Weighted salp swarm algorithm with deep learning-powered cyber-threat detection for robust network security

The fast development of the internet of things has been associated with the complex worldwide problem of protecting interconnected devices and networks. The protection of cyber security is becoming increasingly complicated due to the enormous growth in computer connectivity and the number of new app...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 9; číslo 7; s. 17676 - 17695
Hlavní autoři: Althobaiti, Maha M., Escorcia-Gutierrez, José
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2024
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The fast development of the internet of things has been associated with the complex worldwide problem of protecting interconnected devices and networks. The protection of cyber security is becoming increasingly complicated due to the enormous growth in computer connectivity and the number of new applications related to computers. Consequently, emerging intrusion detection systems could execute a potential cyber security function to identify attacks and variations in computer networks. An efficient data-driven intrusion detection system can be generated utilizing artificial intelligence, especially machine learning methods. Deep learning methods offer advanced methodologies for identifying abnormalities in network traffic efficiently. Therefore, this article introduced a weighted salp swarm algorithm with deep learning-powered cyber-threat detection and classification (WSSADL-CTDC) technique for robust network security, with the aim of detecting the presence of cyber threats, keeping networks secure using metaheuristics with deep learning models, and implementing a min-max normalization approach to scale the data into a uniform format to accomplish this. In addition, the WSSADL-CTDC technique applied the shuffled frog leap algorithm (SFLA) to elect an optimum subset of features and applied a hybrid convolutional autoencoder (CAE) model for cyber threat detection and classification. A WSSA-based hyperparameter tuning method can be employed to enhance the detection performance of the CAE model. The simulation results of the WSSADL-CTDC system were examined in the benchmark dataset. The extensive analysis of the accuracy of the results found that the WSSADL-CTDC technique exhibited a better value of 99.13% than comparable methods on different measures.
AbstractList The fast development of the internet of things has been associated with the complex worldwide problem of protecting interconnected devices and networks. The protection of cyber security is becoming increasingly complicated due to the enormous growth in computer connectivity and the number of new applications related to computers. Consequently, emerging intrusion detection systems could execute a potential cyber security function to identify attacks and variations in computer networks. An efficient data-driven intrusion detection system can be generated utilizing artificial intelligence, especially machine learning methods. Deep learning methods offer advanced methodologies for identifying abnormalities in network traffic efficiently. Therefore, this article introduced a weighted salp swarm algorithm with deep learning-powered cyber-threat detection and classification (WSSADL-CTDC) technique for robust network security, with the aim of detecting the presence of cyber threats, keeping networks secure using metaheuristics with deep learning models, and implementing a min-max normalization approach to scale the data into a uniform format to accomplish this. In addition, the WSSADL-CTDC technique applied the shuffled frog leap algorithm (SFLA) to elect an optimum subset of features and applied a hybrid convolutional autoencoder (CAE) model for cyber threat detection and classification. A WSSA-based hyperparameter tuning method can be employed to enhance the detection performance of the CAE model. The simulation results of the WSSADL-CTDC system were examined in the benchmark dataset. The extensive analysis of the accuracy of the results found that the WSSADL-CTDC technique exhibited a better value of 99.13% than comparable methods on different measures.
Author Escorcia-Gutierrez, José
Althobaiti, Maha M.
Author_xml – sequence: 1
  givenname: Maha M.
  surname: Althobaiti
  fullname: Althobaiti, Maha M.
  organization: Department of Computer Science, College of Computing and Information Technology, Taif University, Taif, 21944, Saudi Arabia
– sequence: 2
  givenname: José
  surname: Escorcia-Gutierrez
  fullname: Escorcia-Gutierrez, José
  organization: Department of Computational Science and Electronics, Universidad de la Costa, CUC, Barranquilla, 080002, Colombia
BookMark eNpNkMtqwzAQRUVJoWmbXT9AH1CnsiTb8rKEPgKBblq6FGN7ZDuxrSApmPx9nSaUbmaGy-XAnFsyG-yAhDzEbClyIZ96CM2SMy5Vkl-ROZeZiNJcqdm_-4YsvN8yxnjMJc_knOy-sa2bgBX10O2pH8H1FLraujY0PR2nSSvEPe0Q3NAOdbS3I7qpXx4LdFFoHEKYKgHL0NqBGuuos8XBBzpgGK3bUY_lYcId78m1gc7j4rLvyNfry-fqPdp8vK1Xz5sIRJqHSCkOIKdHcoECUgNSGJkphUWRJtIkSQWqFJBJkwI3wrA0EQqV4DxFY6pK3JH1mVtZ2Oq9a3twR22h1b-BdbUGF9qyQ50xY-IY4koKJbO4AJZMUYwpLwUr0UysxzOrdNZ7h-aPFzN98q5P3vXFu_gBexF6iw
Cites_doi 10.1016/j.compbiomed.2023.107389
10.1109/DCOSS-IoT58021.2023.00042
10.3390/su151612563
10.1109/COMST.2021.3127267
10.1109/JIOT.2021.3130156
10.1016/S0168-9274(96)00048-7
10.1007/s13201-022-01815-z
10.1109/IEC52205.2021.9476132
10.1109/ACCESS.2021.3091427
10.1016/j.compbiomed.2023.106659
10.32604/csse.2023.030188
10.1016/j.aej.2023.12.018
10.1016/j.aiia.2021.05.002
10.1109/ACCESS.2021.3118642
10.22667/JISIS.2022.05.31.095
10.1007/s00779-021-01578-5
10.3390/s22041396
10.1007/s12293-016-0212-3
10.1155/2022/2608798
10.1109/TNNLS.2018.2868980
10.1016/j.future.2020.03.055
10.1016/j.neucom.2023.126467
10.1109/JIOT.2022.3229722
10.1016/j.iot.2021.100365
10.1016/j.compbiomed.2023.107838
10.1016/j.jksuci.2019.04.002
10.1016/j.dcan.2022.09.008
10.1109/JIOT.2021.3106898
10.1016/j.neucom.2018.09.093
10.1016/j.jksuci.2019.07.005
10.1007/s42235-021-0050-y
10.1016/j.eswa.2021.114864
10.1016/j.neucom.2023.02.010
10.1109/MPRV.2018.03367731
10.1016/j.cosrev.2020.100317
10.1016/j.scs.2020.102655
10.1016/j.eswa.2022.116516
10.1093/comjnl/bxy144
10.1016/j.future.2019.02.028
10.1007/s10489-022-04427-x
10.1016/j.knosys.2018.10.029
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2024859
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 17695
ExternalDocumentID oai_doaj_org_article_70ff11a1d438471ba0570f1e62c30cef
10_3934_math_2024859
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a369t-882aa402493e3a6fa43f4788ebb654f55da8c3a74f6a2f3f06538e83226effdd3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001230941300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:46:00 EDT 2025
Sat Nov 29 06:04:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-882aa402493e3a6fa43f4788ebb654f55da8c3a74f6a2f3f06538e83226effdd3
OpenAccessLink https://doaj.org/article/70ff11a1d438471ba0570f1e62c30cef
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_70ff11a1d438471ba0570f1e62c30cef
crossref_primary_10_3934_math_2024859
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024859-7
key-10.3934/math.2024859-6
key-10.3934/math.2024859-5
key-10.3934/math.2024859-4
key-10.3934/math.2024859-3
key-10.3934/math.2024859-2
key-10.3934/math.2024859-1
key-10.3934/math.2024859-20
key-10.3934/math.2024859-42
key-10.3934/math.2024859-21
key-10.3934/math.2024859-43
key-10.3934/math.2024859-40
key-10.3934/math.2024859-41
key-10.3934/math.2024859-9
key-10.3934/math.2024859-8
key-10.3934/math.2024859-28
key-10.3934/math.2024859-29
key-10.3934/math.2024859-26
key-10.3934/math.2024859-27
key-10.3934/math.2024859-24
key-10.3934/math.2024859-25
key-10.3934/math.2024859-22
key-10.3934/math.2024859-44
key-10.3934/math.2024859-23
key-10.3934/math.2024859-31
key-10.3934/math.2024859-10
key-10.3934/math.2024859-32
key-10.3934/math.2024859-30
key-10.3934/math.2024859-17
key-10.3934/math.2024859-39
key-10.3934/math.2024859-18
key-10.3934/math.2024859-15
key-10.3934/math.2024859-37
key-10.3934/math.2024859-16
key-10.3934/math.2024859-38
key-10.3934/math.2024859-13
key-10.3934/math.2024859-35
key-10.3934/math.2024859-14
key-10.3934/math.2024859-36
key-10.3934/math.2024859-11
key-10.3934/math.2024859-33
key-10.3934/math.2024859-12
key-10.3934/math.2024859-34
key-10.3934/math.2024859-19
References_xml – ident: key-10.3934/math.2024859-11
  doi: 10.1016/j.compbiomed.2023.107389
– ident: key-10.3934/math.2024859-28
  doi: 10.1109/DCOSS-IoT58021.2023.00042
– ident: key-10.3934/math.2024859-43
  doi: 10.3390/su151612563
– ident: key-10.3934/math.2024859-10
  doi: 10.1109/COMST.2021.3127267
– ident: key-10.3934/math.2024859-23
  doi: 10.1109/JIOT.2021.3130156
– ident: key-10.3934/math.2024859-25
– ident: key-10.3934/math.2024859-16
  doi: 10.1016/S0168-9274(96)00048-7
– ident: key-10.3934/math.2024859-35
  doi: 10.1007/s13201-022-01815-z
– ident: key-10.3934/math.2024859-3
  doi: 10.1109/IEC52205.2021.9476132
– ident: key-10.3934/math.2024859-5
  doi: 10.1109/ACCESS.2021.3091427
– ident: key-10.3934/math.2024859-33
  doi: 10.1016/j.compbiomed.2023.106659
– ident: key-10.3934/math.2024859-42
  doi: 10.32604/csse.2023.030188
– ident: key-10.3934/math.2024859-40
  doi: 10.1016/j.aej.2023.12.018
– ident: key-10.3934/math.2024859-38
  doi: 10.1016/j.aiia.2021.05.002
– ident: key-10.3934/math.2024859-1
  doi: 10.1109/ACCESS.2021.3118642
– ident: key-10.3934/math.2024859-27
  doi: 10.22667/JISIS.2022.05.31.095
– ident: key-10.3934/math.2024859-6
  doi: 10.1007/s00779-021-01578-5
– ident: key-10.3934/math.2024859-44
  doi: 10.3390/s22041396
– ident: key-10.3934/math.2024859-14
  doi: 10.1007/s12293-016-0212-3
– ident: key-10.3934/math.2024859-4
  doi: 10.1155/2022/2608798
– ident: key-10.3934/math.2024859-34
  doi: 10.1109/TNNLS.2018.2868980
– ident: key-10.3934/math.2024859-12
  doi: 10.1016/j.future.2020.03.055
– ident: key-10.3934/math.2024859-13
  doi: 10.1016/j.neucom.2023.126467
– ident: key-10.3934/math.2024859-24
  doi: 10.1109/JIOT.2022.3229722
– ident: key-10.3934/math.2024859-9
  doi: 10.1016/j.iot.2021.100365
– ident: key-10.3934/math.2024859-26
– ident: key-10.3934/math.2024859-21
  doi: 10.1016/j.compbiomed.2023.107838
– ident: key-10.3934/math.2024859-36
  doi: 10.1016/j.jksuci.2019.04.002
– ident: key-10.3934/math.2024859-22
  doi: 10.1016/j.dcan.2022.09.008
– ident: key-10.3934/math.2024859-2
  doi: 10.1109/JIOT.2021.3106898
– ident: key-10.3934/math.2024859-31
  doi: 10.1016/j.neucom.2018.09.093
– ident: key-10.3934/math.2024859-39
  doi: 10.1016/j.jksuci.2019.07.005
– ident: key-10.3934/math.2024859-17
  doi: 10.1007/s42235-021-0050-y
– ident: key-10.3934/math.2024859-15
  doi: 10.1016/j.eswa.2021.114864
– ident: key-10.3934/math.2024859-20
  doi: 10.1016/j.neucom.2023.02.010
– ident: key-10.3934/math.2024859-41
  doi: 10.1109/MPRV.2018.03367731
– ident: key-10.3934/math.2024859-7
  doi: 10.1016/j.cosrev.2020.100317
– ident: key-10.3934/math.2024859-8
  doi: 10.1016/j.scs.2020.102655
– ident: key-10.3934/math.2024859-29
– ident: key-10.3934/math.2024859-18
  doi: 10.1016/j.eswa.2022.116516
– ident: key-10.3934/math.2024859-30
  doi: 10.1093/comjnl/bxy144
– ident: key-10.3934/math.2024859-19
  doi: 10.1016/j.future.2019.02.028
– ident: key-10.3934/math.2024859-37
  doi: 10.1007/s10489-022-04427-x
– ident: key-10.3934/math.2024859-32
  doi: 10.1016/j.knosys.2018.10.029
SSID ssj0002124274
Score 2.2565038
Snippet The fast development of the internet of things has been associated with the complex worldwide problem of protecting interconnected devices and networks. The...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 17676
SubjectTerms convolutional autoencoder
cyber threat
intrusion detection systems
network security
salp swarm algorithm
Title Weighted salp swarm algorithm with deep learning-powered cyber-threat detection for robust network security
URI https://doaj.org/article/70ff11a1d438471ba0570f1e62c30cef
Volume 9
WOSCitedRecordID wos001230941300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5gtFrXzmsE1IqlFQOIbpEf5xbRplWSglj47fiSUJWJhSVDdLKsO-f83eX0fYRcy1iAsZFmoYkdk4HjTOlEM0Cx7ihxwE0tNhGNRvF4nDxuSH3hTFhND1w7rhN1neNccSsFJlKtPMDoOg5hz4iuAYfZ1y-6UUxhDvYJWfp6q550F4mQHY__8N8DMnglv-6gDar-6k4Z7JO9BgzS23oTB2QLskOyO1wzqRZH5O2l6l2CpYWaLWnxofI5VbPJwhf10znFNiq1AEvayD9M2BJ1z7y9-dSQs3KKqNCblNXMVUY9SKX5Qq-Kkmb1CDgtGg27Y_I86D_dP7BGIIEpESYl8-hYKYmkfwKECp2SwiEdPmgdBtIFgVWxESqSLlQ9Jxzy0MaA33AIzlkrTkgrW2RwSqh2PAAhtOlyJblJNCBxYM9AbLUMbdQmNz8uS5c1D0bq6wd0bYquTRvXtskd-nNtg-zV1Qsf07SJafpXTM_-Y5FzsoN7qtslF6RV5iu4JNvmvXwt8qvquPjn8Kv_De3myhc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+salp+swarm+algorithm+with+deep+learning-powered+cyber-threat+detection+for+robust+network+security&rft.jtitle=AIMS+mathematics&rft.au=Maha+M.+Althobaiti&rft.au=Jos%C3%A9+Escorcia-Gutierrez&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=7&rft.spage=17676&rft.epage=17695&rft_id=info:doi/10.3934%2Fmath.2024859&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_70ff11a1d438471ba0570f1e62c30cef
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon