Lagrangian decomposition for stochastic TIMES energy system optimization model

Energy system optimization models play an essential role in current decision support on topics including energy security, sustainable development and environmental protection from industrial, regional, national and even global perspective. One of the key energy system optimization models applied in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:AIMS mathematics Ročník 7; číslo 5; s. 7964 - 7996
Hlavní autori: Zhu, Yujun, Ming, Ju
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: AIMS Press 01.01.2022
Predmet:
ISSN:2473-6988, 2473-6988
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Energy system optimization models play an essential role in current decision support on topics including energy security, sustainable development and environmental protection from industrial, regional, national and even global perspective. One of the key energy system optimization models applied in international energy policy is TIMES. The article establishes two basic deterministic TIMES models which cover an energy commodity (coal or gas), a three-step supply curve and an end-use energy service demand. Then we convert the deterministic TIMES models into a stochastic optimization problem with multiple scenarios, and implement the Lagrangian decomposition approach in solving the stochastic programming models. The numerical experiment shows the feasibility of the Lagrangian decomposition algorithm to solve stochastic TIMES models with a small amount of scenarios, and analyze several reasons for non-convergence cases including the choice of step length and initial values of Lagrangian multipliers.
AbstractList Energy system optimization models play an essential role in current decision support on topics including energy security, sustainable development and environmental protection from industrial, regional, national and even global perspective. One of the key energy system optimization models applied in international energy policy is TIMES. The article establishes two basic deterministic TIMES models which cover an energy commodity (coal or gas), a three-step supply curve and an end-use energy service demand. Then we convert the deterministic TIMES models into a stochastic optimization problem with multiple scenarios, and implement the Lagrangian decomposition approach in solving the stochastic programming models. The numerical experiment shows the feasibility of the Lagrangian decomposition algorithm to solve stochastic TIMES models with a small amount of scenarios, and analyze several reasons for non-convergence cases including the choice of step length and initial values of Lagrangian multipliers.
Author Ming, Ju
Zhu, Yujun
Author_xml – sequence: 1
  givenname: Yujun
  surname: Zhu
  fullname: Zhu, Yujun
– sequence: 2
  givenname: Ju
  surname: Ming
  fullname: Ming, Ju
BookMark eNpNkMtOwzAQRS1UJAp0xwfkA0jxK3ayRFWBSgUWlLU1GTupqyau7GzK19OXEKu5Gl0dXZ1bMupD7wh5YHQqKiGfOhjWU045l7K4ImMutchVVZajf_mGTFLaUEo545JrOSYfS2gj9K2HPrMOQ7cLyQ8-9FkTYpaGgGtIg8dstXiff2Wud7HdZ2mfBtdlYTf4zv_Aqd8F67b35LqBbXKTy70j3y_z1ewtX36-LmbPyxyEqoa81ryQaBtX1AoVkwJcKZyknFImaqUbqVFZxxoqWN0UNUoUCritgGkruBJ3ZHHm2gAbs4u-g7g3Abw5PUJsDcTD7K0zWOEBYa1WVssSJVSIlYYS6oYzinhgPZ5ZGENK0TV_PEbNUa05qjUXteIX_H5wAA
Cites_doi 10.1287/opre.2019.1905
10.1016/j.rser.2014.02.003
10.1007/s12532-017-0128-z
10.1007/BF01386316
10.1016/j.jclepro.2017.09.132
10.1016/j.energy.2019.01.036
10.1007/s12532-020-00185-4
10.1287/opre.50.5.904.360
10.1016/j.esr.2018.11.003
10.1007/978-3-642-50282-8_10
10.1287/educ.2019.0198
10.1002/er.4440170606
10.1016/j.apenergy.2019.114037
10.1613/jair.3680
10.1016/j.rser.2014.10.031
10.1016/0377-2217(88)90159-2
10.1016/j.eneco.2004.10.005
10.1016/j.compchemeng.2020.107220
10.1007/s11750-011-0237-1
10.1007/BF02031711
10.1007/BF02592954
10.1016/j.ifacol.2020.12.068
10.2166/wp.2020.118
10.1016/S0140-9883(00)00048-7
10.1016/j.apenergy.2020.115058
10.1016/j.scitotenv.2020.143512
10.1007/978-1-4615-0015-5
10.1016/S0140-9883(97)00015-7
10.1287/moor.2017.0866
10.3390/su10103438
10.1016/S0377-2217(98)00356-7
10.1016/j.energy.2018.01.150
10.1137/0117061
10.1137/S1052623499363220
10.1002/net.21796
10.1007/s10287-007-0046-z
ContentType Journal Article
CorporateAuthor School of Mathematics, University of Edinburgh, Edinburgh, U.K
School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China
CorporateAuthor_xml – name: School of Mathematics, University of Edinburgh, Edinburgh, U.K
– name: School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022445
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 7996
ExternalDocumentID oai_doaj_org_article_c9cbf5dd76d748c4a9cc97a8abf210cc
10_3934_math_2022445
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a369t-b7254cdfe5b6c6143ae83e4020013b67f47c6de1f031bf5bc4c36a2d9a17d3263
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784067400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:43:59 EDT 2025
Sat Nov 29 06:04:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-b7254cdfe5b6c6143ae83e4020013b67f47c6de1f031bf5bc4c36a2d9a17d3263
OpenAccessLink https://doaj.org/article/c9cbf5dd76d748c4a9cc97a8abf210cc
PageCount 33
ParticipantIDs doaj_primary_oai_doaj_org_article_c9cbf5dd76d748c4a9cc97a8abf210cc
crossref_primary_10_3934_math_2022445
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022445-9
key-10.3934/math.2022445-23
key-10.3934/math.2022445-45
key-10.3934/math.2022445-24
key-10.3934/math.2022445-46
key-10.3934/math.2022445-21
key-10.3934/math.2022445-43
key-10.3934/math.2022445-22
key-10.3934/math.2022445-44
key-10.3934/math.2022445-5
key-10.3934/math.2022445-41
key-10.3934/math.2022445-6
key-10.3934/math.2022445-20
key-10.3934/math.2022445-42
key-10.3934/math.2022445-7
key-10.3934/math.2022445-8
key-10.3934/math.2022445-40
key-10.3934/math.2022445-29
key-10.3934/math.2022445-27
key-10.3934/math.2022445-28
key-10.3934/math.2022445-25
key-10.3934/math.2022445-47
key-10.3934/math.2022445-26
key-10.3934/math.2022445-48
key-10.3934/math.2022445-12
key-10.3934/math.2022445-34
key-10.3934/math.2022445-13
key-10.3934/math.2022445-35
key-10.3934/math.2022445-10
key-10.3934/math.2022445-32
key-10.3934/math.2022445-11
key-10.3934/math.2022445-33
key-10.3934/math.2022445-30
key-10.3934/math.2022445-31
key-10.3934/math.2022445-18
key-10.3934/math.2022445-19
key-10.3934/math.2022445-16
key-10.3934/math.2022445-38
key-10.3934/math.2022445-17
key-10.3934/math.2022445-39
key-10.3934/math.2022445-14
key-10.3934/math.2022445-36
key-10.3934/math.2022445-15
key-10.3934/math.2022445-37
key-10.3934/math.2022445-1
key-10.3934/math.2022445-2
key-10.3934/math.2022445-3
key-10.3934/math.2022445-4
References_xml – ident: key-10.3934/math.2022445-35
  doi: 10.1287/opre.2019.1905
– ident: key-10.3934/math.2022445-32
  doi: 10.1016/j.rser.2014.02.003
– ident: key-10.3934/math.2022445-21
  doi: 10.1007/s12532-017-0128-z
– ident: key-10.3934/math.2022445-19
– ident: key-10.3934/math.2022445-44
– ident: key-10.3934/math.2022445-42
– ident: key-10.3934/math.2022445-4
  doi: 10.1007/BF01386316
– ident: key-10.3934/math.2022445-31
  doi: 10.1016/j.jclepro.2017.09.132
– ident: key-10.3934/math.2022445-46
  doi: 10.1016/j.energy.2019.01.036
– ident: key-10.3934/math.2022445-2
  doi: 10.1007/s12532-020-00185-4
– ident: key-10.3934/math.2022445-5
  doi: 10.1287/opre.50.5.904.360
– ident: key-10.3934/math.2022445-3
  doi: 10.1016/j.esr.2018.11.003
– ident: key-10.3934/math.2022445-28
– ident: key-10.3934/math.2022445-40
  doi: 10.1007/978-3-642-50282-8_10
– ident: key-10.3934/math.2022445-23
  doi: 10.1287/educ.2019.0198
– ident: key-10.3934/math.2022445-24
  doi: 10.1002/er.4440170606
– ident: key-10.3934/math.2022445-38
  doi: 10.1016/j.apenergy.2019.114037
– ident: key-10.3934/math.2022445-36
  doi: 10.1613/jair.3680
– ident: key-10.3934/math.2022445-26
– ident: key-10.3934/math.2022445-33
– ident: key-10.3934/math.2022445-10
– ident: key-10.3934/math.2022445-9
  doi: 10.1016/j.rser.2014.10.031
– ident: key-10.3934/math.2022445-6
  doi: 10.1016/0377-2217(88)90159-2
– ident: key-10.3934/math.2022445-37
  doi: 10.1016/j.eneco.2004.10.005
– ident: key-10.3934/math.2022445-39
– ident: key-10.3934/math.2022445-47
  doi: 10.1016/j.compchemeng.2020.107220
– ident: key-10.3934/math.2022445-11
  doi: 10.1007/s11750-011-0237-1
– ident: key-10.3934/math.2022445-34
  doi: 10.1007/BF02031711
– ident: key-10.3934/math.2022445-15
  doi: 10.1007/BF02592954
– ident: key-10.3934/math.2022445-12
  doi: 10.1016/j.ifacol.2020.12.068
– ident: key-10.3934/math.2022445-18
– ident: key-10.3934/math.2022445-43
– ident: key-10.3934/math.2022445-14
– ident: key-10.3934/math.2022445-41
  doi: 10.2166/wp.2020.118
– ident: key-10.3934/math.2022445-48
  doi: 10.1016/S0140-9883(00)00048-7
– ident: key-10.3934/math.2022445-30
  doi: 10.1016/j.apenergy.2020.115058
– ident: key-10.3934/math.2022445-13
  doi: 10.1016/j.scitotenv.2020.143512
– ident: key-10.3934/math.2022445-16
  doi: 10.1007/978-1-4615-0015-5
– ident: key-10.3934/math.2022445-7
  doi: 10.1016/S0140-9883(97)00015-7
– ident: key-10.3934/math.2022445-8
  doi: 10.1287/moor.2017.0866
– ident: key-10.3934/math.2022445-17
  doi: 10.3390/su10103438
– ident: key-10.3934/math.2022445-20
  doi: 10.1016/S0377-2217(98)00356-7
– ident: key-10.3934/math.2022445-29
– ident: key-10.3934/math.2022445-25
  doi: 10.1016/j.energy.2018.01.150
– ident: key-10.3934/math.2022445-45
  doi: 10.1137/0117061
– ident: key-10.3934/math.2022445-22
  doi: 10.1137/S1052623499363220
– ident: key-10.3934/math.2022445-1
  doi: 10.1002/net.21796
– ident: key-10.3934/math.2022445-27
  doi: 10.1007/s10287-007-0046-z
SSID ssj0002124274
Score 2.1755104
Snippet Energy system optimization models play an essential role in current decision support on topics including energy security, sustainable development and...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 7964
SubjectTerms lagrangian relaxation
scenario decomposition
stochastic extension
supergradient ascent method
the times model
two-stage stochastic programs with recourse
Title Lagrangian decomposition for stochastic TIMES energy system optimization model
URI https://doaj.org/article/c9cbf5dd76d748c4a9cc97a8abf210cc
Volume 7
WOSCitedRecordID wos000784067400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4lOUL3mA0WpSO3Y8AmoFUlshUVC3yD7bhYG2agsjv51zEqpsLCwZosiK3iX33iXnd4Rccw1pCAaY72rBRDCe2SznzOROOUDG5uUwmNeBGo3yyUQ_NUZ9xZ6wyh64Aq4DGmzInFPSKZGDMBpAK5MbG7BaAYjZF1VPo5iKORgTssB6q-p055qLDuq_-O8BGSvuXGpwUMOqv-SU_j7Zq8Ugva1u4oBs-dkh2R1unFRXR2Q0MFOkkylGkTofG8DrLiuKapOicoM3E62W6fhx2HumvtzKRyt_ZjrHfPBRb7Sk5cybY_LS743vH1g9A4EZLvWaWYUVHLjgMysBqZQbn3Mfiz7UblaqIBRI59OALyfiZEEAl6brtEmVQ2nGT0hrNp_5U0Kty7MkxZUUUhIiahPnwHEZhE0ykEmb3PyiUiwqq4sCS4SIXhHRK2r02uQuQra5JhpUlycwbEUdtuKvsJ39xyLnZCfeU_VF5IK01stPf0m24Wv9vlpelU8EHoffvR-7vMGp
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lagrangian+decomposition+for+stochastic+TIMES+energy+system+optimization+model&rft.jtitle=AIMS+mathematics&rft.au=Yujun+Zhu&rft.au=Ju+Ming&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=5&rft.spage=7964&rft.epage=7996&rft_id=info:doi/10.3934%2Fmath.2022445&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c9cbf5dd76d748c4a9cc97a8abf210cc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon