Lagrangian decomposition for stochastic TIMES energy system optimization model
Energy system optimization models play an essential role in current decision support on topics including energy security, sustainable development and environmental protection from industrial, regional, national and even global perspective. One of the key energy system optimization models applied in...
Uložené v:
| Vydané v: | AIMS mathematics Ročník 7; číslo 5; s. 7964 - 7996 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
AIMS Press
01.01.2022
|
| Predmet: | |
| ISSN: | 2473-6988, 2473-6988 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Energy system optimization models play an essential role in current decision support on topics including energy security, sustainable development and environmental protection from industrial, regional, national and even global perspective. One of the key energy system optimization models applied in international energy policy is TIMES. The article establishes two basic deterministic TIMES models which cover an energy commodity (coal or gas), a three-step supply curve and an end-use energy service demand. Then we convert the deterministic TIMES models into a stochastic optimization problem with multiple scenarios, and implement the Lagrangian decomposition approach in solving the stochastic programming models. The numerical experiment shows the feasibility of the Lagrangian decomposition algorithm to solve stochastic TIMES models with a small amount of scenarios, and analyze several reasons for non-convergence cases including the choice of step length and initial values of Lagrangian multipliers. |
|---|---|
| AbstractList | Energy system optimization models play an essential role in current decision support on topics including energy security, sustainable development and environmental protection from industrial, regional, national and even global perspective. One of the key energy system optimization models applied in international energy policy is TIMES. The article establishes two basic deterministic TIMES models which cover an energy commodity (coal or gas), a three-step supply curve and an end-use energy service demand. Then we convert the deterministic TIMES models into a stochastic optimization problem with multiple scenarios, and implement the Lagrangian decomposition approach in solving the stochastic programming models. The numerical experiment shows the feasibility of the Lagrangian decomposition algorithm to solve stochastic TIMES models with a small amount of scenarios, and analyze several reasons for non-convergence cases including the choice of step length and initial values of Lagrangian multipliers. |
| Author | Ming, Ju Zhu, Yujun |
| Author_xml | – sequence: 1 givenname: Yujun surname: Zhu fullname: Zhu, Yujun – sequence: 2 givenname: Ju surname: Ming fullname: Ming, Ju |
| BookMark | eNpNkMtOwzAQRS1UJAp0xwfkA0jxK3ayRFWBSgUWlLU1GTupqyau7GzK19OXEKu5Gl0dXZ1bMupD7wh5YHQqKiGfOhjWU045l7K4ImMutchVVZajf_mGTFLaUEo545JrOSYfS2gj9K2HPrMOQ7cLyQ8-9FkTYpaGgGtIg8dstXiff2Wud7HdZ2mfBtdlYTf4zv_Aqd8F67b35LqBbXKTy70j3y_z1ewtX36-LmbPyxyEqoa81ryQaBtX1AoVkwJcKZyknFImaqUbqVFZxxoqWN0UNUoUCritgGkruBJ3ZHHm2gAbs4u-g7g3Abw5PUJsDcTD7K0zWOEBYa1WVssSJVSIlYYS6oYzinhgPZ5ZGENK0TV_PEbNUa05qjUXteIX_H5wAA |
| Cites_doi | 10.1287/opre.2019.1905 10.1016/j.rser.2014.02.003 10.1007/s12532-017-0128-z 10.1007/BF01386316 10.1016/j.jclepro.2017.09.132 10.1016/j.energy.2019.01.036 10.1007/s12532-020-00185-4 10.1287/opre.50.5.904.360 10.1016/j.esr.2018.11.003 10.1007/978-3-642-50282-8_10 10.1287/educ.2019.0198 10.1002/er.4440170606 10.1016/j.apenergy.2019.114037 10.1613/jair.3680 10.1016/j.rser.2014.10.031 10.1016/0377-2217(88)90159-2 10.1016/j.eneco.2004.10.005 10.1016/j.compchemeng.2020.107220 10.1007/s11750-011-0237-1 10.1007/BF02031711 10.1007/BF02592954 10.1016/j.ifacol.2020.12.068 10.2166/wp.2020.118 10.1016/S0140-9883(00)00048-7 10.1016/j.apenergy.2020.115058 10.1016/j.scitotenv.2020.143512 10.1007/978-1-4615-0015-5 10.1016/S0140-9883(97)00015-7 10.1287/moor.2017.0866 10.3390/su10103438 10.1016/S0377-2217(98)00356-7 10.1016/j.energy.2018.01.150 10.1137/0117061 10.1137/S1052623499363220 10.1002/net.21796 10.1007/s10287-007-0046-z |
| ContentType | Journal Article |
| CorporateAuthor | School of Mathematics, University of Edinburgh, Edinburgh, U.K School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China |
| CorporateAuthor_xml | – name: School of Mathematics, University of Edinburgh, Edinburgh, U.K – name: School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2022445 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 7996 |
| ExternalDocumentID | oai_doaj_org_article_c9cbf5dd76d748c4a9cc97a8abf210cc 10_3934_math_2022445 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a369t-b7254cdfe5b6c6143ae83e4020013b67f47c6de1f031bf5bc4c36a2d9a17d3263 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784067400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:43:59 EDT 2025 Sat Nov 29 06:04:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a369t-b7254cdfe5b6c6143ae83e4020013b67f47c6de1f031bf5bc4c36a2d9a17d3263 |
| OpenAccessLink | https://doaj.org/article/c9cbf5dd76d748c4a9cc97a8abf210cc |
| PageCount | 33 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c9cbf5dd76d748c4a9cc97a8abf210cc crossref_primary_10_3934_math_2022445 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2022 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2022445-9 key-10.3934/math.2022445-23 key-10.3934/math.2022445-45 key-10.3934/math.2022445-24 key-10.3934/math.2022445-46 key-10.3934/math.2022445-21 key-10.3934/math.2022445-43 key-10.3934/math.2022445-22 key-10.3934/math.2022445-44 key-10.3934/math.2022445-5 key-10.3934/math.2022445-41 key-10.3934/math.2022445-6 key-10.3934/math.2022445-20 key-10.3934/math.2022445-42 key-10.3934/math.2022445-7 key-10.3934/math.2022445-8 key-10.3934/math.2022445-40 key-10.3934/math.2022445-29 key-10.3934/math.2022445-27 key-10.3934/math.2022445-28 key-10.3934/math.2022445-25 key-10.3934/math.2022445-47 key-10.3934/math.2022445-26 key-10.3934/math.2022445-48 key-10.3934/math.2022445-12 key-10.3934/math.2022445-34 key-10.3934/math.2022445-13 key-10.3934/math.2022445-35 key-10.3934/math.2022445-10 key-10.3934/math.2022445-32 key-10.3934/math.2022445-11 key-10.3934/math.2022445-33 key-10.3934/math.2022445-30 key-10.3934/math.2022445-31 key-10.3934/math.2022445-18 key-10.3934/math.2022445-19 key-10.3934/math.2022445-16 key-10.3934/math.2022445-38 key-10.3934/math.2022445-17 key-10.3934/math.2022445-39 key-10.3934/math.2022445-14 key-10.3934/math.2022445-36 key-10.3934/math.2022445-15 key-10.3934/math.2022445-37 key-10.3934/math.2022445-1 key-10.3934/math.2022445-2 key-10.3934/math.2022445-3 key-10.3934/math.2022445-4 |
| References_xml | – ident: key-10.3934/math.2022445-35 doi: 10.1287/opre.2019.1905 – ident: key-10.3934/math.2022445-32 doi: 10.1016/j.rser.2014.02.003 – ident: key-10.3934/math.2022445-21 doi: 10.1007/s12532-017-0128-z – ident: key-10.3934/math.2022445-19 – ident: key-10.3934/math.2022445-44 – ident: key-10.3934/math.2022445-42 – ident: key-10.3934/math.2022445-4 doi: 10.1007/BF01386316 – ident: key-10.3934/math.2022445-31 doi: 10.1016/j.jclepro.2017.09.132 – ident: key-10.3934/math.2022445-46 doi: 10.1016/j.energy.2019.01.036 – ident: key-10.3934/math.2022445-2 doi: 10.1007/s12532-020-00185-4 – ident: key-10.3934/math.2022445-5 doi: 10.1287/opre.50.5.904.360 – ident: key-10.3934/math.2022445-3 doi: 10.1016/j.esr.2018.11.003 – ident: key-10.3934/math.2022445-28 – ident: key-10.3934/math.2022445-40 doi: 10.1007/978-3-642-50282-8_10 – ident: key-10.3934/math.2022445-23 doi: 10.1287/educ.2019.0198 – ident: key-10.3934/math.2022445-24 doi: 10.1002/er.4440170606 – ident: key-10.3934/math.2022445-38 doi: 10.1016/j.apenergy.2019.114037 – ident: key-10.3934/math.2022445-36 doi: 10.1613/jair.3680 – ident: key-10.3934/math.2022445-26 – ident: key-10.3934/math.2022445-33 – ident: key-10.3934/math.2022445-10 – ident: key-10.3934/math.2022445-9 doi: 10.1016/j.rser.2014.10.031 – ident: key-10.3934/math.2022445-6 doi: 10.1016/0377-2217(88)90159-2 – ident: key-10.3934/math.2022445-37 doi: 10.1016/j.eneco.2004.10.005 – ident: key-10.3934/math.2022445-39 – ident: key-10.3934/math.2022445-47 doi: 10.1016/j.compchemeng.2020.107220 – ident: key-10.3934/math.2022445-11 doi: 10.1007/s11750-011-0237-1 – ident: key-10.3934/math.2022445-34 doi: 10.1007/BF02031711 – ident: key-10.3934/math.2022445-15 doi: 10.1007/BF02592954 – ident: key-10.3934/math.2022445-12 doi: 10.1016/j.ifacol.2020.12.068 – ident: key-10.3934/math.2022445-18 – ident: key-10.3934/math.2022445-43 – ident: key-10.3934/math.2022445-14 – ident: key-10.3934/math.2022445-41 doi: 10.2166/wp.2020.118 – ident: key-10.3934/math.2022445-48 doi: 10.1016/S0140-9883(00)00048-7 – ident: key-10.3934/math.2022445-30 doi: 10.1016/j.apenergy.2020.115058 – ident: key-10.3934/math.2022445-13 doi: 10.1016/j.scitotenv.2020.143512 – ident: key-10.3934/math.2022445-16 doi: 10.1007/978-1-4615-0015-5 – ident: key-10.3934/math.2022445-7 doi: 10.1016/S0140-9883(97)00015-7 – ident: key-10.3934/math.2022445-8 doi: 10.1287/moor.2017.0866 – ident: key-10.3934/math.2022445-17 doi: 10.3390/su10103438 – ident: key-10.3934/math.2022445-20 doi: 10.1016/S0377-2217(98)00356-7 – ident: key-10.3934/math.2022445-29 – ident: key-10.3934/math.2022445-25 doi: 10.1016/j.energy.2018.01.150 – ident: key-10.3934/math.2022445-45 doi: 10.1137/0117061 – ident: key-10.3934/math.2022445-22 doi: 10.1137/S1052623499363220 – ident: key-10.3934/math.2022445-1 doi: 10.1002/net.21796 – ident: key-10.3934/math.2022445-27 doi: 10.1007/s10287-007-0046-z |
| SSID | ssj0002124274 |
| Score | 2.1755104 |
| Snippet | Energy system optimization models play an essential role in current decision support on topics including energy security, sustainable development and... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 7964 |
| SubjectTerms | lagrangian relaxation scenario decomposition stochastic extension supergradient ascent method the times model two-stage stochastic programs with recourse |
| Title | Lagrangian decomposition for stochastic TIMES energy system optimization model |
| URI | https://doaj.org/article/c9cbf5dd76d748c4a9cc97a8abf210cc |
| Volume | 7 |
| WOSCitedRecordID | wos000784067400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4lOUL3mAMWpTu3E8AmoFUlshUaRukX22CwMtagMjv527OFTZWFgyRFFkvYvv3sV37xi7Tj3NQwoysWDomBG3ou4aTFVASggUwkxl6ZGaTPLZTD81Rn1RTViUB47AdUCDDX3nVOaUzEEaDaCVyY0NmK0AkPdF1tNIpsgHo0OWmG_FSnehhewg_6OzB4xY1LnUiEENqf4qpgz32V5NBvltXMQB2_KLQ7Y73iipro_YZGTmGE7maEXuPBWA11VWHNkmR-YGr4aklvn0cTx45r5q5eNRn5kv0R-8142WvJp5c8xehoPp_UNSz0BIjMh0mViFGRy44Ps2AwylwvhceEr6kLvZTAWpIHM-Dbg5EScLEkRmek6bVDmkZuKEtRbLhT9lnLTygnS9Xh66MvVBOyJ3uXXQp_NPaLObX1SKjyh1UWCKQOgVhF5Ro9dmdwTZ5hkSqK5uoNmK2mzFX2Y7-4-XnLMdWlP8I3LBWuXq01-ybfgq39arq-qLwOv4e_ADF93AKw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lagrangian+decomposition+for+stochastic+TIMES+energy+system+optimization+model&rft.jtitle=AIMS+mathematics&rft.au=Zhu%2C+Yujun&rft.au=Ming%2C+Ju&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=5&rft.spage=7964&rft.epage=7996&rft_id=info:doi/10.3934%2Fmath.2022445&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022445 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |