016/j.earscirev.2023.104569_bb0195) 1959
Clark (10.1016/j.earscirev.2023.104569_bb0240) 2010; 19
Albini (10.1016/j.earscirev.2023.104569_bb0065) 1996
Roy (10.1016/j.earscirev.2023.104569_bb0755) 2006; 3
Bonetti (10.1016/j.earscirev.2023.104569_bb0175) 2021; 2
Albini (10.1016/j.earscirev.2023.104569_bb0030) 1976
Alexander (10.1016/j.earscirev.2023.104569_bb0090) 2019
Duncan (10.1016/j.earscirev.2023.104569_bb0315) 2004; 19
Dillon (10.1016/j.earscirev.2023.104569_bb0300) 2015
Merino (10.1016/j.earscirev.2023.104569_bb0625) 2018; 627
McArthur (10.1016/j.earscirev.2023.104569_bb0575) 1967
Kenward (10.1016/j.earscirev.2023.104569_bb0480) 2016
Weber (10.1016/j.earscirev.2023.104569_bb0895) 1991; 17
Van Wagner (10.1016/j.earscirev.2023.104569_bb0885) 1977; 7
Hagmann (10.1016/j.earscirev.2023.104569_bb0425) 2021; 31
Atchley (10.1016/j.earscirev.2023.104569_bb0145) 2021; 30
Cheney (10.1016/j.earscirev.2023.104569_bb0215) 1993; 3
Parks (10.1016/j.earscirev.2023.104569_bb0695) 2014; 6
Davis (10.1016/j.earscirev.2023.104569_bb0285) 2023; 120
Sullivan (10.1016/j.earscirev.2023.104569_bb0820) 2009; 18
Achtemeier (10.1016/j.earscirev.2023.104569_bb0020) 2013; 22
Linn (10.1016/j.earscirev.2023.104569_bb0515) 1997
Albini (10.1016/j.earscirev.2023.104569_bb0050) 1986; 45
McGrattan (10.1016/j.earscirev.2023.104569_bb0580) 2010; 1018
Cruz (10.1016/j.earscirev.2023.104569_bb0275) 2017; 26
Certini (10.1016/j.earscirev.2023.104569_bb0210) 2005; 143
Gong (10.1016/j.earscirev.2023.104569_bb0395) 2020; 151
Morvan (10.1016/j.earscirev.2023.104569_bb0640) 2011; 47
Sullivan (10.1016/j.earscirev.2023.104569_bb0830) 2009; 18
Lautenberger (10.1016/j.earscirev.2023.104569_bb0500) 2013; 62
Clark (10.1016/j.earscirev.2023.104569_bb0235) 2004; 13
Albalasmeh (10.1016/j.earscirev.2023.104569_bb0025) 2013; 362
Coen (10.1016/j.earscirev.2023.104569_bb0245) 2005; 14
Ulery (10.1016/j.earscirev.2023.104569_bb0870) 1996; 60
Zhang (10.1016/j.earscirev.2023.104569_bb0920) 2021; 127
Morvan (10.1016/j.earscirev.2023.104569_bb0650) 2006; 234
Albini (10.1016/j.earscirev.2023.104569_bb0045) 1985; 42
DeBano (10.1016/j.earscirev.2023.104569_bb0290) 2000; 231–232
Keeley (10.1016/j.earscirev.2023.104569_bb0475) 2012
Mandel (10.1016/j.earscirev.2023.104569_bb0540) 2011; 4
Massman (10.1016/j.earscirev.2023.104569_bb0560) 2010; 6
Clark (10.1016/j.earscirev.2023.104569_bb0230) 1996; 35
Mell (10.1016/j.earscirev.2023.104569_bb0600) 2007; 16
Steward (10.1016/j.earscirev.2023.104569_bib922) 1990; 20
Shmuel (10.1016/j.earscirev.2023.104569_bb0780) 2022; 13
Stoof (10.1016/j.earscirev.2023.104569_bb0805) 2011; 75
Li (10.1016/j.earscirev.2023.104569_bb0510) 2021; 11
Shakesby (10.1016/j.earscirev.2023.104569_bb0770) 2006; 74
González-Pérez (10.1016/j.earscirev.2023.104569_bb0405) 2004; 30
10.1016/j.earscirev.2023.104569_bb9000
Bakhshaii (10.1016/j.earscirev.2023.104569_bb0160) 2019; 49
Bova (10.1016/j.earscirev.2023.104569_bb0180) 2016; 25
Burrows (10.1016/j.earscirev.2023.104569_bb0190) 2001; 10
Colman (10.1016/j.earscirev.2023.104569_bb0265) 2007; 16
McArthur (10.1016/j.earscirev.2023.104569_bb0570) 1966
Parot (10.1016/j.earscirev.2023.104569_bb0700) 2022; 237
Tyukavina (10.1016/j.earscirev.2023.104569_bb0865) 2022; 3
Houssami (10.1016/j.earscirev.2023.104569_bb0445) 2016; 168
10.1016/j.earscirev.2023.104569_bb0835
Artés (10.1016/j.earscirev.2023.104569_bb0140) 2019; 6
Ebel (10.1016/j.earscirev.2023.104569_bb0320) 2017; 31
Tarifa (10.1016/j.earscirev.2023.104569_bb0840) 1965; 10
Gong (10.1016/j.earscirev.2023.104569_bb0400) 2020; 216
Wieting (10.1016/j.earscirev.2023.104569_bb0905) 2017; 13
Arroyo (10.1016/j.earscirev.2023.104569_bb0135) 2008; 256
Alessio (10.1016/j.earscirev.2023.104569_bb0080) 2021; 126
Abolafia-Rosenzweig (10.1016/j.earscirev.2023.104569_bb0015) 2022; 17
Albini (10.1016/j.earscirev.2023.104569_bb0040) 1981; 43
Frandsen (10.1016/j.earscirev.2023.104569_bb0375) 1971; 16
Albini (10.1016/j.earscirev.2023.104569_bb0035) 1979; INT-56
Enninful (10.1016/j.earscirev.2023.104569_bb0340) 2008; 17
Harmon (10.1016/j.earscirev.2023.104569_bb0430) 2022; 13
Scott (10.1016/j.earscirev.2023.104569_bb0760) 2005
Niemeyer (10.1016/j.earscirev.2023.104569_bb0680) 2020; 34
McGuire (10.1016/j.earscirev.2023.104569_bb0585) 2017; 44
Moody (10.1016/j.earscirev.2023.104569_bb0635) 2009; 18
Mell (10.1016/j.earscirev.2023.104569_bb0595) 2005
Andrews (10.1016/j.earscirev.2023.104569_bb0105) 2014; 23
Ebel (10.1016/j.earscirev.2023.104569_bb0325) 2023; 11
Goldammer (10.1016/j.earscirev.2023.104569_bb0390) 1996; vol. 48
Richards (10.1016/j.earscirev.2023.104569_bb0730) 1995; 5
Prichard (10.1016/j.earscirev.2023.104569_bb0720) 2021; 31
Neary (10.1016/j.earscirev.2023.104569_bb0670) 2005
Reeves (10.1016/j.earscirev.2023.104569_bb0725) 2009; 18
Grishin (10.1016/j.earscirev.2023.104569_bb0410) 1997
Linn (10.1016/j.earscirev.2023.104569_bb0520) 2005; 110
Thomas (10.1016/j.earscirev.2023.104569_bb0850) 2021; 7
Morvan (10.1016/j.earscirev.2023.104569_bb0645) 2004; 138
Williams (10.1016/j.earscirev.2023.104569_bb0910) 2022; 119
Burns (10.1016/j.earscirev.2023.104569_bb0185) 2015; 135
Albini (10.1016/j.earscirev.2023.104569_bb0060) 1995; 5
Thomas (10.1016/j.earscirev.2023.104569_bb0845) 2017; 91
Stewart (10.1016/j.earscirev.2023.104569_bb0800) 2021; 31
Duane (10.1016/j.earscirev.2023.104569_bb0310) 2021; 498
Alcaniz (10.1016/j.earscirev.2023.104569_bb0075) 2018; 613–614
Gochis (10.1016/j.earscirev.2023.104569_bb0385) 2015
Mayor (10.1016/j.earscirev.2023.104569_bb0565) 2007; 71
Manzello (10.1016/j.earscirev.2023.104569_bb0545) 2020; 76
Coffield (10.1016/j.earscirev.2023.104569_bb0255) 2019; 28
Aparício (10.1016/j.earscirev.2023.104569_bb0120) 2022; 137
Ma (10.1016/j.earscirev.2023.104569_bb0535) 2020; 590
Mclauchlan (10.1016/j.earscirev.2023.104569_bb0590) 2020; 108
Doerr (10.1016/j.earscirev.2023.104569_bb0305) 2016; 371
Khanmohammadi (10.1016/j.earscirev.2023.104569_bb0485) 2022; 156
Jain (10.1016/j.earscirev.2023.104569_bb0450) 2020; 28
Whelton (10.1016/j.earscirev.2023.104569_bb0900) 2023; 5
Abatzoglou (10.1016/j.earscirev.2023.104569_bb0010) 2018; 27
Meradji (10.1016/j.earscirev.2023.104569_bb0620) 2016
Cheney (10.1016/j.earscirev.2023.104569_bb0220) 1998; 8
Stoof (10.1016/j.earscirev.2023.104569_bb0815) 2012; 16
Massman (10.1016/j.earscirev.2023.104569_bb0550) 2012; 48
Zhai (10.10
References_xml – volume: 21
  start-page: 609
  year: 2012
  end-page: 627
  ident: bb0070
  article-title: A mathematical model for predicting the maximum potential spotting distance from a crown fire
  publication-title: Int. J. Wildland Fire
– volume: 27
  start-page: 770
  year: 2018
  end-page: 775
  ident: bb0615
  article-title: Clarifying the meaning of mantras in wildland fire behaviour modelling: reply to Cruz et al. (2017)
  publication-title: Int. J. Wildland Fire
– volume: 3
  start-page: 112
  year: 2006
  end-page: 116
  ident: bb0755
  article-title: Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio
  publication-title: Geosci. Remote Sens. Letters, IEEE.
– volume: 590
  start-page: 125364
  year: 2020
  ident: bb0535
  article-title: Wildfire controls on evapotranspiration in California’s Sierra Nevada
  publication-title: J. Hydrol.
– volume: 613–614
  start-page: 944
  year: 2018
  end-page: 957
  ident: bb0075
  article-title: Effects of prescribed fires on soil properties: A review
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 5229
  year: 2016
  end-page: 5241
  ident: bb0890
  article-title: Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja
  publication-title: Atmos. Chem. Phys.
– volume: 156
  start-page: 1503
  year: 2009
  end-page: 1513
  ident: bb0505
  article-title: A model for the oxidative pyrolysis of wood
  publication-title: Combust. Flame
– volume: 28
  start-page: 861
  year: 2019
  end-page: 873
  ident: bb0255
  article-title: Machine learning to predict final fire size at time of ignition
  publication-title: Int. J. Wildland Fire
– volume: 59
  start-page: 13
  year: 1999
  end-page: 15
  ident: bb0360
  article-title: : Fire Area Simulator—a program for fire growth simulation
  publication-title: Fire Management Notes
– volume: 21
  start-page: 396
  year: 2012
  end-page: 417
  ident: bb0490
  article-title: Modelling firebrand transport in wildfires using HIGRAD/FIRETEC
  publication-title: Int. J. Wildland Fire
– volume: 23
  start-page: 21
  year: 2014
  end-page: 33
  ident: bb0105
  article-title: Current status and future needs of the BehavePlus Fire Modeling System
  publication-title: Int. J. Wildland Fire
– volume: 75
  start-page: 2283
  year: 2011
  end-page: 2295
  ident: bb0805
  article-title: Natural and fire-induced soil water repellency in a Portuguese shrubland
  publication-title: Soil Sci. Soc. Am. J.
– volume: 3
  start-page: 31
  year: 1993
  end-page: 44
  ident: bb0215
  article-title: The influence of fuel weather and fire shape variables on fire spread in grasslands
  publication-title: Int. J. Wildland Fire
– volume: 7
  start-page: 650580
  year: 2021
  ident: bb0850
  article-title: Coupled assessment of fire behavior and firebrand dynamics
  publication-title: Front. Mech. Eng.
– volume: 9
  start-page: 11958
  year: 2019
  ident: bb0915
  article-title: Analytical study on ignition time of PMMA exposed to time-decreasing thermal radiation using critical mass flux
  publication-title: Sci. Rep.
– volume: 602
  start-page: 442
  year: 2022
  end-page: 448
  ident: bb0165
  article-title: Warming weakens the night-time barrier to global fire
  publication-title: Nature
– volume: 127
  start-page: 107735
  year: 2021
  ident: bb0920
  article-title: Deep neural networks for global wildfire susceptibility modelling
  publication-title: Ecol. Indic.
– volume: 126
  year: 2021
  ident: bb0080
  article-title: Post-wildfire generation of debris-flow slurry by rill erosion on colluvial hillslopes
  publication-title: J. Geophys. Res. Earth Surf.
– start-page: 213
  year: 2006
  end-page: 220
  ident: bb0355
  article-title: An Overview of FlamMap fire modeling capabilities
  publication-title: 2006. Fuels Management-How to Measure Success: Conference Proceedings. 28–30 March 2006; Portland, OR. Proceedings RMRS-P-41
– volume: 13
  start-page: 391
  year: 2022
  ident: bb0430
  article-title: Combustion of Above ground wood from live trees in megafires, CA, USA
  publication-title: Forests
– volume: 31
  start-page: 3682
  year: 2017
  end-page: 3696
  ident: bb0320
  article-title: Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment
  publication-title: Hydrol. Process.
– volume: 16
  start-page: 267
  year: 2012
  end-page: 285
  ident: bb0815
  article-title: Hydrological response of a small catchment burned by experimental fire
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 19
  start-page: 202
  year: 2010
  end-page: 212
  ident: bb0240
  article-title: A sub-grid, mixture-fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results
  publication-title: Int. J. Wildland Fire
– volume: 116
  start-page: F03006
  year: 2011
  ident: bb0495
  article-title: A model for fire-induced sediment yield by dry ravel in steep landscapes
  publication-title: J. Geophys. Res.
– start-page: 46
  year: 2016
  ident: bb0480
  article-title: Western Wildfires: A Fiery Future
  publication-title: Climate Central
– volume: 76
  start-page: 100801
  year: 2020
  ident: bb0545
  article-title: Role of firebrand combustion in large outdoor fire spread
  publication-title: Prog. Energy Combust. Sci.
– year: 2016
  ident: bb0620
  article-title: Numerical Simulation of Grassland-Fires Behavior Using FireStar3D Model
– volume: 113
  start-page: D01301
  year: 2008
  ident: bb0380
  article-title: Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires
  publication-title: J. Geophys. Res.
– start-page: 72
  year: 2005
  ident: bb0760
  article-title: Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. Gen. Tech. Rep. RMRS-GTR-153
– volume: 30
  start-page: 855
  year: 2004
  end-page: 870
  ident: bb0405
  article-title: The effect of fire on soil organic matter—a review
  publication-title: Environ. Int.
– volume: 56
  year: 2020
  ident: bb0775
  article-title: Quantifying the effect of subcritical water repellency on sorptivity: a physically based model
  publication-title: Water Resour. Res.
– volume: 18
  start-page: 349
  year: 2009
  end-page: 368
  ident: bb0820
  article-title: Wildland surface fire spread modelling, 1990–2007. 1: physical and quasi-physical models
  publication-title: Int. J. Wildland Fire
– volume: 130
  start-page: 103
  year: 2014
  end-page: 127
  ident: bb0170
  article-title: Wildland fire ash: production, composition and eco-hydro-geomorphic effects
  publication-title: Earth Sci. Rev.
– volume: 52
  start-page: 16
  year: 2013
  end-page: 38
  ident: bb0250
  article-title: WRF-Fire: coupled weather–wildland fire modeling with the Weather Research and Forecasting Model
  publication-title: J. Appl. Meteorol. Climatol.
– start-page: 47
  year: 1998
  ident: bb0345
  article-title: FARSITE: Fire Area Simulator-model development and evaluation. Res. Pap. RMRS-RP-4,
– volume: 35
  start-page: 875
  year: 1996
  end-page: 901
  ident: bb0230
  article-title: A coupled atmospheric-fire model: convective feedback on fire line dynamics
  publication-title: J. Appl. Meteorol.
– volume: 156
  year: 2022
  ident: bb0485
  article-title: Prediction of wildfire rate of spread in grasslands using machine learning methods
  publication-title: Environ. Model. Softw.
– volume: 91
  start-page: 864
  year: 2017
  end-page: 871
  ident: bb0845
  article-title: Investigation of firebrand generation from an experimental fire: development of a reliable data collection methodology
  publication-title: Fire Saf. J.
– year: 1959
  ident: bb0205
  article-title: Conduction of Heat in Solids
– volume: 104
  start-page: 1
  year: 2022
  end-page: 20
  ident: bb0330
  article-title: Fire-spotting generated fires. Part II: The role of flame geometry and slope
  publication-title: Appl. Math. Model.
– volume: 63
  start-page: 458
  year: 1962
  end-page: 459
  ident: bb0875
  article-title: On the value of a numerical concept of fire intensity
  publication-title: Pulp and Paper Magazine of Canada, Woodland Review
– volume: 17
  year: 2022
  ident: bb0015
  article-title: Winter and spring climate explains a large portion of interannual variability and trend in western U.S. summer fire burned area
  publication-title: Environ. Res. Lett.
– volume: 126
  year: 2021
  ident: bb0855
  article-title: Postwildfire soil-hydraulic recovery and the persistence of debris flow hazards
  publication-title: J. Geophys. Res. Earth Surf.
– year: 1982
  ident: bb0100
  article-title: Aids to determining fuel models for estimating fire behavior
– volume: 498
  year: 2021
  ident: bb0310
  article-title: Forest connectivity percolation thresholds for fire spread under different weather conditions
  publication-title: For. Ecol. Manag.
– year: 1998
  ident: bb0295
  article-title: Fire's Effects on Ecosystems
– volume: 362
  start-page: 335
  year: 2013
  end-page: 344
  ident: bb0025
  article-title: Degradation of moist soil aggregates by rapid temperature rise under low intensity fire
  publication-title: Plant Soil
– volume: 18
  start-page: 23
  year: 2022
  ident: bb0715
  article-title: Modeling of fire spread in sagebrush steppe using FARSITE: an approach to improving input data and simulation accuracy
  publication-title: Fire Ecol.
– year: 1965
  ident: bb0440
  article-title: The modeling of fire spread through a fuel bed
  publication-title: 10
– volume: 34
  start-page: 1182
  year: 2020
  end-page: 1197
  ident: bb0680
  article-title: Long-term hydrologic recovery after wildfire and post-fire forest management in the interior Pacific Northwest
  publication-title: Hydrol. Process.
– volume: 135
  start-page: 350
  year: 2015
  end-page: 357
  ident: bb0185
  article-title: The effective viscosity of slurries laden with vegetative ash
  publication-title: Catena
– start-page: 61
  year: 1959
  end-page: 89
  ident: bb0195
  article-title: Combustion of forest fuels
  publication-title: Forest Fire: Control and Use
– start-page: 1318
  year: 2023
  ident: bb0900
  article-title: The Marshall Fire: Scientific and policy needs for water system disaster response
  publication-title: AWWA Water Sci.
– volume: 17
  start-page: 205
  year: 2008
  end-page: 213
  ident: bb0340
  article-title: A variable property heat transfer model for predicting soil temperature profiles during simulated wildland fire conditions
  publication-title: Int. J. Wildland Fire
– volume: 12
  start-page: 89
  year: 1987
  end-page: 96
  ident: bb0660
  article-title: Geometric view factors for thermal radiation hazard assessment
  publication-title: Fire Saf. J.
– volume: 30
  year: 2021
  ident: bb0145
  article-title: Effects of fuel spatial distribution on wildland fire behaviour
  publication-title: Int. J. Wildland Fire
– volume: 151
  year: 2020
  ident: bb0395
  article-title: Ignition of polymers under exponential heat flux considering both surface and in-depth absorptions
  publication-title: Int. J. Therm. Sci.
– volume: 60
  year: 2022
  ident: bb0465
  article-title: Global and regional trends and drivers of fire under climate change
  publication-title: Rev. Geophys.
– volume: 32
  start-page: 534
  year: 1996
  end-page: 543
  ident: bb0055
  article-title: Iterative solution of the radiation transport equations governing spread of fire in wildland fuel
  publication-title: Combust. Explos. Shock Waves
– volume: 26
  start-page: 668
  year: 2017
  end-page: 684
  ident: bb0460
  article-title: Direct estimation of Byram’s fire intensity from infrared remote sensing imagery
  publication-title: Int. J. Wildland Fire
– volume: 108
  start-page: 2047
  year: 2020
  end-page: 2069
  ident: bb0590
  article-title: Fire as a fundamental ecological process: research advances and frontiers
  publication-title: J. Ecol.
– volume: vol. 48
  year: 1996
  ident: bb0390
  article-title: Fire in Ecosystems of Boreal Eurasia: Ecological Impacts and Links to the Global System
  publication-title: Fire in Ecosystems of Boreal Eurasia. Forestry Sciences
– volume: 71
  start-page: 68
  year: 2007
  end-page: 75
  ident: bb0565
  article-title: Post-fire hydrological and erosional responses of a Mediterranean landscpe: seven years of catchment-scale dynamics
  publication-title: Catena
– volume: 125
  start-page: 104616
  year: 2020
  ident: bb0530
  article-title: QUIC-fire: A fast-running simulation tool for prescribed fire planning
  publication-title: Environ. Model. Softw.
– volume: 43
  start-page: 155
  year: 1981
  end-page: 174
  ident: bb0040
  article-title: A model for the wind-blown flame from a line fire
  publication-title: Combust. Flame
– reference: Sun R., Krueger, S. K, Jenkins, M. Ann, Zulauf, M. A, and J.J. Charney. 2009. The importance of fire-atmosphere coupling and boundary-layer turbulence to wildfire spread. Int. J. Wildland Fire, 18, 50–60.
– volume: 13
  start-page: 49
  year: 2004
  end-page: 64
  ident: bb0235
  article-title: Description of a coupled atmosphere-fire model
  publication-title: Int. J. Wildland Fire
– year: 1969
  ident: bb0095
  article-title: Heat transfer and fire spread
– volume: 6
  start-page: 296
  year: 2019
  ident: bb0140
  article-title: A global wildfire dataset for the analysis of fire regimes and fire behaviour
  publication-title: Scientific Data
– volume: 22
  start-page: 148
  year: 2013
  end-page: 156
  ident: bb0020
  article-title: Field validation of a free-agent cellular automata model of fire spread with fire–atmosphere coupling
  publication-title: Int. J. Wildland Fire
– volume: 14
  start-page: 49
  year: 2005
  end-page: 59
  ident: bb0245
  article-title: Simulation of the Big Elk Fire using coupled atmosphere-fire modeling
  publication-title: Int. J. Wildland Fire
– volume: 27
  start-page: 776
  year: 2018
  end-page: 780
  ident: bb0270
  article-title: A response to ‘Clarifying the meaning of mantras in wildland fire behaviour modelling: a reply to Cruz et al. (2017)’
  publication-title: Int. J. Wildland Fire
– volume: 62
  start-page: 289
  year: 2013
  end-page: 298
  ident: bb0500
  article-title: Wildland fire modeling with an Eulerian level set method and automated calibration
  publication-title: Fire Saf. J.
– start-page: 49
  year: 2010
  ident: bb0705
  article-title: Field guide for mapping post-fire soil burn severity. Gen. Tech. Rep. RMRS-GTR-243. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station
– volume: 42
  start-page: 229
  year: 1985
  end-page: 258
  ident: bb0045
  article-title: A model for fire spread in wildland fuels by radiation
  publication-title: Combust. Sci. Technol.
– year: 2010
  ident: bb0860
  article-title: Development and structure of Prometheus: the Canadian Wildland Fire Growth Simulation Model. Nat. Resour. Can., Can. For. Serv., North. For. Cent., Edmonton, AB. Inf. Rep. NOR-X-417
– volume: 2
  start-page: 107
  year: 2021
  ident: bb0175
  article-title: A framework for quantifying hydrologic effects of soil structure across scales
  publication-title: Commun. Earth Environ.
– volume: 231–232
  start-page: 195
  year: 2000
  end-page: 206
  ident: bb0290
  article-title: The role of fire and soil heating on water repellency in wildland environments: a review
  publication-title: J. Hydrol.
– volume: 87
  start-page: 1
  year: 2015
  end-page: 9
  ident: bb0435
  article-title: Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire
  publication-title: Soil Biol. Biochem.
– volume: 31
  year: 2021
  ident: bb0800
  article-title: Effects of postfire climate and seed availability on postfire conifer regeneration
  publication-title: Ecol. Appl.
– volume: 601–602
  start-page: 1119
  year: 2017
  end-page: 1128
  ident: bb0150
  article-title: Burn effects on soil properties associated to heat transfer under contrasting moisture content
  publication-title: Sci. Total Environ.
– year: 2006
  ident: bb0225
  article-title: Using remote sensing to map and monitor fire damage in forest ecosystems
  publication-title: Understanding Forest Disturbance and Spatial Patterns: Remote Sensing and GIS Approaches
– volume: 11
  start-page: 233
  year: 2002
  end-page: 246
  ident: bb0525
  article-title: Studying wildfire behavior using FIRETEC, Int. J
  publication-title: Wildland Fire
– volume: 6
  start-page: 1827
  year: 2014
  end-page: 1844
  ident: bb0695
  article-title: A new metric for quantifying burn severity: the relativized burn ratio
  publication-title: Remote Sens.
– volume: 48
  year: 2012
  ident: bb0550
  article-title: Modeling soil heating and moisture transport under extreme conditions: forest fires and slash pile burns, Water Resour
  publication-title: Res.
– volume: 47
  start-page: 437
  year: 2011
  end-page: 460
  ident: bb0640
  article-title: Physical phenomena and length scales governing the behavior of wildfires: a case for physical modelling
  publication-title: Fire. Technol
– year: 1997
  ident: bb0515
  article-title: A transport model for prediction of wildfire behavior, Sci. Rep. LA-13334-T, 195 pp., Los Alamos Natl. Lab., Los Alamos, N. M
– volume: 18
  start-page: 369
  year: 2009
  end-page: 386
  ident: bb0825
  article-title: Wildland surface fire spread modelling, 1990–2007. 2: empirical and quasi-empirical models
  publication-title: Int. J. Wildland Fire
– volume: 26
  start-page: 973
  year: 2017
  end-page: 981
  ident: bb0275
  article-title: Mantras of wildland fire behaviour modelling: facts or fallacies?
  publication-title: Int. J. Wildland Fire
– volume: 119
  year: 2022
  ident: bb0910
  article-title: Growing impact of wildfire on western US water supply
  publication-title: Proc. Nat. Acad. Sci.
– volume: 20
  start-page: 919
  year: 1990
  end-page: 926
  ident: bib922
  article-title: A method for predicting the depth of lethal heat penetration into mineral soils exposed to fires of various intensities
  publication-title: Canadian Journal of Forest Research
– start-page: 1
  year: 2019
  end-page: 8
  ident: bb0090
  article-title: Fireline intensity
  publication-title: Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) fires
– volume: 7
  start-page: 23
  year: 1977
  end-page: 34
  ident: bb0885
  article-title: Conditions for the start of crown fire
  publication-title: Can. J. For. Res.
– volume: 868
  start-page: 161714
  year: 2023
  ident: bb0740
  article-title: Fire-induced geochemical changes in soil: implication for the element cycling
  publication-title: Sci. Total Environ.
– volume: 627
  start-page: 622
  year: 2018
  end-page: 632
  ident: bb0625
  article-title: Inferring changes in soil organic matter in post-wildfire soil burn severity levels in a temperate climate
  publication-title: Sci. Total Environ.
– volume: 28
  start-page: 478
  year: 2020
  end-page: 505
  ident: bb0450
  article-title: A review of machine learning applications in wildfire science and management
  publication-title: Environ. Rev.
– volume: 138
  start-page: 199
  year: 2004
  end-page: 210
  ident: bb0645
  article-title: Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation
  publication-title: Combust. Flame
– volume: 17
  start-page: 67
  year: 1991
  end-page: 82
  ident: bb0895
  article-title: Modelling fire spread through fuel beds
  publication-title: Prog. Energy Combust. Sci.
– volume: 113
  start-page: 11770
  year: 2016
  end-page: 11775
  ident: bb0005
  article-title: Impact of anthropogenic climate change on wildfire across western US forests
  publication-title: Proc. Nat. Acad. Sci. USA
– volume: 49
  start-page: 565
  year: 2019
  end-page: 574
  ident: bb0160
  article-title: A review of a new generation of wildfire–atmosphere modeling
  publication-title: Can. J. For. Res.
– volume: 168
  start-page: 113
  year: 2016
  end-page: 126
  ident: bb0445
  article-title: Experimental and Numerical Studies Characterizing the Burning Dynamics of Wildland Fuels
  publication-title: Combust. Flame
– volume: 16
  start-page: 9
  year: 1971
  end-page: 16
  ident: bb0375
  article-title: Fire spread through porous fuels from the conservation of energy
  publication-title: Combust Flame
– volume: 20
  start-page: 170
  year: 2022
  end-page: 178
  ident: bb0735
  article-title: A global synthesis of fire effects on ecosystem services of forests and woodlands
  publication-title: Front. Ecol. Environ.
– volume: 5
  start-page: 81
  year: 1995
  end-page: 91
  ident: bb0060
  article-title: Modeling ignition and burning rate of large woody natural fuels
  publication-title: Int. J. Wildland Fire
– year: 2009
  ident: bb0280
  article-title: Prometheus COM programmer’s manual
– volume: 75
  start-page: 1133
  year: 2011
  end-page: 1143
  ident: bb0810
  article-title: How rock fragments and moisture affect soil temperatures during fire
  publication-title: Soil Sci. Soc. Am. J.
– volume: 8
  start-page: 1
  year: 1998
  end-page: 13
  ident: bb0220
  article-title: Prediction of fire spread in grasslands
  publication-title: Int. J. Wildland Fire
– year: 1997
  ident: bb0410
  article-title: Mathematical Modeling of Forest Fires and New Methods of Fighting Them. English Translation Edition.’ (Ed. F Albini)
– year: 1966
  ident: bb0750
  article-title: Fire spread characteristics determined in the laboratory, USDA For. Serv. Res. Pap. INT30, Intermt. For. and Range Exp. Sta., Ogden, Utah
– year: 2018
  ident: bb0110
  article-title: The Rothermel surface fire spread model and associated developments: a comprehensive explanation. USDA Forest Service, Rocky Mountain Research Station
– volume: 5
  start-page: 63
  year: 1995
  end-page: 72
  ident: bb0730
  article-title: A general mathematical framework for modeling two-dimensional wildland fire spread
  publication-title: Int. J. Wildland Fire
– volume: 25
  start-page: 229
  year: 2016
  end-page: 241
  ident: bb0180
  article-title: A comparison of level set and marker methods for the simulation of wildland fire front propagation
  publication-title: Int. J. Wildland Fire
– volume: 44
  start-page: 7310
  year: 2017
  end-page: 7319
  ident: bb0585
  article-title: Debris flow initiation by runoff in a recently burned basin: Is grain-by-grain sediment bulking or en masse failure to blame?
  publication-title: Geophys. Res. Lett.
– volume: 112
  start-page: 9833
  year: 2015
  end-page: 9838
  ident: bb0365
  article-title: Role of Buoyant flame dynamics in wildfire spread
  publication-title: Proc. Natl. Acad. Sci.
– volume: 110
  year: 2005
  ident: bb0520
  article-title: Numerical simulations of grass fires using a coupled atmosphere–fire model: Basic fire behavior and dependence on wind speed
  publication-title: J. Geophys. Res.
– year: 2015
  ident: bb0300
  article-title: Wildland Fire Potential: A Tool for Assessing Wildfire Risk and Fuels Management Needs. pp 60-76
  publication-title: Proceedings of the large wildland fires conference; May 19-23, 2014; Missoula, MT. Proc. RMRS-P-73
– year: 1976
  ident: bb0030
  article-title: Estimating wildfire behavior and effects. USDA Forest Service, Intermountain Forest and Range Experiment Station
– volume: 4
  start-page: 591
  year: 2011
  end-page: 610
  ident: bb0540
  article-title: Coupled atmosphere–wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci
  publication-title: Model Dev.
– volume: 13
  start-page: 43
  year: 2017
  end-page: 57
  ident: bb0905
  article-title: Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory
  publication-title: J. Hydrol. Reg. Stud.
– volume: INT-56
  year: 1979
  ident: bb0035
  article-title: Spot fire distance from burning trees: a predictive model
  publication-title: USDA Forest Service; Res Pap
– year: 2012
  ident: bb0475
  article-title: Fire in Mediterranean Ecosystems: Ecology, Evolution and Management
– volume: 18
  start-page: 387
  year: 2009
  end-page: 403
  ident: bb0830
  article-title: Wildland surface fire spread modelling, 1990–2007. 3: simulation and mathematical analogue models
  publication-title: Int. J. Wildland Fire
– volume: 72
  start-page: 93
  year: 1946
  end-page: 121
  ident: bb0370
  article-title: Analysis of fire spread in light forest fuels
  publication-title: J. Agric. Res.
– volume: 37
  start-page: 2383
  year: 2007
  end-page: 2393
  ident: bb0690
  article-title: An overview of the Fuel characteristic classification system — quantifying, classifying, and creating fuelbeds for resource planning
  publication-title: Can. J. For. Res.
– volume: 11
  start-page: 8779
  year: 2021
  ident: bb0510
  article-title: Spatial and temporal pattern of wildfires in California from 2000 to 2019
  publication-title: Sci. Rep.
– volume: 159
  start-page: 363
  year: 1995
  end-page: 374
  ident: bb0200
  article-title: Soil temperature and water content beneath a surface fire
  publication-title: Soil Sci.
– volume: 67
  start-page: 230
  year: 1996
  end-page: 240
  ident: bb0260
  article-title: A real-time computer application for the prediction of fire spread across the Australian landscape
  publication-title: Simulation
– volume: 120
  year: 2023
  ident: bb0285
  article-title: Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western United States
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 143
  start-page: 1
  year: 2005
  end-page: 10
  ident: bb0210
  article-title: Effects of fire on properties of forest soils: a review
  publication-title: Oecologia
– volume: INT-115
  year: 1972
  ident: bb0745
  article-title: A mathematical model for predicting fire spread in wildland fuels
  publication-title: USDA Forest Service; Res Pap
– volume: 47
  start-page: 219
  year: 2001
  end-page: 228
  ident: bb0350
  article-title: Design of regular landscape fuel treatment patterns for modifying fire growth and behavior
  publication-title: For. Sci.
– year: 2005
  ident: bb0595
  article-title: Numerical simulations of grassland fire behaviour from the LANL-FIRETEC and NIST-WFDS models
  publication-title: Proceeding of EastFIRE conference, George Mason University, Fairfax, VA, 11–13 May 2005
– volume: 25
  start-page: 3985
  year: 2019
  end-page: 3994
  ident: bb0795
  article-title: Fixing a snag in carbon emissions estimates from wildfires
  publication-title: Glob. Chang. Biol.
– volume: 17
  start-page: 78
  year: 1981
  end-page: 84
  ident: bb0415
  article-title: Heat and mass transport and the propagation of burning particles in the surface layer of the atmosphere during upstream forest fires
  publication-title: Fizika Gorenia i Vzryva
– volume: 371
  start-page: 20150345
  year: 2016
  ident: bb0305
  article-title: Global trends in wildfire and its impacts: Perceptions versus realities in a changing world
  publication-title: Philos. Trans. Roy. Soc. B: Biol. Sci.
– year: 2015
  ident: bb0385
  article-title: The WRF-Hydro model technical description and user’s guide, version 3.0
– volume: 432
  start-page: 1022
  year: 2019
  end-page: 1029
  ident: bb0710
  article-title: The myth of the biological threshold: a review of biological responses to soil heating associated with wildland fire
  publication-title: For. Ecol. Manag.
– volume: 8
  start-page: 273
  year: 1970
  end-page: 279
  ident: bb0765
  article-title: Soil temperature under grass fires
  publication-title: Aus. J. Soil Res.
– volume: 6
  year: 2023
  ident: bb0785
  article-title: Assessment of the effects of the 2021 Caldor megafire on soil physical properties, eastern Sierra Nevada, USA
  publication-title: Fire
– volume: 10
  start-page: 137
  year: 2001
  end-page: 143
  ident: bb0190
  article-title: Flame residence times and rates of weight loss of eucalypt. forest fuel particles
  publication-title: Int. J. Wildland Fire
– volume: 137
  year: 2022
  ident: bb0120
  article-title: Combining wildfire behaviour simulations and network analysis to support wildfire management: A Mediterranean landscape case study
  publication-title: Ecol. Indic.
– volume: 256
  start-page: 1239
  year: 2008
  end-page: 1252
  ident: bb0135
  article-title: Fire models and methods to map fuel types: the role of remote sensing
  publication-title: For. Ecol. Manag.
– volume: 22
  start-page: 222
  year: 1998
  end-page: 245
  ident: bib921
  article-title: Current approaches to modelling the spread of wildland fire: a review
  publication-title: Progress in Physical Geography: Earth and Environment
– reference: CWFGM Steering Committee. 2004. Prometheus User Manual v. 3.0.1. Canadian Forest Service. Available online:
– year: 2005
  ident: bb0670
  article-title: Wildland fire in ecosystems: effects of fire on soils and water. Gen. Tech. Rep. RMRS-GTR-42-vol.4
– reference: (accessed on 21 September 2023).
– volume: 45
  start-page: 101
  year: 1986
  end-page: 113
  ident: bb0050
  article-title: Wildland fire spread by radiation, a model including fuel cooling by convection
  publication-title: Combust. Sci. Technol.
– volume: 45
  start-page: 5553
  year: 2018
  end-page: 5561
  ident: bb0455
  article-title: Soil structural degradation during low-severity burns
  publication-title: Geophys. Res. Lett.
– volume: 74
  start-page: 269
  year: 2006
  end-page: 307
  ident: bb0770
  article-title: Wildfire as a hydrological and geomorphological agent
  publication-title: Earth Sci. Rev.
– volume: 25
  start-page: 685
  year: 2021
  end-page: 709
  ident: bb0555
  article-title: The challenges of an in situ validation of a nonequilibrium model of soil heat and moisture dynamics during fires
  publication-title: Hydrol. Earth Syst. Sci.
– year: 2022
  ident: bb0155
  article-title: Pan-European wildfire risk assessment. Publications Office of the European Union
– volume: 16
  start-page: 1
  year: 2007
  end-page: 22
  ident: bb0600
  article-title: A physics-based approach to modeling grassland fires
  publication-title: Int. J. Wildland Fire
– volume: 60
  start-page: 349
  year: 1982
  end-page: 357
  ident: bb0085
  article-title: Calculating and interpreting forest fire intensities
  publication-title: Can. J. Bot.
– volume: 1018
  year: 2010
  ident: bb0580
  article-title: Fire Dynamics Simulator (Version 5) Technical Reference Guide
  publication-title: NIST Special Publication.
– volume: 25
  start-page: 158
  year: 2016
  end-page: 166
  ident: bb0790
  article-title: Towards a new paradigm in fire severity research using dose-response experiments
  publication-title: Int. J. Wildland Fire
– volume: 5
  start-page: 163
  year: 1964
  end-page: 178
  ident: bb0335
  article-title: Fire in the forest
  publication-title: Fire Res Abs Rev.
– volume: 237
  start-page: 111866
  year: 2022
  ident: bb0700
  article-title: A simplified analytical model for radiation dominated ignition of solid fuels exposed to multiple non-steady heat fluxes
  publication-title: Combust. Flame
– year: 1996
  ident: bb0065
  article-title: Models for fire-driven heat and moisture transport in soils
  publication-title: USDA, Intermountain Research Station, General Technical Report INT-GTR-335. (Ogden, UT)
– volume: 11
  year: 2023
  ident: bb0325
  article-title: Modeling post-wildfire hydrologic response: Review and future directions for applications of physically based distributed simulation. Earth's
  publication-title: Future
– volume: 216
  start-page: 232
  year: 2020
  end-page: 244
  ident: bb0400
  article-title: Auto-ignition of thermally thick PMMA exposed to linearly decreasing thermal radiation
  publication-title: Combust. Flame
– year: 1967
  ident: bb0575
  article-title: Fire behaviour in Eucaliptus forests. Forest Research Institute, Forest and Timber Bureau of Australia; Leaflet No. 107
– volume: 41
  start-page: 349
  year: 2006
  end-page: 363
  ident: bb0115
  article-title: On the trajectories of embers initially elevated or lofted by small scale ground fire plumes in high winds
  publication-title: Fire Saf. J.
– volume: 31
  year: 2021
  ident: bb0425
  article-title: Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests
  publication-title: Ecol. Appl.
– volume: 19
  start-page: 153
  year: 2004
  end-page: 165
  ident: bb0315
  article-title: Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA
  publication-title: Landsc. Ecol.
– year: 1966
  ident: bb0570
  article-title: Weather and Grassland Fire Behaviour
– volume: 3
  year: 2022
  ident: bb0865
  article-title: Global Trends of Forest Loss Due to Fire From 2001 to 2019
  publication-title: Fron. Remote Sens.
– volume: 31
  start-page: 28
  year: 2021
  end-page: 58
  ident: bb0720
  article-title: Adapting western North American forests to climate change and wildfires: 10 common questions
  publication-title: Ecol. Appl.
– volume: 234
  start-page: S114
  year: 2006
  ident: bb0650
  article-title: FIRESTAR: A Physically based model to study wildfire behaviour
  publication-title: Forest Ecol. Manag.
– volume: 44
  start-page: 50
  year: 2009
  end-page: 61
  ident: bb0655
  article-title: Physical modelling of fire spread in Grasslands
  publication-title: Fire Saf. J.
– volume: 16
  start-page: 493
  year: 2007
  end-page: 502
  ident: bb0265
  article-title: Separating combustion from pyrolysis in HIGRAD/FIRETEC
  publication-title: Int. J. Wildland Fire
– volume: 122
  start-page: 51
  year: 1999
  end-page: 71
  ident: bb0665
  article-title: Fire effects on belowground sustainability: a review and synthesis
  publication-title: For. Ecol. Manag.
– volume: 6
  start-page: 36
  year: 2010
  end-page: 54
  ident: bb0560
  article-title: Advancing investigation and physical modeling of first-order fire effects on soils
  publication-title: Fire ecol
– volume: 3
  start-page: 31
  year: 2017
  end-page: 44
  ident: bb0130
  article-title: Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
  publication-title: Soil
– volume: 18
  start-page: 96
  year: 2009
  end-page: 115
  ident: bb0635
  article-title: Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States
  publication-title: Int. J. Wildland Fire
– volume: 10
  start-page: 1021
  year: 1965
  end-page: 1037
  ident: bb0840
  article-title: On the flight paths and lifetimes of burning particles of wood
  publication-title: Symp. Combust.
– volume: 60
  start-page: 309
  year: 1996
  end-page: 315
  ident: bb0870
  article-title: Forest fire effects on soil phyllosilicates in California
  publication-title: Soil Sci. Soc. Am. J.
– volume: 5
  start-page: 201
  year: 1980
  end-page: 203
  ident: bb0685
  article-title: McArthur’s fire danger meters expressed as equations
  publication-title: Aust. J. Ecol.
– volume: 18
  start-page: 250
  year: 2009
  end-page: 267
  ident: bb0725
  article-title: Spatial fuel data products of the LANDFIRE Project
  publication-title: Int. J. Wildland Fire
– volume: 7
  start-page: 1419
  year: 2022
  end-page: 1430
  ident: bb0675
  article-title: Wildfire-dependent changes in soil microbiome diversity and function
  publication-title: Nat. Microbiol.
– volume: 18
  start-page: 116
  year: 2009
  end-page: 126
  ident: bb0470
  article-title: Fire intensity, fire severity and burn severity: a brief review and suggested usage
  publication-title: Int. J. Wildland Fire
– volume: 27
  start-page: 377
  year: 2018
  end-page: 386
  ident: bb0010
  article-title: Human-related ignitions concurrent with high winds promote large wildfires across the USA
  publication-title: Int. J. Wildland Fire
– volume: 10
  start-page: 50
  year: 1957
  end-page: 63
  ident: bb0630
  article-title: Conditions for the spread of crown fire in pine forest
  publication-title: Lesnoe Khozydystvo
– volume: 13
  start-page: 1050
  year: 2022
  ident: bb0780
  article-title: Global wildfire susceptibility mapping based on machine learning models
  publication-title: Forests
– volume: 2
  start-page: 351
  year: 2016
  end-page: 366
  ident: bb0125
  article-title: Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
  publication-title: Soil
– year: 1967
  ident: bb0880
  article-title: Calculations on forest fire spread by flame radiation. Canadian Department of Forestry
– volume: 18
  start-page: 387
  issue: 4
  year: 2009
  ident: 10.1016/j.earscirev.2023.104569_bb0830
  article-title: Wildland surface fire spread modelling, 1990–2007. 3: simulation and mathematical analogue models
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF06144
– year: 2015
  ident: 10.1016/j.earscirev.2023.104569_bb0300
  article-title: Wildland Fire Potential: A Tool for Assessing Wildfire Risk and Fuels Management Needs. pp 60-76
– volume: 590
  start-page: 125364
  year: 2020
  ident: 10.1016/j.earscirev.2023.104569_bb0535
  article-title: Wildfire controls on evapotranspiration in California’s Sierra Nevada
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125364
– volume: 25
  start-page: 3985
  year: 2019
  ident: 10.1016/j.earscirev.2023.104569_bb0795
  article-title: Fixing a snag in carbon emissions estimates from wildfires
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14716
– volume: 602
  start-page: 442
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0165
  article-title: Warming weakens the night-time barrier to global fire
  publication-title: Nature
  doi: 10.1038/s41586-021-04325-1
– volume: 112
  start-page: 9833
  year: 2015
  ident: 10.1016/j.earscirev.2023.104569_bb0365
  article-title: Role of Buoyant flame dynamics in wildfire spread
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1504498112
– start-page: 213
  year: 2006
  ident: 10.1016/j.earscirev.2023.104569_bb0355
  article-title: An Overview of FlamMap fire modeling capabilities
– start-page: 72
  year: 2005
  ident: 10.1016/j.earscirev.2023.104569_bb0760
– volume: 432
  start-page: 1022
  year: 2019
  ident: 10.1016/j.earscirev.2023.104569_bb0710
  article-title: The myth of the biological threshold: a review of biological responses to soil heating associated with wildland fire
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2018.10.032
– volume: 613–614
  start-page: 944
  year: 2018
  ident: 10.1016/j.earscirev.2023.104569_bb0075
  article-title: Effects of prescribed fires on soil properties: A review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.144
– volume: 1018
  year: 2010
  ident: 10.1016/j.earscirev.2023.104569_bb0580
  article-title: Fire Dynamics Simulator (Version 5) Technical Reference Guide
  publication-title: NIST Special Publication.
– year: 2009
  ident: 10.1016/j.earscirev.2023.104569_bb0280
– volume: 60
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0465
  article-title: Global and regional trends and drivers of fire under climate change
  publication-title: Rev. Geophys.
  doi: 10.1029/2020RG000726
– year: 1967
  ident: 10.1016/j.earscirev.2023.104569_bb0575
– volume: 25
  start-page: 158
  year: 2016
  ident: 10.1016/j.earscirev.2023.104569_bb0790
  article-title: Towards a new paradigm in fire severity research using dose-response experiments
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF15130
– year: 2015
  ident: 10.1016/j.earscirev.2023.104569_bb0385
– volume: 44
  start-page: 50
  year: 2009
  ident: 10.1016/j.earscirev.2023.104569_bb0655
  article-title: Physical modelling of fire spread in Grasslands
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2008.03.004
– volume: 7
  start-page: 1419
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0675
  article-title: Wildfire-dependent changes in soil microbiome diversity and function
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-022-01203-y
– volume: 31
  issue: 8
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0425
  article-title: Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.2431
– volume: 138
  start-page: 199
  year: 2004
  ident: 10.1016/j.earscirev.2023.104569_bb0645
  article-title: Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2004.05.001
– year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0155
– start-page: 46
  year: 2016
  ident: 10.1016/j.earscirev.2023.104569_bb0480
  article-title: Western Wildfires: A Fiery Future
  publication-title: Climate Central
– volume: INT-115
  year: 1972
  ident: 10.1016/j.earscirev.2023.104569_bb0745
  article-title: A mathematical model for predicting fire spread in wildland fuels
  publication-title: USDA Forest Service; Res Pap
– volume: 6
  start-page: 36
  year: 2010
  ident: 10.1016/j.earscirev.2023.104569_bb0560
  article-title: Advancing investigation and physical modeling of first-order fire effects on soils
  publication-title: Fire ecol
  doi: 10.4996/fireecology.0601036
– volume: 126
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0080
  article-title: Post-wildfire generation of debris-flow slurry by rill erosion on colluvial hillslopes
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1029/2021JF006108
– volume: 231–232
  start-page: 195
  year: 2000
  ident: 10.1016/j.earscirev.2023.104569_bb0290
  article-title: The role of fire and soil heating on water repellency in wildland environments: a review
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(00)00194-3
– volume: 42
  start-page: 229
  year: 1985
  ident: 10.1016/j.earscirev.2023.104569_bb0045
  article-title: A model for fire spread in wildland fuels by radiation
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102208508960381
– year: 1969
  ident: 10.1016/j.earscirev.2023.104569_bb0095
– volume: 8
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.earscirev.2023.104569_bb0220
  article-title: Prediction of fire spread in grasslands
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF9980001
– volume: 17
  start-page: 67
  year: 1991
  ident: 10.1016/j.earscirev.2023.104569_bb0895
  article-title: Modelling fire spread through fuel beds
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/0360-1285(91)90003-6
– volume: 120
  issue: 11
  year: 2023
  ident: 10.1016/j.earscirev.2023.104569_bb0285
  article-title: Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western United States
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2208120120
– volume: 47
  start-page: 219
  issue: 2
  year: 2001
  ident: 10.1016/j.earscirev.2023.104569_bb0350
  article-title: Design of regular landscape fuel treatment patterns for modifying fire growth and behavior
  publication-title: For. Sci.
– volume: 6
  start-page: 1827
  issue: 3
  year: 2014
  ident: 10.1016/j.earscirev.2023.104569_bb0695
  article-title: A new metric for quantifying burn severity: the relativized burn ratio
  publication-title: Remote Sens.
  doi: 10.3390/rs6031827
– volume: 28
  start-page: 861
  year: 2019
  ident: 10.1016/j.earscirev.2023.104569_bb0255
  article-title: Machine learning to predict final fire size at time of ignition
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF19023
– volume: 237
  start-page: 111866
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0700
  article-title: A simplified analytical model for radiation dominated ignition of solid fuels exposed to multiple non-steady heat fluxes
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2021.111866
– year: 1966
  ident: 10.1016/j.earscirev.2023.104569_bb0570
– volume: 20
  start-page: 170
  issue: 3
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0735
  article-title: A global synthesis of fire effects on ecosystem services of forests and woodlands
  publication-title: Front. Ecol. Environ.
  doi: 10.1002/fee.2349
– year: 2010
  ident: 10.1016/j.earscirev.2023.104569_bb0860
– volume: 45
  start-page: 5553
  year: 2018
  ident: 10.1016/j.earscirev.2023.104569_bb0455
  article-title: Soil structural degradation during low-severity burns
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL078053
– year: 2012
  ident: 10.1016/j.earscirev.2023.104569_bb0475
– volume: 3
  start-page: 31
  issue: 1
  year: 1993
  ident: 10.1016/j.earscirev.2023.104569_bb0215
  article-title: The influence of fuel weather and fire shape variables on fire spread in grasslands
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF9930031
– volume: vol. 48
  year: 1996
  ident: 10.1016/j.earscirev.2023.104569_bb0390
  article-title: Fire in Ecosystems of Boreal Eurasia: Ecological Impacts and Links to the Global System
– volume: 5
  start-page: 81
  year: 1995
  ident: 10.1016/j.earscirev.2023.104569_bb0060
  article-title: Modeling ignition and burning rate of large woody natural fuels
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF9950081
– volume: 5
  start-page: 201
  year: 1980
  ident: 10.1016/j.earscirev.2023.104569_bb0685
  article-title: McArthur’s fire danger meters expressed as equations
  publication-title: Aust. J. Ecol.
  doi: 10.1111/j.1442-9993.1980.tb01243.x
– volume: 17
  start-page: 205
  year: 2008
  ident: 10.1016/j.earscirev.2023.104569_bb0340
  article-title: A variable property heat transfer model for predicting soil temperature profiles during simulated wildland fire conditions
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF07002
– volume: 35
  start-page: 875
  year: 1996
  ident: 10.1016/j.earscirev.2023.104569_bb0230
  article-title: A coupled atmospheric-fire model: convective feedback on fire line dynamics
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1996)035<0875:ACAMCF>2.0.CO;2
– volume: 28
  start-page: 478
  issue: 4
  year: 2020
  ident: 10.1016/j.earscirev.2023.104569_bb0450
  article-title: A review of machine learning applications in wildfire science and management
  publication-title: Environ. Rev.
  doi: 10.1139/er-2020-0019
– volume: 3
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0865
  article-title: Global Trends of Forest Loss Due to Fire From 2001 to 2019
  publication-title: Fron. Remote Sens.
– volume: 26
  start-page: 668
  year: 2017
  ident: 10.1016/j.earscirev.2023.104569_bb0460
  article-title: Direct estimation of Byram’s fire intensity from infrared remote sensing imagery
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF16178
– volume: 27
  start-page: 770
  year: 2018
  ident: 10.1016/j.earscirev.2023.104569_bb0615
  article-title: Clarifying the meaning of mantras in wildland fire behaviour modelling: reply to Cruz et al. (2017)
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF18106
– volume: 9
  start-page: 11958
  year: 2019
  ident: 10.1016/j.earscirev.2023.104569_bb0915
  article-title: Analytical study on ignition time of PMMA exposed to time-decreasing thermal radiation using critical mass flux
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48411-x
– volume: 31
  issue: 3
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0800
  article-title: Effects of postfire climate and seed availability on postfire conifer regeneration
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.2280
– volume: 18
  start-page: 116
  year: 2009
  ident: 10.1016/j.earscirev.2023.104569_bb0470
  article-title: Fire intensity, fire severity and burn severity: a brief review and suggested usage
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF07049
– volume: 11
  start-page: 8779
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0510
  article-title: Spatial and temporal pattern of wildfires in California from 2000 to 2019
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-88131-9
– volume: 113
  start-page: D01301
  year: 2008
  ident: 10.1016/j.earscirev.2023.104569_bb0380
  article-title: Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires
  publication-title: J. Geophys. Res.
– volume: 216
  start-page: 232
  year: 2020
  ident: 10.1016/j.earscirev.2023.104569_bb0400
  article-title: Auto-ignition of thermally thick PMMA exposed to linearly decreasing thermal radiation
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.03.005
– volume: 74
  start-page: 269
  issue: 3–4
  year: 2006
  ident: 10.1016/j.earscirev.2023.104569_bb0770
  article-title: Wildfire as a hydrological and geomorphological agent
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2005.10.006
– year: 1996
  ident: 10.1016/j.earscirev.2023.104569_bb0065
  article-title: Models for fire-driven heat and moisture transport in soils
– volume: 156
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0485
  article-title: Prediction of wildfire rate of spread in grasslands using machine learning methods
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2022.105507
– volume: 110
  year: 2005
  ident: 10.1016/j.earscirev.2023.104569_bb0520
  article-title: Numerical simulations of grass fires using a coupled atmosphere–fire model: Basic fire behavior and dependence on wind speed
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 1050
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0780
  article-title: Global wildfire susceptibility mapping based on machine learning models
  publication-title: Forests
  doi: 10.3390/f13071050
– year: 1998
  ident: 10.1016/j.earscirev.2023.104569_bb0295
– volume: 601–602
  start-page: 1119
  year: 2017
  ident: 10.1016/j.earscirev.2023.104569_bb0150
  article-title: Burn effects on soil properties associated to heat transfer under contrasting moisture content
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.05.254
– volume: 44
  start-page: 7310
  year: 2017
  ident: 10.1016/j.earscirev.2023.104569_bb0585
  article-title: Debris flow initiation by runoff in a recently burned basin: Is grain-by-grain sediment bulking or en masse failure to blame?
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074243
– year: 1967
  ident: 10.1016/j.earscirev.2023.104569_bb0880
– year: 1997
  ident: 10.1016/j.earscirev.2023.104569_bb0410
– volume: 16
  start-page: 9
  year: 1971
  ident: 10.1016/j.earscirev.2023.104569_bb0375
  article-title: Fire spread through porous fuels from the conservation of energy
  publication-title: Combust Flame
  doi: 10.1016/S0010-2180(71)80005-6
– volume: 371
  start-page: 20150345
  issue: 1696
  year: 2016
  ident: 10.1016/j.earscirev.2023.104569_bb0305
  article-title: Global trends in wildfire and its impacts: Perceptions versus realities in a changing world
  publication-title: Philos. Trans. Roy. Soc. B: Biol. Sci.
  doi: 10.1098/rstb.2015.0345
– volume: 91
  start-page: 864
  year: 2017
  ident: 10.1016/j.earscirev.2023.104569_bb0845
  article-title: Investigation of firebrand generation from an experimental fire: development of a reliable data collection methodology
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2017.04.002
– volume: 47
  start-page: 437
  year: 2011
  ident: 10.1016/j.earscirev.2023.104569_bb0640
  article-title: Physical phenomena and length scales governing the behavior of wildfires: a case for physical modelling
  publication-title: Fire. Technol
  doi: 10.1007/s10694-010-0160-2
– volume: 362
  start-page: 335
  year: 2013
  ident: 10.1016/j.earscirev.2023.104569_bb0025
  article-title: Degradation of moist soil aggregates by rapid temperature rise under low intensity fire
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1408-z
– volume: 27
  start-page: 776
  issue: 11
  year: 2018
  ident: 10.1016/j.earscirev.2023.104569_bb0270
  article-title: A response to ‘Clarifying the meaning of mantras in wildland fire behaviour modelling: a reply to Cruz et al. (2017)’
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF18161
– volume: 45
  start-page: 101
  year: 1986
  ident: 10.1016/j.earscirev.2023.104569_bb0050
  article-title: Wildland fire spread by radiation, a model including fuel cooling by convection
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102208608923844
– volume: 143
  start-page: 1
  year: 2005
  ident: 10.1016/j.earscirev.2023.104569_bb0210
  article-title: Effects of fire on properties of forest soils: a review
  publication-title: Oecologia
  doi: 10.1007/s00442-004-1788-8
– volume: 5
  start-page: 1318
  issue: 1
  year: 2023
  ident: 10.1016/j.earscirev.2023.104569_bb0900
  article-title: The Marshall Fire: Scientific and policy needs for water system disaster response
  publication-title: AWWA Water Sci.
  doi: 10.1002/aws2.1318
– volume: 21
  start-page: 396
  issue: 4
  year: 2012
  ident: 10.1016/j.earscirev.2023.104569_bb0490
  article-title: Modelling firebrand transport in wildfires using HIGRAD/FIRETEC
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF09146
– year: 2018
  ident: 10.1016/j.earscirev.2023.104569_bb0110
– ident: 10.1016/j.earscirev.2023.104569_bb9000
– volume: 76
  start-page: 100801
  year: 2020
  ident: 10.1016/j.earscirev.2023.104569_bb0545
  article-title: Role of firebrand combustion in large outdoor fire spread
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2019.100801
– volume: 119
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0910
  article-title: Growing impact of wildfire on western US water supply
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.2114069119
– volume: 23
  start-page: 21
  year: 2014
  ident: 10.1016/j.earscirev.2023.104569_bb0105
  article-title: Current status and future needs of the BehavePlus Fire Modeling System
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF12167
– volume: 627
  start-page: 622
  year: 2018
  ident: 10.1016/j.earscirev.2023.104569_bb0625
  article-title: Inferring changes in soil organic matter in post-wildfire soil burn severity levels in a temperate climate
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.189
– year: 1966
  ident: 10.1016/j.earscirev.2023.104569_bb0750
– volume: 5
  start-page: 163
  year: 1964
  ident: 10.1016/j.earscirev.2023.104569_bb0335
  article-title: Fire in the forest
  publication-title: Fire Res Abs Rev.
– volume: 108
  start-page: 2047
  year: 2020
  ident: 10.1016/j.earscirev.2023.104569_bb0590
  article-title: Fire as a fundamental ecological process: research advances and frontiers
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13403
– volume: 52
  start-page: 16
  year: 2013
  ident: 10.1016/j.earscirev.2023.104569_bb0250
  article-title: WRF-Fire: coupled weather–wildland fire modeling with the Weather Research and Forecasting Model
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-12-023.1
– volume: 3
  start-page: 31
  year: 2017
  ident: 10.1016/j.earscirev.2023.104569_bb0130
  article-title: Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
  publication-title: Soil
  doi: 10.5194/soil-3-31-2017
– volume: 25
  start-page: 685
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0555
  article-title: The challenges of an in situ validation of a nonequilibrium model of soil heat and moisture dynamics during fires
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-685-2021
– volume: 13
  start-page: 43
  year: 2017
  ident: 10.1016/j.earscirev.2023.104569_bb0905
  article-title: Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2017.07.006
– start-page: 61
  year: 1959
  ident: 10.1016/j.earscirev.2023.104569_bb0195
  article-title: Combustion of forest fuels
– volume: 63
  start-page: 458
  year: 1962
  ident: 10.1016/j.earscirev.2023.104569_bb0875
  article-title: On the value of a numerical concept of fire intensity
  publication-title: Pulp and Paper Magazine of Canada, Woodland Review
– volume: 3
  start-page: 112
  year: 2006
  ident: 10.1016/j.earscirev.2023.104569_bb0755
  article-title: Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio
  publication-title: Geosci. Remote Sens. Letters, IEEE.
  doi: 10.1109/LGRS.2005.858485
– volume: 16
  start-page: 5229
  year: 2016
  ident: 10.1016/j.earscirev.2023.104569_bb0890
  article-title: Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-5229-2016
– volume: 10
  start-page: 50
  year: 1957
  ident: 10.1016/j.earscirev.2023.104569_bb0630
  article-title: Conditions for the spread of crown fire in pine forest
  publication-title: Lesnoe Khozydystvo
– volume: 156
  start-page: 1503
  issue: 8
  year: 2009
  ident: 10.1016/j.earscirev.2023.104569_bb0505
  article-title: A model for the oxidative pyrolysis of wood
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2009.04.001
– volume: 22
  start-page: 148
  year: 2013
  ident: 10.1016/j.earscirev.2023.104569_bb0020
  article-title: Field validation of a free-agent cellular automata model of fire spread with fire–atmosphere coupling
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF11055
– volume: 60
  start-page: 309
  year: 1996
  ident: 10.1016/j.earscirev.2023.104569_bb0870
  article-title: Forest fire effects on soil phyllosilicates in California
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1996.03615995006000010047x
– volume: 67
  start-page: 230
  issue: 4
  year: 1996
  ident: 10.1016/j.earscirev.2023.104569_bb0260
  article-title: A real-time computer application for the prediction of fire spread across the Australian landscape
  publication-title: Simulation
  doi: 10.1177/003754979606700402
– volume: 122
  start-page: 51
  issue: 1–2
  year: 1999
  ident: 10.1016/j.earscirev.2023.104569_bb0665
  article-title: Fire effects on belowground sustainability: a review and synthesis
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(99)00032-8
– volume: 75
  start-page: 1133
  year: 2011
  ident: 10.1016/j.earscirev.2023.104569_bb0810
  article-title: How rock fragments and moisture affect soil temperatures during fire
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0322
– year: 2005
  ident: 10.1016/j.earscirev.2023.104569_bb0670
– volume: 234
  start-page: S114
  year: 2006
  ident: 10.1016/j.earscirev.2023.104569_bb0650
  article-title: FIRESTAR: A Physically based model to study wildfire behaviour
  publication-title: Forest Ecol. Manag.
  doi: 10.1016/j.foreco.2006.08.155
– volume: 13
  start-page: 49
  year: 2004
  ident: 10.1016/j.earscirev.2023.104569_bb0235
  article-title: Description of a coupled atmosphere-fire model
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF03043
– volume: 19
  start-page: 153
  year: 2004
  ident: 10.1016/j.earscirev.2023.104569_bb0315
  article-title: Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA
  publication-title: Landsc. Ecol.
  doi: 10.1023/B:LAND.0000021714.97148.ac
– volume: 59
  start-page: 13
  issue: 2
  year: 1999
  ident: 10.1016/j.earscirev.2023.104569_bb0360
  article-title: FARSITE: Fire Area Simulator—a program for fire growth simulation
  publication-title: Fire Management Notes
– volume: 868
  start-page: 161714
  year: 2023
  ident: 10.1016/j.earscirev.2023.104569_bb0740
  article-title: Fire-induced geochemical changes in soil: implication for the element cycling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.161714
– volume: 8
  start-page: 273
  year: 1970
  ident: 10.1016/j.earscirev.2023.104569_bb0765
  article-title: Soil temperature under grass fires
  publication-title: Aus. J. Soil Res.
  doi: 10.1071/SR9700273
– volume: 113
  start-page: 11770
  year: 2016
  ident: 10.1016/j.earscirev.2023.104569_bb0005
  article-title: Impact of anthropogenic climate change on wildfire across western US forests
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.1607171113
– year: 1965
  ident: 10.1016/j.earscirev.2023.104569_bb0440
  article-title: The modeling of fire spread through a fuel bed
– volume: 13
  start-page: 391
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0430
  article-title: Combustion of Above ground wood from live trees in megafires, CA, USA
  publication-title: Forests
  doi: 10.3390/f13030391
– volume: 71
  start-page: 68
  year: 2007
  ident: 10.1016/j.earscirev.2023.104569_bb0565
  article-title: Post-fire hydrological and erosional responses of a Mediterranean landscpe: seven years of catchment-scale dynamics
  publication-title: Catena
  doi: 10.1016/j.catena.2006.10.006
– volume: 87
  start-page: 1
  year: 2015
  ident: 10.1016/j.earscirev.2023.104569_bb0435
  article-title: Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.04.005
– volume: 14
  start-page: 49
  year: 2005
  ident: 10.1016/j.earscirev.2023.104569_bb0245
  article-title: Simulation of the Big Elk Fire using coupled atmosphere-fire modeling
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF04047
– volume: 32
  start-page: 534
  issue: 5
  year: 1996
  ident: 10.1016/j.earscirev.2023.104569_bb0055
  article-title: Iterative solution of the radiation transport equations governing spread of fire in wildland fuel
  publication-title: Combust. Explos. Shock Waves
  doi: 10.1007/BF01998575
– volume: 10
  start-page: 137
  year: 2001
  ident: 10.1016/j.earscirev.2023.104569_bb0190
  article-title: Flame residence times and rates of weight loss of eucalypt. forest fuel particles
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF01005
– volume: 12
  start-page: 89
  issue: 2
  year: 1987
  ident: 10.1016/j.earscirev.2023.104569_bb0660
  article-title: Geometric view factors for thermal radiation hazard assessment
  publication-title: Fire Saf. J.
  doi: 10.1016/0379-7112(87)90024-5
– volume: 31
  start-page: 3682
  year: 2017
  ident: 10.1016/j.earscirev.2023.104569_bb0320
  article-title: Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.11288
– volume: 22
  start-page: 222
  issue: 2
  year: 1998
  ident: 10.1016/j.earscirev.2023.104569_bib921
  article-title: Current approaches to modelling the spread of wildland fire: a review
  publication-title: Progress in Physical Geography: Earth and Environment
  doi: 10.1177/030913339802200204
– year: 2005
  ident: 10.1016/j.earscirev.2023.104569_bb0595
  article-title: Numerical simulations of grassland fire behaviour from the LANL-FIRETEC and NIST-WFDS models
– volume: 75
  start-page: 2283
  year: 2011
  ident: 10.1016/j.earscirev.2023.104569_bb0805
  article-title: Natural and fire-induced soil water repellency in a Portuguese shrubland
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0046
– start-page: 1
  year: 2019
  ident: 10.1016/j.earscirev.2023.104569_bb0090
  article-title: Fireline intensity
– volume: 11
  start-page: 233
  year: 2002
  ident: 10.1016/j.earscirev.2023.104569_bb0525
  article-title: Studying wildfire behavior using FIRETEC, Int. J
  publication-title: Wildland Fire
  doi: 10.1071/WF02007
– volume: 16
  start-page: 1
  year: 2007
  ident: 10.1016/j.earscirev.2023.104569_bb0600
  article-title: A physics-based approach to modeling grassland fires
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF06002
– year: 2016
  ident: 10.1016/j.earscirev.2023.104569_bb0620
– volume: 37
  start-page: 2383
  issue: 12
  year: 2007
  ident: 10.1016/j.earscirev.2023.104569_bb0690
  article-title: An overview of the Fuel characteristic classification system — quantifying, classifying, and creating fuelbeds for resource planning
  publication-title: Can. J. For. Res.
  doi: 10.1139/X07-077
– volume: 7
  start-page: 23
  year: 1977
  ident: 10.1016/j.earscirev.2023.104569_bb0885
  article-title: Conditions for the start of crown fire
  publication-title: Can. J. For. Res.
  doi: 10.1139/x77-004
– volume: 17
  issue: 5
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0015
  article-title: Winter and spring climate explains a large portion of interannual variability and trend in western U.S. summer fire burned area
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac6886
– volume: 5
  start-page: 63
  issue: 2
  year: 1995
  ident: 10.1016/j.earscirev.2023.104569_bb0730
  article-title: A general mathematical framework for modeling two-dimensional wildland fire spread
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF9950063
– volume: 31
  start-page: 28
  issue: 8
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0720
  article-title: Adapting western North American forests to climate change and wildfires: 10 common questions
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.2433
– volume: 125
  start-page: 104616
  year: 2020
  ident: 10.1016/j.earscirev.2023.104569_bb0530
  article-title: QUIC-fire: A fast-running simulation tool for prescribed fire planning
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.104616
– volume: 21
  start-page: 609
  year: 2012
  ident: 10.1016/j.earscirev.2023.104569_bb0070
  article-title: A mathematical model for predicting the maximum potential spotting distance from a crown fire
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF11020
– start-page: 49
  year: 2010
  ident: 10.1016/j.earscirev.2023.104569_bb0705
– volume: 43
  start-page: 155
  year: 1981
  ident: 10.1016/j.earscirev.2023.104569_bb0040
  article-title: A model for the wind-blown flame from a line fire
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(81)90014-6
– volume: 49
  start-page: 565
  issue: 6
  year: 2019
  ident: 10.1016/j.earscirev.2023.104569_bb0160
  article-title: A review of a new generation of wildfire–atmosphere modeling
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2018-0138
– volume: 135
  start-page: 350
  year: 2015
  ident: 10.1016/j.earscirev.2023.104569_bb0185
  article-title: The effective viscosity of slurries laden with vegetative ash
  publication-title: Catena
  doi: 10.1016/j.catena.2014.06.008
– volume: 116
  start-page: F03006
  year: 2011
  ident: 10.1016/j.earscirev.2023.104569_bb0495
  article-title: A model for fire-induced sediment yield by dry ravel in steep landscapes
  publication-title: J. Geophys. Res.
– volume: 60
  start-page: 349
  year: 1982
  ident: 10.1016/j.earscirev.2023.104569_bb0085
  article-title: Calculating and interpreting forest fire intensities
  publication-title: Can. J. Bot.
  doi: 10.1139/b82-048
– start-page: 47
  year: 1998
  ident: 10.1016/j.earscirev.2023.104569_bb0345
– volume: 20
  start-page: 919
  year: 1990
  ident: 10.1016/j.earscirev.2023.104569_bib922
  article-title: A method for predicting the depth of lethal heat penetration into mineral soils exposed to fires of various intensities
  publication-title: Canadian Journal of Forest Research
  doi: 10.1139/x90-124
– volume: 130
  start-page: 103
  year: 2014
  ident: 10.1016/j.earscirev.2023.104569_bb0170
  article-title: Wildland fire ash: production, composition and eco-hydro-geomorphic effects
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2013.12.007
– year: 1959
  ident: 10.1016/j.earscirev.2023.104569_bb0205
– volume: 104
  start-page: 1
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0330
  article-title: Fire-spotting generated fires. Part II: The role of flame geometry and slope
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.11.010
– volume: 151
  year: 2020
  ident: 10.1016/j.earscirev.2023.104569_bb0395
  article-title: Ignition of polymers under exponential heat flux considering both surface and in-depth absorptions
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2019.106242
– volume: 48
  year: 2012
  ident: 10.1016/j.earscirev.2023.104569_bb0550
  article-title: Modeling soil heating and moisture transport under extreme conditions: forest fires and slash pile burns, Water Resour
  publication-title: Res.
– volume: 11
  year: 2023
  ident: 10.1016/j.earscirev.2023.104569_bb0325
  article-title: Modeling post-wildfire hydrologic response: Review and future directions for applications of physically based distributed simulation. Earth's
  publication-title: Future
– volume: 6
  year: 2023
  ident: 10.1016/j.earscirev.2023.104569_bb0785
  article-title: Assessment of the effects of the 2021 Caldor megafire on soil physical properties, eastern Sierra Nevada, USA
  publication-title: Fire
  doi: 10.3390/fire6020066
– volume: 10
  start-page: 1021
  year: 1965
  ident: 10.1016/j.earscirev.2023.104569_bb0840
  article-title: On the flight paths and lifetimes of burning particles of wood
  publication-title: Symp. Combust.
  doi: 10.1016/S0082-0784(65)80244-2
– volume: 30
  start-page: 855
  issue: 6
  year: 2004
  ident: 10.1016/j.earscirev.2023.104569_bb0405
  article-title: The effect of fire on soil organic matter—a review
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2004.02.003
– year: 2006
  ident: 10.1016/j.earscirev.2023.104569_bb0225
  article-title: Using remote sensing to map and monitor fire damage in forest ecosystems
– volume: 34
  start-page: 1182
  year: 2020
  ident: 10.1016/j.earscirev.2023.104569_bb0680
  article-title: Long-term hydrologic recovery after wildfire and post-fire forest management in the interior Pacific Northwest
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13665
– volume: 137
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0120
  article-title: Combining wildfire behaviour simulations and network analysis to support wildfire management: A Mediterranean landscape case study
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2022.108726
– volume: 18
  start-page: 23
  year: 2022
  ident: 10.1016/j.earscirev.2023.104569_bb0715
  article-title: Modeling of fire spread in sagebrush steppe using FARSITE: an approach to improving input data and simulation accuracy
  publication-title: Fire Ecol.
  doi: 10.1186/s42408-022-00147-2
– volume: 256
  start-page: 1239
  issue: 6
  year: 2008
  ident: 10.1016/j.earscirev.2023.104569_bb0135
  article-title: Fire models and methods to map fuel types: the role of remote sensing
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2008.06.048
– volume: 19
  start-page: 202
  year: 2010
  ident: 10.1016/j.earscirev.2023.104569_bb0240
  article-title: A sub-grid, mixture-fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF07116
– volume: 17
  start-page: 78
  year: 1981
  ident: 10.1016/j.earscirev.2023.104569_bb0415
  article-title: Heat and mass transport and the propagation of burning particles in the surface layer of the atmosphere during upstream forest fires
  publication-title: Fizika Gorenia i Vzryva
– volume: 41
  start-page: 349
  year: 2006
  ident: 10.1016/j.earscirev.2023.104569_bb0115
  article-title: On the trajectories of embers initially elevated or lofted by small scale ground fire plumes in high winds
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2006.01.005
– ident: 10.1016/j.earscirev.2023.104569_bb0835
  doi: 10.1071/WF07072
– volume: 7
  start-page: 650580
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0850
  article-title: Coupled assessment of fire behavior and firebrand dynamics
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2021.650580
– volume: 18
  start-page: 250
  year: 2009
  ident: 10.1016/j.earscirev.2023.104569_bb0725
  article-title: Spatial fuel data products of the LANDFIRE Project
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF08086
– volume: 498
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0310
  article-title: Forest connectivity percolation thresholds for fire spread under different weather conditions
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2021.119558
– volume: 27
  start-page: 377
  year: 2018
  ident: 10.1016/j.earscirev.2023.104569_bb0010
  article-title: Human-related ignitions concurrent with high winds promote large wildfires across the USA
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF17149
– volume: 62
  start-page: 289
  year: 2013
  ident: 10.1016/j.earscirev.2023.104569_bb0500
  article-title: Wildland fire modeling with an Eulerian level set method and automated calibration
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2013.08.014
– volume: 168
  start-page: 113
  year: 2016
  ident: 10.1016/j.earscirev.2023.104569_bb0445
  article-title: Experimental and Numerical Studies Characterizing the Burning Dynamics of Wildland Fuels
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2016.04.004
– volume: 16
  start-page: 493
  issue: 4
  year: 2007
  ident: 10.1016/j.earscirev.2023.104569_bb0265
  article-title: Separating combustion from pyrolysis in HIGRAD/FIRETEC
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF06074
– volume: 2
  start-page: 351
  year: 2016
  ident: 10.1016/j.earscirev.2023.104569_bb0125
  article-title: Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
  publication-title: Soil
  doi: 10.5194/soil-2-351-2016
– volume: 72
  start-page: 93
  issue: 3
  year: 1946
  ident: 10.1016/j.earscirev.2023.104569_bb0370
  article-title: Analysis of fire spread in light forest fuels
  publication-title: J. Agric. Res.
– volume: 18
  start-page: 349
  issue: 4
  year: 2009
  ident: 10.1016/j.earscirev.2023.104569_bb0820
  article-title: Wildland surface fire spread modelling, 1990–2007. 1: physical and quasi-physical models
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF06143
– year: 1982
  ident: 10.1016/j.earscirev.2023.104569_bb0100
– volume: 26
  start-page: 973
  year: 2017
  ident: 10.1016/j.earscirev.2023.104569_bb0275
  article-title: Mantras of wildland fire behaviour modelling: facts or fallacies?
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF17097
– volume: INT-56
  year: 1979
  ident: 10.1016/j.earscirev.2023.104569_bb0035
  article-title: Spot fire distance from burning trees: a predictive model
  publication-title: USDA Forest Service; Res Pap
– year: 1997
  ident: 10.1016/j.earscirev.2023.104569_bb0515
– volume: 127
  start-page: 107735
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0920
  article-title: Deep neural networks for global wildfire susceptibility modelling
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.107735
– volume: 25
  start-page: 229
  year: 2016
  ident: 10.1016/j.earscirev.2023.104569_bb0180
  article-title: A comparison of level set and marker methods for the simulation of wildland fire front propagation
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF13178
– volume: 126
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0855
  article-title: Postwildfire soil-hydraulic recovery and the persistence of debris flow hazards
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1029/2021JF006091
– volume: 18
  start-page: 96
  year: 2009
  ident: 10.1016/j.earscirev.2023.104569_bb0635
  article-title: Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF07162
– volume: 16
  start-page: 267
  year: 2012
  ident: 10.1016/j.earscirev.2023.104569_bb0815
  article-title: Hydrological response of a small catchment burned by experimental fire
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-267-2012
– volume: 6
  start-page: 296
  year: 2019
  ident: 10.1016/j.earscirev.2023.104569_bb0140
  article-title: A global wildfire dataset for the analysis of fire regimes and fire behaviour
  publication-title: Scientific Data
  doi: 10.1038/s41597-019-0312-2
– volume: 30
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0145
  article-title: Effects of fuel spatial distribution on wildland fire behaviour
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF20096
– volume: 4
  start-page: 591
  year: 2011
  ident: 10.1016/j.earscirev.2023.104569_bb0540
  article-title: Coupled atmosphere–wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci
  publication-title: Model Dev.
  doi: 10.5194/gmd-4-591-2011
– volume: 2
  start-page: 107
  year: 2021
  ident: 10.1016/j.earscirev.2023.104569_bb0175
  article-title: A framework for quantifying hydrologic effects of soil structure across scales
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-021-00180-0
– year: 1976
  ident: 10.1016/j.earscirev.2023.104569_bb0030
– volume: 159
  start-page: 363
  issue: 6
  year: 1995
  ident: 10.1016/j.earscirev.2023.104569_bb0200
  article-title: Soil temperature and water content beneath a surface fire
  publication-title: Soil Sci.
  doi: 10.1097/00010694-199506000-00001
– volume: 56
  year: 2020
  ident: 10.1016/j.earscirev.2023.104569_bb0775
  article-title: Quantifying the effect of subcritical water repellency on sorptivity: a physically based model
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR027942
– volume: 18
  start-page: 369
  issue: 4
  year: 2009
  ident: 10.1016/j.earscirev.2023.104569_bb0825
  article-title: Wildland surface fire spread modelling, 1990–2007. 2: empirical and quasi-empirical models
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF06142
SSID ssj0001097
Score 2.5568767
SecondaryResourceType review_article
Snippet Wildfires are part of the natural cycle of life in vegetated regions. The apparent increase in size and frequency of recent years reflects land management...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104569
SubjectTerms Ecology and hydrology of fire-affected landscapes
fuels
humans
hydrology
land cover
land management
landscapes
mathematical models
Physics of wildfire behavior
soil
weather
Wildfire effects on soil
Wildfire models
wildfires
Title Review of wildfire modeling considering effects on land surfaces
URI https://dx.doi.org/10.1016/j.earscirev.2023.104569
https://www.proquest.com/docview/2942099202
Volume 245
WOSCitedRecordID wos001085236000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-6828
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001097
  issn: 0012-8252
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA66q-CLeMX1RgTxZYi0ySRtfXJZZr2wjOKOMG-huRRdpR1nprL-e0-ay-zIyq4PQmlLaTLT86XnnOackw-h55lS2mjOCWe2JmOqclLzXBGmwL6X1jQ5rQeyiWI6Lefz6mNg21wNdAJF25anp9Xiv0IN1wBsVzr7D3CnTuECnAPosAfYYX8p4D-lYhRwg00DKs3T3fjqWk_P6c5TJkfrJi3NaNUvG5eftTVXD_1_IbH0J6xcmuZll7FGPQ2CHnz5b-Sg8znKE7OpMxuW1YrFQX3q43gIRgxUTiNH8nh2EoJu0tmSYs1BsVK-pVjpmI8WLojMRUXOVdd-5uDkJSANj-JId1znocnGQsWo_PSDPPx8dCRnk_nsxeIHcdxhLsYeiFSuol1a8Ap02-7-u8n8fbLILsruLbL_k1t5fuf-9t-8lD_s9eCEzG6hm-HrAe971G-jK7a9g66_GdiZf91Frz32uGtwxB5H7PEZ7HHAHnctdtjjiP09dHw4mR28JYEig9SsyNeEK6E4bzKuhQF3R2Rg96gVlsNblolaUzjCG0etKmuTC3DXSyYsM7lt4OnZfbTTdq19gHCtS9aISnMmzNjSQsFWc1HoqmEKvN49JKJApA6rxzsSk-8ypgmeyCRJ6SQpvST3UJYaLvwCKhc3eRUlLsMI9_6dhHFzceNnESMJmtKFv-rWdv1K0mrs6sTh3oeXuOcRurEZ6I_RznrZ2yfomv65_rpaPg0j7Ddps41I
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+wildfire+modeling+considering+effects+on+land+surfaces&rft.jtitle=Earth-science+reviews&rft.au=Or%2C+Dani&rft.au=Furtak-Cole%2C+Eden&rft.au=Berli%2C+Markus&rft.au=Shillito%2C+Rose&rft.date=2023-10-01&rft.issn=0012-8252&rft.volume=245+p.104569-&rft_id=info:doi/10.1016%2Fj.earscirev.2023.104569&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-8252&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-8252&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-8252&client=summon