Leveraging metaheuristics with artificial intelligence for customer churn prediction in telecom industries
Customer churn prediction (CCP) is among the greatest challenges faced in the telecommunication sector. With progress in the fields of machine learning (ML) and artificial intelligence (AI), the possibility of CCP has dramatically increased. Therefore, this study presents an artificial intelligence...
Uložené v:
| Vydané v: | Electronic research archive Ročník 31; číslo 8; s. 4443 - 4458 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
AIMS Press
01.01.2023
|
| Predmet: | |
| ISSN: | 2688-1594, 2688-1594 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Customer churn prediction (CCP) is among the greatest challenges faced in the telecommunication sector. With progress in the fields of machine learning (ML) and artificial intelligence (AI), the possibility of CCP has dramatically increased. Therefore, this study presents an artificial intelligence with Jaya optimization algorithm based churn prediction for data exploration (AIJOA-CPDE) technique for human-computer interaction (HCI) application. The major aim of the AIJOA-CPDE technique is the determination of churned and non-churned customers. In the AIJOA-CPDE technique, an initial stage of feature selection using the JOA named the JOA-FS technique is presented to choose feature subsets. For churn prediction, the AIJOA-CPDE technique employs a bidirectional long short-term memory (BDLSTM) model. Lastly, the chicken swarm optimization (CSO) algorithm is enforced as a hyperparameter optimizer of the BDLSTM model. A detailed experimental validation of the AIJOA-CPDE technique ensured its superior performance over other existing approaches. |
|---|---|
| AbstractList | Customer churn prediction (CCP) is among the greatest challenges faced in the telecommunication sector. With progress in the fields of machine learning (ML) and artificial intelligence (AI), the possibility of CCP has dramatically increased. Therefore, this study presents an artificial intelligence with Jaya optimization algorithm based churn prediction for data exploration (AIJOA-CPDE) technique for human-computer interaction (HCI) application. The major aim of the AIJOA-CPDE technique is the determination of churned and non-churned customers. In the AIJOA-CPDE technique, an initial stage of feature selection using the JOA named the JOA-FS technique is presented to choose feature subsets. For churn prediction, the AIJOA-CPDE technique employs a bidirectional long short-term memory (BDLSTM) model. Lastly, the chicken swarm optimization (CSO) algorithm is enforced as a hyperparameter optimizer of the BDLSTM model. A detailed experimental validation of the AIJOA-CPDE technique ensured its superior performance over other existing approaches. |
| Author | Cho, Woong Shrestha, Bhanu Altaf Ahmed, Mohammed Laxmi Lydia, E. Abdullaev, Ilyоs Prodanova, Natalia Prasad Joshi, Gyanendra |
| Author_xml | – sequence: 1 givenname: Ilyоs surname: Abdullaev fullname: Abdullaev, Ilyоs organization: Department of Management and Marketing, Urgench State University, Urgench 220100, Uzbekistan – sequence: 2 givenname: Natalia surname: Prodanova fullname: Prodanova, Natalia organization: Basic Department Financial Control, Analysis and Audit of Moscow Main Control Department, Plekhanov Russian University of Economics, Moscow 117997, Russia – sequence: 3 givenname: Mohammed surname: Altaf Ahmed fullname: Altaf Ahmed, Mohammed organization: Department of Computer Engineering, College of Computer Engineering & Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia – sequence: 4 givenname: E. surname: Laxmi Lydia fullname: Laxmi Lydia, E. organization: Department of Computer Science and Engineering, Vignan's Institute of Information Technology, Visakhapatnam 530049, India – sequence: 5 givenname: Bhanu surname: Shrestha fullname: Shrestha, Bhanu organization: Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Korea – sequence: 6 givenname: Gyanendra surname: Prasad Joshi fullname: Prasad Joshi, Gyanendra organization: Department of Computer Science and Engineering, Sejong University, Seoul 05006, Korea – sequence: 7 givenname: Woong surname: Cho fullname: Cho, Woong organization: Department of Electronics, Information and Communication Engineering, Kangwon National University, Gangwon-do, Samcheok-si 25913, Korea |
| BookMark | eNptUE1LAzEUDFLBWnvyD-xdtuZjN9kcRfwoFLzoOYS3b7cp201JUsV_b2oriHh6w3szw5u5JJPRj0jINaMLoUV1i8EuOOWCc3VGplw2TclqXU1-4Qsyj3FDKeUNo7SSU7JZ4XsW9m7siy0mu8Z9cDE5iMWHS-vChuQ6B84OhRsTDoPrcQQsOh8K2Mfkt5jBeh_GYhewdZCcHzO1yFwEv82wzbTgMF6R884OEeenOSNvjw-v98_l6uVpeX-3Kq2QOpVKQieBSZCSKVtTmdcdAGuA15ZJxLrpuJCsBc11VVctp1qqRmFdaS0oiBlZHn1bbzdmF9zWhk_jrTPfCx96c0gFAxrBFXBdK9nWompBaCtUB0px3WA-YfZiRy8IPsaAnQGX7CFjCtYNhlFz6N7kCs2p-6y5-aP5-eE_9hfzj4jc |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125993 crossref_primary_10_1051_e3sconf_202344904001 crossref_primary_10_1051_bioconf_20248206015 crossref_primary_10_3390_electronics14101916 crossref_primary_10_3389_frai_2025_1600357 crossref_primary_10_3390_biomimetics9010001 crossref_primary_10_1051_e3sconf_202344907001 crossref_primary_10_1371_journal_pone_0303881 crossref_primary_10_1051_e3sconf_202344904005 crossref_primary_10_1051_e3sconf_202344902001 crossref_primary_10_1051_e3sconf_202344907005 |
| Cites_doi | 10.1016/j.engappai.2016.07.006 10.3390/math10071031 10.1080/15623599.2019.1683692 10.1016/j.suscom.2022.100705 10.1007/s13198-022-01759-2 10.1109/ICISS49785.2020.9315951 10.1016/j.ijforecast.2019.03.029 10.1016/j.cie.2018.12.017 10.1080/15472450.2021.1890070 10.3390/jtaer17040077 10.1007/s40747-021-00353-6 10.1109/ICONAT53423.2022.9725957 10.1007/s00607-021-00908-y 10.1155/2022/4720539 10.2174/1872212113666190211130117 10.1007/s10489-014-0590-5 10.1109/ICDABI53623.2021.9655792 10.1080/09540091.2022.2083584 10.5267/j.ijiec.2015.8.004 10.1108/JM2-01-2021-0032 10.3390/computation9030034 10.1007/s11227-021-03737-0 10.3390/jtaer17020024 10.1007/s00521-022-07067-x 10.1109/ICComm.2016.7528311 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/era.2023227 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2688-1594 |
| EndPage | 4458 |
| ExternalDocumentID | oai_doaj_org_article_327c29576d534dc39a37fc77298e27ce 10_3934_era_2023227 |
| GroupedDBID | AAYXX ABDBF ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION GROUPED_DOAJ IAO ICD ITC RAN TUS M~E |
| ID | FETCH-LOGICAL-a369t-76cf6c16c6617a506a36fcc18c25a16ee58f2361dc929454d2096787e549930c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001071130500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2688-1594 |
| IngestDate | Tue Oct 14 19:05:49 EDT 2025 Sat Nov 29 01:41:24 EST 2025 Tue Nov 18 21:55:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a369t-76cf6c16c6617a506a36fcc18c25a16ee58f2361dc929454d2096787e549930c3 |
| OpenAccessLink | https://doaj.org/article/327c29576d534dc39a37fc77298e27ce |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_327c29576d534dc39a37fc77298e27ce crossref_citationtrail_10_3934_era_2023227 crossref_primary_10_3934_era_2023227 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Electronic research archive |
| PublicationYear | 2023 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/era.2023227-20 key-10.3934/era.2023227-21 key-10.3934/era.2023227-22 key-10.3934/era.2023227-23 key-10.3934/era.2023227-28 key-10.3934/era.2023227-29 key-10.3934/era.2023227-24 key-10.3934/era.2023227-25 key-10.3934/era.2023227-26 key-10.3934/era.2023227-27 key-10.3934/era.2023227-3 key-10.3934/era.2023227-2 key-10.3934/era.2023227-5 key-10.3934/era.2023227-4 key-10.3934/era.2023227-1 key-10.3934/era.2023227-10 key-10.3934/era.2023227-11 key-10.3934/era.2023227-12 key-10.3934/era.2023227-17 key-10.3934/era.2023227-18 key-10.3934/era.2023227-19 key-10.3934/era.2023227-7 key-10.3934/era.2023227-13 key-10.3934/era.2023227-6 key-10.3934/era.2023227-14 key-10.3934/era.2023227-9 key-10.3934/era.2023227-15 key-10.3934/era.2023227-8 key-10.3934/era.2023227-16 |
| References_xml | – ident: key-10.3934/era.2023227-9 doi: 10.1016/j.engappai.2016.07.006 – ident: key-10.3934/era.2023227-16 doi: 10.3390/math10071031 – ident: key-10.3934/era.2023227-24 doi: 10.1080/15623599.2019.1683692 – ident: key-10.3934/era.2023227-21 – ident: key-10.3934/era.2023227-4 – ident: key-10.3934/era.2023227-3 doi: 10.1016/j.suscom.2022.100705 – ident: key-10.3934/era.2023227-12 doi: 10.1007/s13198-022-01759-2 – ident: key-10.3934/era.2023227-18 doi: 10.1109/ICISS49785.2020.9315951 – ident: key-10.3934/era.2023227-15 doi: 10.1016/j.ijforecast.2019.03.029 – ident: key-10.3934/era.2023227-14 doi: 10.1016/j.cie.2018.12.017 – ident: key-10.3934/era.2023227-13 – ident: key-10.3934/era.2023227-11 – ident: key-10.3934/era.2023227-25 doi: 10.1080/15472450.2021.1890070 – ident: key-10.3934/era.2023227-7 doi: 10.3390/jtaer17040077 – ident: key-10.3934/era.2023227-28 doi: 10.1007/s40747-021-00353-6 – ident: key-10.3934/era.2023227-19 doi: 10.1109/ICONAT53423.2022.9725957 – ident: key-10.3934/era.2023227-27 doi: 10.1007/s00607-021-00908-y – ident: key-10.3934/era.2023227-29 doi: 10.1155/2022/4720539 – ident: key-10.3934/era.2023227-17 doi: 10.2174/1872212113666190211130117 – ident: key-10.3934/era.2023227-8 doi: 10.1007/s10489-014-0590-5 – ident: key-10.3934/era.2023227-2 doi: 10.1109/ICDABI53623.2021.9655792 – ident: key-10.3934/era.2023227-6 doi: 10.1080/09540091.2022.2083584 – ident: key-10.3934/era.2023227-22 doi: 10.5267/j.ijiec.2015.8.004 – ident: key-10.3934/era.2023227-20 doi: 10.1108/JM2-01-2021-0032 – ident: key-10.3934/era.2023227-5 doi: 10.3390/computation9030034 – ident: key-10.3934/era.2023227-23 doi: 10.1007/s11227-021-03737-0 – ident: key-10.3934/era.2023227-10 doi: 10.3390/jtaer17020024 – ident: key-10.3934/era.2023227-1 doi: 10.1007/s00521-022-07067-x – ident: key-10.3934/era.2023227-26 doi: 10.1109/ICComm.2016.7528311 |
| SSID | ssj0002810046 |
| Score | 2.3597767 |
| Snippet | Customer churn prediction (CCP) is among the greatest challenges faced in the telecommunication sector. With progress in the fields of machine learning (ML)... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 4443 |
| SubjectTerms | artificial intelligence data exploration deep learning jaya optimization algorithm |
| Title | Leveraging metaheuristics with artificial intelligence for customer churn prediction in telecom industries |
| URI | https://doaj.org/article/327c29576d534dc39a37fc77298e27ce |
| Volume | 31 |
| WOSCitedRecordID | wos001071130500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2688-1594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002810046 issn: 2688-1594 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx46IUVNYseOR0AgBqgYQOoWORdbbUUfSlN-P3dJqDIgsbBZzsmx7pz4u0v8fYwNYgys1EIGOlcykHHhgzQXJoh8rhDOGqMd1GITejRKx2Pz1pH6on_CGnrgxnFDEWuIDaLiAgctQBgrtAfChKnDS47evoh6OsnUrC4ZEROaag7kCSPk0JXEMoT4gfRjOltQh6m_3lKeDtlBiwX5XTOHI7bjFsds_3VLpLo-YbMXh2utVhLic1fZidu01MqcKqic5t9wQPBph1yTIxTlsEFgN3fYmOCN-KqkbzIUBzTlFenfLOfYbKQ73PqUfTw9vj88B608QmCFMlWgFXgFkQLcYrVNQoXdHiBKIU5spJxLUk_UKgUgBJKJLGJMV_D5dJQSihDEGestlgt3zrjM08KGYa5zD9KKxNLRjtxrb70Rkdd9dvvjsQxa7nCSsPjMMIcg92boiqx1b58NtsarhjLjd7N7cv3WhHiu6w6MftZGP_sr-hf_Mcgl26M5NYWVK9aryo27ZrvwVU3X5U29sL4Bg-zUNQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+metaheuristics+with+artificial+intelligence+for+customer+churn+prediction+in+telecom+industries&rft.jtitle=Electronic+research+archive&rft.au=Ily%D0%BEs+Abdullaev&rft.au=Natalia+Prodanova&rft.au=Mohammed+Altaf+Ahmed&rft.au=E.+Laxmi+Lydia&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2688-1594&rft.volume=31&rft.issue=8&rft.spage=4443&rft.epage=4458&rft_id=info:doi/10.3934%2Fera.2023227&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_327c29576d534dc39a37fc77298e27ce |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-1594&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-1594&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-1594&client=summon |