Smoothing algorithm for the maximal eigenvalue of non-defective positive matrices

This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to provide monotonically increasing lower-bound estimates and monotonically decreasing upper-bound estimates of the maximal eigenvalue. The mon...

Full description

Saved in:
Bibliographic Details
Published in:AIMS mathematics Vol. 9; no. 3; pp. 5925 - 5936
Main Authors: Li, Na, Zhong, Qin
Format: Journal Article
Language:English
Published: AIMS Press 01.01.2024
Subjects:
ISSN:2473-6988, 2473-6988
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to provide monotonically increasing lower-bound estimates and monotonically decreasing upper-bound estimates of the maximal eigenvalue. The monotonicity and convergence of these estimations was also proven. Finally, the effectiveness of the algorithm was demonstrated with numerical examples.
AbstractList This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to provide monotonically increasing lower-bound estimates and monotonically decreasing upper-bound estimates of the maximal eigenvalue. The monotonicity and convergence of these estimations was also proven. Finally, the effectiveness of the algorithm was demonstrated with numerical examples.
Author Li, Na
Zhong, Qin
Author_xml – sequence: 1
  givenname: Na
  surname: Li
  fullname: Li, Na
  organization: School of Intelligence Technology, Geely University of China, Chengdu 641423, China
– sequence: 2
  givenname: Qin
  surname: Zhong
  fullname: Zhong, Qin
  organization: Department of Mathematics, Sichuan University Jinjiang College, Meishan 620860, China
BookMark eNpNkF9LwzAUxYNMcM69-QHyAexMk6ZJHmX4ZzAQUZ_LbXrTZrTLSOvQb2_3B_Hl3sPl8juHc00m27BFQm5TthBGZPcdDM2CM55xbS7IlGdKJLnRevJPX5F5328YYzwd_1Q2JW_vXQhD47c1hbYO0Q9NR12IdGiQdvDtO2gp-hq3e2i_kAZHR9-kQod28Huku9D7oxj9o7fY35BLB22P8_Oekc-nx4_lS7J-fV4tH9YJiNwMScWN4KU0UHIHqePMVSxTCjAHWSIgr0rQKSombZo7qUtQ6TiEVVpKZY2YkdWJWwXYFLs4Jo0_RQBfHA8h1gXEwdsWC621dA5RWpVlKmOmRKNLx1QqOZSVGFl3J5aNoe8juj9eyopDu8Wh3eLcrvgFv59w9w
Cites_doi 10.1142/8323
10.1007/s11432-022-3538-4
10.1155/2021/7230661
10.1112/jlms/s1-27.2.253
10.1016/j.laa.2021.10.003
10.1215/S0012-7094-57-02434-1
10.1080/03081087.2022.2081310
10.1112/jlms/s1-25.4.265
10.1016/j.laa.2017.05.021
10.1016/S0024-3795(96)90008-7
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2024289
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 5936
ExternalDocumentID oai_doaj_org_article_8885ffee5c7447409be98bf07152abd3
10_3934_math_2024289
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a369t-d2932b59ab2fa1f20fd0477ae6a5beae2dba81e705c16f58ba718ba3c78557c93
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001157506800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:45:17 EDT 2025
Sat Nov 29 06:04:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-d2932b59ab2fa1f20fd0477ae6a5beae2dba81e705c16f58ba718ba3c78557c93
OpenAccessLink https://doaj.org/article/8885ffee5c7447409be98bf07152abd3
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_8885ffee5c7447409be98bf07152abd3
crossref_primary_10_3934_math_2024289
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024289-5
key-10.3934/math.2024289-13
key-10.3934/math.2024289-6
key-10.3934/math.2024289-12
key-10.3934/math.2024289-7
key-10.3934/math.2024289-11
key-10.3934/math.2024289-8
key-10.3934/math.2024289-10
key-10.3934/math.2024289-1
key-10.3934/math.2024289-2
key-10.3934/math.2024289-3
key-10.3934/math.2024289-4
key-10.3934/math.2024289-9
References_xml – ident: key-10.3934/math.2024289-12
  doi: 10.1142/8323
– ident: key-10.3934/math.2024289-11
  doi: 10.1007/s11432-022-3538-4
– ident: key-10.3934/math.2024289-13
  doi: 10.1155/2021/7230661
– ident: key-10.3934/math.2024289-7
– ident: key-10.3934/math.2024289-3
  doi: 10.1112/jlms/s1-27.2.253
– ident: key-10.3934/math.2024289-9
  doi: 10.1016/j.laa.2021.10.003
– ident: key-10.3934/math.2024289-4
  doi: 10.1215/S0012-7094-57-02434-1
– ident: key-10.3934/math.2024289-10
  doi: 10.1080/03081087.2022.2081310
– ident: key-10.3934/math.2024289-2
  doi: 10.1112/jlms/s1-25.4.265
– ident: key-10.3934/math.2024289-8
  doi: 10.1016/j.laa.2017.05.021
– ident: key-10.3934/math.2024289-5
– ident: key-10.3934/math.2024289-1
– ident: key-10.3934/math.2024289-6
  doi: 10.1016/S0024-3795(96)90008-7
SSID ssj0002124274
Score 2.2423255
Snippet This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 5925
SubjectTerms lower bound
maximal eigenvalue
non-defective
positive matrix
upper bound
Title Smoothing algorithm for the maximal eigenvalue of non-defective positive matrices
URI https://doaj.org/article/8885ffee5c7447409be98bf07152abd3
Volume 9
WOSCitedRecordID wos001157506800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5gtJqXY3sE1IqBViAe6hadHRsqEYraUjHx2znHocrGwpLBOjnW5-S--xLrO0LOpU10AjlnOpc5yxwoBtIIBqVR2sQc4rqLwvOtGI3keKzuWq2-_JmwYA8cgOuhQuPOWcuNyDKBakRbJbVDZuQJ6LL2-YyEaokpn4MxIWeot8JJ91SlWQ_rP__vAYd9R_cWB7Ws-mtOGWyTraYYpJdhETtkzb7vks3hykl1vkfuH6opgokEQ-HtZYpS_rWiWGhSjKEVfE0qnMB6S01v223p1FEU9Ky0LmQyGk5lLX2wN-O3833yNOg_Xt-wpg0CgzRXC1YiIyeaK9CJg9glkSujTAiwOXBtwSalBhlbEXET545LDcg3GlIjJOfCqPSAdPDO9pBQFF8SWZHHEmWE07HGFxasL8m0k8rpLrn4Bab4CG4XBaoED2DhASwaALvkyqO2ivEe1fUA7lzR7Fzx184d_cckx2TDryl8FDkhncXs056SdbNcTOazs_qhwOvwu_8DPZnAkA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothing+algorithm+for+the+maximal+eigenvalue+of+non-defective+positive+matrices&rft.jtitle=AIMS+mathematics&rft.au=Na+Li&rft.au=Qin+Zhong&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=3&rft.spage=5925&rft.epage=5936&rft_id=info:doi/10.3934%2Fmath.2024289&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8885ffee5c7447409be98bf07152abd3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon