Principal eigenvalues for k-Hessian operators by maximum principle methods

For fully nonlinear $k$-Hessian operators on bounded strictly $(k-1)$-convex domains $\Omega$ of $\R^N$, a characterization of the principal eigenvalue associated to a $k$-convex and negative principal eigenfunction will be given as the supremum over values of a spectral parameter for which {\em adm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics in engineering Ročník 3; číslo 3; s. 1 - 37
Hlavní autoři: Birindelli, Isabeau, R. Payne, Kevin
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2021
Témata:
ISSN:2640-3501, 2640-3501
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For fully nonlinear $k$-Hessian operators on bounded strictly $(k-1)$-convex domains $\Omega$ of $\R^N$, a characterization of the principal eigenvalue associated to a $k$-convex and negative principal eigenfunction will be given as the supremum over values of a spectral parameter for which {\em admissible viscosity supersolutions} obey a minimum principle. The admissibility condition is phrased in terms of the natural closed convex cone $\Sigma_k \subset \Ss(N)$ which is an {\em elliptic set} in the sense of Krylov \cite{Kv95} which corresponds to using $k$-convex functions as admissibility constraints in the formulation of viscosity subsolutions and supersolutions. Moreover, the associated principal eigenfunction is constructed by an iterative viscosity solution technique, which exploits a compactness property which results from the establishment of a global H\"older estimate for the unique $k$-convex solutions of the approximating equations.
ISSN:2640-3501
2640-3501
DOI:10.3934/mine.2021021