Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function

In this paper we find further versions of generalized Hadamard type fractional integral inequality for $ k $-fractional integrals. For this purpose we utilize the definition of $ h $-convex function. The presented results hold simultaneously for variant types of convexities and fractional integrals.

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 7; číslo 1; s. 784 - 803
Hlavní autor: Ma, Fangfang
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2022
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper we find further versions of generalized Hadamard type fractional integral inequality for $ k $-fractional integrals. For this purpose we utilize the definition of $ h $-convex function. The presented results hold simultaneously for variant types of convexities and fractional integrals.
AbstractList In this paper we find further versions of generalized Hadamard type fractional integral inequality for $ k $-fractional integrals. For this purpose we utilize the definition of $ h $-convex function. The presented results hold simultaneously for variant types of convexities and fractional integrals.
Author Ma, Fangfang
Author_xml – sequence: 1
  givenname: Fangfang
  surname: Ma
  fullname: Ma, Fangfang
BookMark eNpVkN1OAjEQhRuDiYjc-QB9ABe7bXe3vTREBIPxhvtN6U6hZGmxLUTe3uUnRm_OnJlJvpOce9Rz3gFCjzkZMcn481al9YgSSgmvblCf8oplpRSi98ffoWGMG0IIzSmnFe-jMAlKJ-udavEBQuwc9ganNeB3cBFc9gFBQ8DKNXgKYWsTZP8_6bgDbB187VVrk4WIjQ84puDdqj3idaa9O8A3Nnt3TnpAt0a1EYbXOUCLyetiPM3mn2-z8cs8U6yUKSsE6EYsQZBGsCUTDTWFBGEa6ESaolp2CmUuGTW8zHMCuiqLglIuwHBgAzS7YBuvNvUu2K0Kx9orW58PPqxqFZLVLdSFLIDQCoiWmlMhZd5wIcyyLAUU3d6xni4sHXyMAcwvLyf1qf361H59bZ_9ABjke9A
Cites_doi 10.1186/s13662-017-1306-z
10.1007/s00013-012-0361-7
10.2200/S00554ED1V01Y201312MAS014
10.1007/s00013-013-0522-3
10.1016/j.mcm.2011.12.048
10.1524/anly.2013.1223
10.1007/s00010-017-0496-5
10.1016/j.cam.2018.12.030
10.1016/j.jmaa.2006.02.086
10.1186/s13662-020-03093-y
10.1186/s13660-019-2151-2
10.1186/1029-242X-2012-170
10.2298/FIL1718783A
10.18514/MMN.2017.1197
10.3934/math.2019.3.343
10.2298/FIL1719945I
10.12691/tjant-2-3-1
10.1063/1.5047879
10.1186/1029-242X-2014-45
10.1155/2014/386806
10.1007/s00010-004-2730-1
10.13001/1081-3810.1684
10.1016/j.laa.2006.02.030
10.15352/afa/1399900197
10.20852/ntmsci.2016318838
ContentType Journal Article
CorporateAuthor Department of Foundational Course, Shandong University of Science and Technology, Taian 271019 China
CorporateAuthor_xml – name: Department of Foundational Course, Shandong University of Science and Technology, Taian 271019 China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022047
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 803
ExternalDocumentID oai_doaj_org_article_595e027e0c9c428991d488fb668e5289
10_3934_math_2022047
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a369t-58ecd8be80d83b38d2f59e8fdee8f9f57bf9fe61932f46110ec76552248ef4e3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718878200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:51:50 EDT 2025
Sat Nov 29 06:04:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-58ecd8be80d83b38d2f59e8fdee8f9f57bf9fe61932f46110ec76552248ef4e3
OpenAccessLink https://doaj.org/article/595e027e0c9c428991d488fb668e5289
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_595e027e0c9c428991d488fb668e5289
crossref_primary_10_3934_math_2022047
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022047-7
key-10.3934/math.2022047-8
key-10.3934/math.2022047-9
key-10.3934/math.2022047-20
key-10.3934/math.2022047-21
key-10.3934/math.2022047-22
key-10.3934/math.2022047-27
key-10.3934/math.2022047-28
key-10.3934/math.2022047-29
key-10.3934/math.2022047-23
key-10.3934/math.2022047-24
key-10.3934/math.2022047-25
key-10.3934/math.2022047-26
key-10.3934/math.2022047-3
key-10.3934/math.2022047-30
key-10.3934/math.2022047-4
key-10.3934/math.2022047-31
key-10.3934/math.2022047-5
key-10.3934/math.2022047-10
key-10.3934/math.2022047-32
key-10.3934/math.2022047-6
key-10.3934/math.2022047-11
key-10.3934/math.2022047-33
key-10.3934/math.2022047-1
key-10.3934/math.2022047-2
key-10.3934/math.2022047-16
key-10.3934/math.2022047-17
key-10.3934/math.2022047-18
key-10.3934/math.2022047-19
key-10.3934/math.2022047-12
key-10.3934/math.2022047-13
key-10.3934/math.2022047-14
key-10.3934/math.2022047-15
References_xml – ident: key-10.3934/math.2022047-7
  doi: 10.1186/s13662-017-1306-z
– ident: key-10.3934/math.2022047-4
  doi: 10.1007/s00013-012-0361-7
– ident: key-10.3934/math.2022047-15
  doi: 10.2200/S00554ED1V01Y201312MAS014
– ident: key-10.3934/math.2022047-3
  doi: 10.1007/s00013-013-0522-3
– ident: key-10.3934/math.2022047-30
  doi: 10.1016/j.mcm.2011.12.048
– ident: key-10.3934/math.2022047-12
  doi: 10.1524/anly.2013.1223
– ident: key-10.3934/math.2022047-19
  doi: 10.1007/s00010-017-0496-5
– ident: key-10.3934/math.2022047-1
  doi: 10.1016/j.cam.2018.12.030
– ident: key-10.3934/math.2022047-22
  doi: 10.1016/j.jmaa.2006.02.086
– ident: key-10.3934/math.2022047-17
– ident: key-10.3934/math.2022047-8
– ident: key-10.3934/math.2022047-6
– ident: key-10.3934/math.2022047-28
  doi: 10.1186/s13662-020-03093-y
– ident: key-10.3934/math.2022047-33
  doi: 10.1186/s13660-019-2151-2
– ident: key-10.3934/math.2022047-5
  doi: 10.1186/1029-242X-2012-170
– ident: key-10.3934/math.2022047-11
  doi: 10.2298/FIL1718783A
– ident: key-10.3934/math.2022047-32
  doi: 10.18514/MMN.2017.1197
– ident: key-10.3934/math.2022047-9
  doi: 10.3934/math.2019.3.343
– ident: key-10.3934/math.2022047-20
– ident: key-10.3934/math.2022047-25
  doi: 10.2298/FIL1719945I
– ident: key-10.3934/math.2022047-23
  doi: 10.12691/tjant-2-3-1
– ident: key-10.3934/math.2022047-10
– ident: key-10.3934/math.2022047-29
  doi: 10.1063/1.5047879
– ident: key-10.3934/math.2022047-14
– ident: key-10.3934/math.2022047-26
  doi: 10.1186/1029-242X-2014-45
– ident: key-10.3934/math.2022047-2
  doi: 10.1155/2014/386806
– ident: key-10.3934/math.2022047-18
– ident: key-10.3934/math.2022047-13
  doi: 10.1007/s00010-004-2730-1
– ident: key-10.3934/math.2022047-31
  doi: 10.13001/1081-3810.1684
– ident: key-10.3934/math.2022047-21
  doi: 10.1016/j.laa.2006.02.030
– ident: key-10.3934/math.2022047-16
  doi: 10.15352/afa/1399900197
– ident: key-10.3934/math.2022047-27
– ident: key-10.3934/math.2022047-24
  doi: 10.20852/ntmsci.2016318838
SSID ssj0002124274
Score 2.168008
Snippet In this paper we find further versions of generalized Hadamard type fractional integral inequality for $ k $-fractional integrals. For this purpose we utilize...
In this paper we find further versions of generalized Hadamard type fractional integral inequality for k-fractional integrals. For this purpose we utilize the...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 784
SubjectTerms convex function
fractional integrals
hermite-hadamard inequality
jensen-mercer inequality
Title Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function
URI https://doaj.org/article/595e027e0c9c428991d488fb668e5289
Volume 7
WOSCitedRecordID wos000718878200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QxAEOiKcYL-UAx2jp2rTJEdCmCbGJw4R2q5bGASS0oa5McOG3YzdlGicuXCK1tdrITu3PjmMzdokYvgDnrHBSepFMIyUom0ZYBZmKoJtAvXv-eJ-NRnoyMQ9rrb4oJyyUBw6M6yijAF0nkIUpEvIOIodrzts01aDwmrSvzMyaM0U6GBVygv5WyHSPTZx0EP_R3kO3K6mTypoNWivVX9uU_i7bacAgvw6T2GMbMNtn28NVJdXFASv7ZTh6gHTLENvic8-Rgt8BxYXFkFJTSj6dOT6gzJYKxO8nFGXlCCbD-Un0jDkCVb6gGPjT6yd_FnXm-QcnE0dfOmTjfm98OxBNnwQxjVNTCaWhcNqClk7HNtau65UB7R3gYLzKLI6QElTzSYr2HoosVQi8Eg0-gfiItWbzGRwzjtbaFJmLnLRo9o2fRtJGzgP-1TEiI9tmVz-My99CNYwcvQhicE4MzhsGt9kNcXVFQzWs6xso2byRbP6XZE_-4yWnbIvmFIImZ6xVle9wzjaLZfWyKC_qRYPj8Kv3DabxyXE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+version+of+the+Jensen-Mercer+and+Hermite-Jensen-Mercer+type+inequalities+for+strongly+h-convex+function&rft.jtitle=AIMS+mathematics&rft.au=Ma%2C+Fangfang&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=1&rft.spage=784&rft.epage=803&rft_id=info:doi/10.3934%2Fmath.2022047&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon