UNCERTAINTY MODELLING IN RAINFALL-RUNOFF SIMULATIONS BASED ON PARALLEL MONTE CARLO METHOD

This article describes statistical evaluation of the computational model for precipitation forecast and proposes a method for uncertainty modelling of rainfall-runoff models in the Floreon^+ system based on this evaluation. The Monte-Carlo simulation method is used for estimating possible river disc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural Network World Ročník 25; číslo 3; s. 267 - 286
Hlavní autoři: Golasowski, M, Litschmannova, M, Kuchar, S, Podhorányi, M, Martinovic, J
Médium: Journal Article
Jazyk:angličtina
Vydáno: Prague Institute of Information and Computer Technology 01.01.2015
Czech Technical University in Prague, Faculty of Transportation Sciences
Témata:
ISSN:1210-0552, 2336-4335
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article describes statistical evaluation of the computational model for precipitation forecast and proposes a method for uncertainty modelling of rainfall-runoff models in the Floreon^+ system based on this evaluation. The Monte-Carlo simulation method is used for estimating possible river discharge and provides several confidence intervals that can support the decisions in operational disaster management. Experiments with other parameters of the model and their influence on final river discharge are also discussed.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1210-0552
2336-4335
DOI:10.14311/NNW.2015.25.014