An inertial iterative method for solving split equality problem in Banach spaces

In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in $ p $-uniformly convex and uniformly smooth Banach spaces. Under some mild control conditions, a strong convergence theorem for the proposed algorithm is established. Furthe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 7; číslo 10; s. 17628 - 17646
Hlavní autoři: Wang, Meiying, Shi, Luoyi, Guo, Cuijuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2022
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in $ p $-uniformly convex and uniformly smooth Banach spaces. Under some mild control conditions, a strong convergence theorem for the proposed algorithm is established. Furthermore, the results are applied to split equality fixed point problem and split equality variational inclusion problem. Finally, numerical examples are provided to illustrate the convergence behaviour of the algorithm. The main results in this paper improve and generalize some existing results in the literature.
AbstractList In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in p-uniformly convex and uniformly smooth Banach spaces. Under some mild control conditions, a strong convergence theorem for the proposed algorithm is established. Furthermore, the results are applied to split equality fixed point problem and split equality variational inclusion problem. Finally, numerical examples are provided to illustrate the convergence behaviour of the algorithm. The main results in this paper improve and generalize some existing results in the literature.
Author Shi, Luoyi
Wang, Meiying
Guo, Cuijuan
Author_xml – sequence: 1
  givenname: Meiying
  surname: Wang
  fullname: Wang, Meiying
  organization: School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
– sequence: 2
  givenname: Luoyi
  surname: Shi
  fullname: Shi, Luoyi
  organization: School of Software, Tiangong University, Tianjin 300387, China
– sequence: 3
  givenname: Cuijuan
  surname: Guo
  fullname: Guo, Cuijuan
  organization: School of Software, Tiangong University, Tianjin 300387, China
BookMark eNpNkMtOwzAQRS1UJErpjg_wB9Di2E4cL0vFo1IlWMDamjjj1lUSFztU6t-TQoVY3avRzJHmXJNRFzok5DZjc6GFvG-h384541yr7IKMuVRiVuiyHP3rV2Sa0o4xxjMuuZJj8rboqO8w9h4a6nuM0PsD0hb7baipC5Gm0Bx8t6Fp3_ie4ucXDHmk-xiqBtvhmD5AB3Y7LIDFdEMuHTQJp-eckI-nx_fly2z9-rxaLtYzEIXuZ7aoneUlh0oWiM46neXaCetYlaNmVlvl0NZDRy2yogBeK8mdU3mustIyMSGrX24dYGf20bcQjyaANz-DEDcGhq9sg4Zr6bgUiuu8lCAQuNRMAlbClrUUMLDuflk2hpQiuj9exsxJrjnJNWe54hvbjm_v
Cites_doi 10.1007/s11075-020-00999-2
10.1186/1687-1812-2014-215
10.1186/s13660-021-02570-6
10.1016/0362-546X(91)90200-K
10.1080/02331934.2014.967237
10.1007/BF02142692
10.1007/978-3-662-35347-9
10.1088/0266-5611/28/8/085004
10.1088/0266-5611/18/2/310
10.1186/1029-242X-2014-478
10.1088/0031-9155/51/10/001
10.1016/j.na.2012.11.013
10.1088/0266-5611/26/5/055007
10.1155/2021/6624509
10.1007/s11075-015-0069-4
10.23952/jnva.5.2021.1.06
10.1007/s11784-019-0684-0
10.1016/0041-5553(64)90137-5
10.1186/s13660-021-02656-1
10.1088/0266-5611/24/5/055008
10.1088/0266-5611/20/1/006
10.1007/s40314-021-01465-y
10.1080/01630563.2013.809360
10.1016/S0252-9602(16)30049-2
10.23952/jnva.5.2021.1.04
10.1515/JIIP.2008.026
10.11948/20190330
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022971
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 17646
ExternalDocumentID oai_doaj_org_article_294f243729584a3ea24904aeb3c8d43a
10_3934_math_2022971
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a369t-c6dfc282ab46eefcf9159f3cf0b5e90c9c7fecd5e9e93166a2d742ff755718c03
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000835412500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:52:02 EDT 2025
Sat Nov 29 06:04:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-c6dfc282ab46eefcf9159f3cf0b5e90c9c7fecd5e9e93166a2d742ff755718c03
OpenAccessLink https://doaj.org/article/294f243729584a3ea24904aeb3c8d43a
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_294f243729584a3ea24904aeb3c8d43a
crossref_primary_10_3934_math_2022971
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022971-3
key-10.3934/math.2022971-11
key-10.3934/math.2022971-33
key-10.3934/math.2022971-4
key-10.3934/math.2022971-10
key-10.3934/math.2022971-32
key-10.3934/math.2022971-5
key-10.3934/math.2022971-31
key-10.3934/math.2022971-6
key-10.3934/math.2022971-30
key-10.3934/math.2022971-1
key-10.3934/math.2022971-2
key-10.3934/math.2022971-19
key-10.3934/math.2022971-18
key-10.3934/math.2022971-17
key-10.3934/math.2022971-16
key-10.3934/math.2022971-15
key-10.3934/math.2022971-14
key-10.3934/math.2022971-13
key-10.3934/math.2022971-12
key-10.3934/math.2022971-34
key-10.3934/math.2022971-7
key-10.3934/math.2022971-8
key-10.3934/math.2022971-9
key-10.3934/math.2022971-22
key-10.3934/math.2022971-21
key-10.3934/math.2022971-20
key-10.3934/math.2022971-29
key-10.3934/math.2022971-28
key-10.3934/math.2022971-27
key-10.3934/math.2022971-26
key-10.3934/math.2022971-25
key-10.3934/math.2022971-24
key-10.3934/math.2022971-23
References_xml – ident: key-10.3934/math.2022971-20
  doi: 10.1007/s11075-020-00999-2
– ident: key-10.3934/math.2022971-8
  doi: 10.1186/1687-1812-2014-215
– ident: key-10.3934/math.2022971-11
– ident: key-10.3934/math.2022971-13
  doi: 10.1186/s13660-021-02570-6
– ident: key-10.3934/math.2022971-32
  doi: 10.1016/0362-546X(91)90200-K
– ident: key-10.3934/math.2022971-29
  doi: 10.1080/02331934.2014.967237
– ident: key-10.3934/math.2022971-5
  doi: 10.1007/BF02142692
– ident: key-10.3934/math.2022971-4
– ident: key-10.3934/math.2022971-14
  doi: 10.1007/978-3-662-35347-9
– ident: key-10.3934/math.2022971-15
  doi: 10.1088/0266-5611/28/8/085004
– ident: key-10.3934/math.2022971-2
  doi: 10.1088/0266-5611/18/2/310
– ident: key-10.3934/math.2022971-23
  doi: 10.1186/1029-242X-2014-478
– ident: key-10.3934/math.2022971-28
– ident: key-10.3934/math.2022971-6
  doi: 10.1088/0031-9155/51/10/001
– ident: key-10.3934/math.2022971-17
  doi: 10.1016/j.na.2012.11.013
– ident: key-10.3934/math.2022971-7
  doi: 10.1088/0266-5611/26/5/055007
– ident: key-10.3934/math.2022971-16
  doi: 10.1155/2021/6624509
– ident: key-10.3934/math.2022971-24
  doi: 10.1007/s11075-015-0069-4
– ident: key-10.3934/math.2022971-9
  doi: 10.23952/jnva.5.2021.1.06
– ident: key-10.3934/math.2022971-25
  doi: 10.1007/s11784-019-0684-0
– ident: key-10.3934/math.2022971-19
  doi: 10.1016/0041-5553(64)90137-5
– ident: key-10.3934/math.2022971-10
– ident: key-10.3934/math.2022971-31
  doi: 10.1186/s13660-021-02656-1
– ident: key-10.3934/math.2022971-12
– ident: key-10.3934/math.2022971-21
  doi: 10.1088/0266-5611/24/5/055008
– ident: key-10.3934/math.2022971-1
– ident: key-10.3934/math.2022971-18
– ident: key-10.3934/math.2022971-3
  doi: 10.1088/0266-5611/20/1/006
– ident: key-10.3934/math.2022971-27
  doi: 10.1007/s40314-021-01465-y
– ident: key-10.3934/math.2022971-30
  doi: 10.1080/01630563.2013.809360
– ident: key-10.3934/math.2022971-26
  doi: 10.1016/S0252-9602(16)30049-2
– ident: key-10.3934/math.2022971-34
  doi: 10.23952/jnva.5.2021.1.04
– ident: key-10.3934/math.2022971-22
  doi: 10.1515/JIIP.2008.026
– ident: key-10.3934/math.2022971-33
  doi: 10.11948/20190330
SSID ssj0002124274
Score 2.175043
Snippet In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in $ p $-uniformly convex and...
In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in p-uniformly convex and uniformly...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 17628
SubjectTerms banach space
inertial technique
self-adaptive method
split equality problem
strong convergence
Title An inertial iterative method for solving split equality problem in Banach spaces
URI https://doaj.org/article/294f243729584a3ea24904aeb3c8d43a
Volume 7
WOSCitedRecordID wos000835412500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5gjJrYrh2PLWrFQKsOgLpFtnMWSCigNlRi4bdzjkNVJhaWKIrsyPr8uO_z2XeEXNtMMmFlltjSQSIYZDillErQNMjgmOO-2e94ulfTaT6f69lGqq9wJiyGB47A9ZgWnjXOJTSVhoNBvZAKgxrQ5aXgDTVKld4QU2ENxgVZoN6KJ9255qKH_C_4HhjTKvtlgzZC9Tc2ZbxP9loySAexEQdkC6pDsjtZR1JdHpHZoKLhfh5OxFcaQyDj-kRj4meKjJPi4AmbAnSJdLKmEG9JftI2UwxWpkNTGfeMBcLxq2PyOB493N4lbRaExHCp68TJ0jsURsYKCeCd18hAPHc-tX3QqdNOeXAlvoPmmZSGlSh3vVf9Ptodl_IT0qneKjglNMAmfGmFAi2QKeU2zYzLUwsohIGzLrn5waV4j8EuChQJAb8i4Fe0-HXJMIC2LhNCVDcfsOOKtuOKvzru7D9-ck52QpvinsgF6dSLD7gk225VvywXV82YwOfka_QN7Je9lw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inertial+iterative+method+for+solving+split+equality+problem+in+Banach+spaces&rft.jtitle=AIMS+mathematics&rft.au=Wang%2C+Meiying&rft.au=Shi%2C+Luoyi&rft.au=Guo%2C+Cuijuan&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=10&rft.spage=17628&rft.epage=17646&rft_id=info:doi/10.3934%2Fmath.2022971&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon