Smoothing algorithm for the maximal eigenvalue of non-defective positive matrices
This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to provide monotonically increasing lower-bound estimates and monotonically decreasing upper-bound estimates of the maximal eigenvalue. The mon...
Saved in:
| Published in: | AIMS mathematics Vol. 9; no. 3; pp. 5925 - 5936 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
01.01.2024
|
| Subjects: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to provide monotonically increasing lower-bound estimates and monotonically decreasing upper-bound estimates of the maximal eigenvalue. The monotonicity and convergence of these estimations was also proven. Finally, the effectiveness of the algorithm was demonstrated with numerical examples. |
|---|---|
| AbstractList | This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to provide monotonically increasing lower-bound estimates and monotonically decreasing upper-bound estimates of the maximal eigenvalue. The monotonicity and convergence of these estimations was also proven. Finally, the effectiveness of the algorithm was demonstrated with numerical examples. |
| Author | Li, Na Zhong, Qin |
| Author_xml | – sequence: 1 givenname: Na surname: Li fullname: Li, Na organization: School of Intelligence Technology, Geely University of China, Chengdu 641423, China – sequence: 2 givenname: Qin surname: Zhong fullname: Zhong, Qin organization: Department of Mathematics, Sichuan University Jinjiang College, Meishan 620860, China |
| BookMark | eNpNkF9LwzAUxYNMcM69-QHyAexMk6ZJHmX4ZzAQUZ_LbXrTZrTLSOvQb2_3B_Hl3sPl8juHc00m27BFQm5TthBGZPcdDM2CM55xbS7IlGdKJLnRevJPX5F5328YYzwd_1Q2JW_vXQhD47c1hbYO0Q9NR12IdGiQdvDtO2gp-hq3e2i_kAZHR9-kQod28Huku9D7oxj9o7fY35BLB22P8_Oekc-nx4_lS7J-fV4tH9YJiNwMScWN4KU0UHIHqePMVSxTCjAHWSIgr0rQKSombZo7qUtQ6TiEVVpKZY2YkdWJWwXYFLs4Jo0_RQBfHA8h1gXEwdsWC621dA5RWpVlKmOmRKNLx1QqOZSVGFl3J5aNoe8juj9eyopDu8Wh3eLcrvgFv59w9w |
| Cites_doi | 10.1142/8323 10.1007/s11432-022-3538-4 10.1155/2021/7230661 10.1112/jlms/s1-27.2.253 10.1016/j.laa.2021.10.003 10.1215/S0012-7094-57-02434-1 10.1080/03081087.2022.2081310 10.1112/jlms/s1-25.4.265 10.1016/j.laa.2017.05.021 10.1016/S0024-3795(96)90008-7 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2024289 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 5936 |
| ExternalDocumentID | oai_doaj_org_article_8885ffee5c7447409be98bf07152abd3 10_3934_math_2024289 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a369t-d2932b59ab2fa1f20fd0477ae6a5beae2dba81e705c16f58ba718ba3c78557c93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001157506800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:45:17 EDT 2025 Sat Nov 29 06:04:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a369t-d2932b59ab2fa1f20fd0477ae6a5beae2dba81e705c16f58ba718ba3c78557c93 |
| OpenAccessLink | https://doaj.org/article/8885ffee5c7447409be98bf07152abd3 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8885ffee5c7447409be98bf07152abd3 crossref_primary_10_3934_math_2024289 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2024 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2024289-5 key-10.3934/math.2024289-13 key-10.3934/math.2024289-6 key-10.3934/math.2024289-12 key-10.3934/math.2024289-7 key-10.3934/math.2024289-11 key-10.3934/math.2024289-8 key-10.3934/math.2024289-10 key-10.3934/math.2024289-1 key-10.3934/math.2024289-2 key-10.3934/math.2024289-3 key-10.3934/math.2024289-4 key-10.3934/math.2024289-9 |
| References_xml | – ident: key-10.3934/math.2024289-12 doi: 10.1142/8323 – ident: key-10.3934/math.2024289-11 doi: 10.1007/s11432-022-3538-4 – ident: key-10.3934/math.2024289-13 doi: 10.1155/2021/7230661 – ident: key-10.3934/math.2024289-7 – ident: key-10.3934/math.2024289-3 doi: 10.1112/jlms/s1-27.2.253 – ident: key-10.3934/math.2024289-9 doi: 10.1016/j.laa.2021.10.003 – ident: key-10.3934/math.2024289-4 doi: 10.1215/S0012-7094-57-02434-1 – ident: key-10.3934/math.2024289-10 doi: 10.1080/03081087.2022.2081310 – ident: key-10.3934/math.2024289-2 doi: 10.1112/jlms/s1-25.4.265 – ident: key-10.3934/math.2024289-8 doi: 10.1016/j.laa.2017.05.021 – ident: key-10.3934/math.2024289-5 – ident: key-10.3934/math.2024289-1 – ident: key-10.3934/math.2024289-6 doi: 10.1016/S0024-3795(96)90008-7 |
| SSID | ssj0002124274 |
| Score | 2.2423255 |
| Snippet | This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 5925 |
| SubjectTerms | lower bound maximal eigenvalue non-defective positive matrix upper bound |
| Title | Smoothing algorithm for the maximal eigenvalue of non-defective positive matrices |
| URI | https://doaj.org/article/8885ffee5c7447409be98bf07152abd3 |
| Volume | 9 |
| WOSCitedRecordID | wos001157506800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5gtJqXY3sE1IqBViAe6hadHRsqEYraUjHx2znHocrGwpLBOjnW5-S--xLrO0LOpU10AjlnOpc5yxwoBtIIBqVR2sQc4rqLwvOtGI3keKzuWq2-_JmwYA8cgOuhQuPOWcuNyDKBakRbJbVDZuQJ6LL2-YyEaokpn4MxIWeot8JJ91SlWQ_rP__vAYd9R_cWB7Ws-mtOGWyTraYYpJdhETtkzb7vks3hykl1vkfuH6opgokEQ-HtZYpS_rWiWGhSjKEVfE0qnMB6S01v223p1FEU9Ky0LmQyGk5lLX2wN-O3833yNOg_Xt-wpg0CgzRXC1YiIyeaK9CJg9glkSujTAiwOXBtwSalBhlbEXET545LDcg3GlIjJOfCqPSAdPDO9pBQFF8SWZHHEmWE07HGFxasL8m0k8rpLrn4Bab4CG4XBaoED2DhASwaALvkyqO2ivEe1fUA7lzR7Fzx184d_cckx2TDryl8FDkhncXs056SdbNcTOazs_qhwOvwu_8DPZnAkA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothing+algorithm+for+the+maximal+eigenvalue+of+non-defective+positive+matrices&rft.jtitle=AIMS+mathematics&rft.au=Na+Li&rft.au=Qin+Zhong&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=3&rft.spage=5925&rft.epage=5936&rft_id=info:doi/10.3934%2Fmath.2024289&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8885ffee5c7447409be98bf07152abd3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |