Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function
In this paper we find further versions of generalized Hadamard type fractional integral inequality for $ k $-fractional integrals. For this purpose we utilize the definition of $ h $-convex function. The presented results hold simultaneously for variant types of convexities and fractional integrals.
Saved in:
| Published in: | AIMS mathematics Vol. 7; no. 1; pp. 784 - 803 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
01.01.2022
|
| Subjects: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper we find further versions of generalized Hadamard type fractional integral inequality for $ k $-fractional integrals. For this purpose we utilize the definition of $ h $-convex function. The presented results hold simultaneously for variant types of convexities and fractional integrals. |
|---|---|
| AbstractList | In this paper we find further versions of generalized Hadamard type fractional integral inequality for $ k $-fractional integrals. For this purpose we utilize the definition of $ h $-convex function. The presented results hold simultaneously for variant types of convexities and fractional integrals. |
| Author | Ma, Fangfang |
| Author_xml | – sequence: 1 givenname: Fangfang surname: Ma fullname: Ma, Fangfang |
| BookMark | eNpVkN1OAjEQhRuDiYjc-QB9ABe7bXe3vTREBIPxhvtN6U6hZGmxLUTe3uUnRm_OnJlJvpOce9Rz3gFCjzkZMcn481al9YgSSgmvblCf8oplpRSi98ffoWGMG0IIzSmnFe-jMAlKJ-udavEBQuwc9ganNeB3cBFc9gFBQ8DKNXgKYWsTZP8_6bgDbB187VVrk4WIjQ84puDdqj3idaa9O8A3Nnt3TnpAt0a1EYbXOUCLyetiPM3mn2-z8cs8U6yUKSsE6EYsQZBGsCUTDTWFBGEa6ESaolp2CmUuGTW8zHMCuiqLglIuwHBgAzS7YBuvNvUu2K0Kx9orW58PPqxqFZLVLdSFLIDQCoiWmlMhZd5wIcyyLAUU3d6xni4sHXyMAcwvLyf1qf361H59bZ_9ABjke9A |
| Cites_doi | 10.1186/s13662-017-1306-z 10.1007/s00013-012-0361-7 10.2200/S00554ED1V01Y201312MAS014 10.1007/s00013-013-0522-3 10.1016/j.mcm.2011.12.048 10.1524/anly.2013.1223 10.1007/s00010-017-0496-5 10.1016/j.cam.2018.12.030 10.1016/j.jmaa.2006.02.086 10.1186/s13662-020-03093-y 10.1186/s13660-019-2151-2 10.1186/1029-242X-2012-170 10.2298/FIL1718783A 10.18514/MMN.2017.1197 10.3934/math.2019.3.343 10.2298/FIL1719945I 10.12691/tjant-2-3-1 10.1063/1.5047879 10.1186/1029-242X-2014-45 10.1155/2014/386806 10.1007/s00010-004-2730-1 10.13001/1081-3810.1684 10.1016/j.laa.2006.02.030 10.15352/afa/1399900197 10.20852/ntmsci.2016318838 |
| ContentType | Journal Article |
| CorporateAuthor | Department of Foundational Course, Shandong University of Science and Technology, Taian 271019 China |
| CorporateAuthor_xml | – name: Department of Foundational Course, Shandong University of Science and Technology, Taian 271019 China |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2022047 |
| DatabaseName | CrossRef Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 803 |
| ExternalDocumentID | oai_doaj_org_article_595e027e0c9c428991d488fb668e5289 10_3934_math_2022047 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a369t-58ecd8be80d83b38d2f59e8fdee8f9f57bf9fe61932f46110ec76552248ef4e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718878200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:51:50 EDT 2025 Sat Nov 29 06:04:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a369t-58ecd8be80d83b38d2f59e8fdee8f9f57bf9fe61932f46110ec76552248ef4e3 |
| OpenAccessLink | https://doaj.org/article/595e027e0c9c428991d488fb668e5289 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_595e027e0c9c428991d488fb668e5289 crossref_primary_10_3934_math_2022047 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2022 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2022047-7 key-10.3934/math.2022047-8 key-10.3934/math.2022047-9 key-10.3934/math.2022047-20 key-10.3934/math.2022047-21 key-10.3934/math.2022047-22 key-10.3934/math.2022047-27 key-10.3934/math.2022047-28 key-10.3934/math.2022047-29 key-10.3934/math.2022047-23 key-10.3934/math.2022047-24 key-10.3934/math.2022047-25 key-10.3934/math.2022047-26 key-10.3934/math.2022047-3 key-10.3934/math.2022047-30 key-10.3934/math.2022047-4 key-10.3934/math.2022047-31 key-10.3934/math.2022047-5 key-10.3934/math.2022047-10 key-10.3934/math.2022047-32 key-10.3934/math.2022047-6 key-10.3934/math.2022047-11 key-10.3934/math.2022047-33 key-10.3934/math.2022047-1 key-10.3934/math.2022047-2 key-10.3934/math.2022047-16 key-10.3934/math.2022047-17 key-10.3934/math.2022047-18 key-10.3934/math.2022047-19 key-10.3934/math.2022047-12 key-10.3934/math.2022047-13 key-10.3934/math.2022047-14 key-10.3934/math.2022047-15 |
| References_xml | – ident: key-10.3934/math.2022047-7 doi: 10.1186/s13662-017-1306-z – ident: key-10.3934/math.2022047-4 doi: 10.1007/s00013-012-0361-7 – ident: key-10.3934/math.2022047-15 doi: 10.2200/S00554ED1V01Y201312MAS014 – ident: key-10.3934/math.2022047-3 doi: 10.1007/s00013-013-0522-3 – ident: key-10.3934/math.2022047-30 doi: 10.1016/j.mcm.2011.12.048 – ident: key-10.3934/math.2022047-12 doi: 10.1524/anly.2013.1223 – ident: key-10.3934/math.2022047-19 doi: 10.1007/s00010-017-0496-5 – ident: key-10.3934/math.2022047-1 doi: 10.1016/j.cam.2018.12.030 – ident: key-10.3934/math.2022047-22 doi: 10.1016/j.jmaa.2006.02.086 – ident: key-10.3934/math.2022047-17 – ident: key-10.3934/math.2022047-8 – ident: key-10.3934/math.2022047-6 – ident: key-10.3934/math.2022047-28 doi: 10.1186/s13662-020-03093-y – ident: key-10.3934/math.2022047-33 doi: 10.1186/s13660-019-2151-2 – ident: key-10.3934/math.2022047-5 doi: 10.1186/1029-242X-2012-170 – ident: key-10.3934/math.2022047-11 doi: 10.2298/FIL1718783A – ident: key-10.3934/math.2022047-32 doi: 10.18514/MMN.2017.1197 – ident: key-10.3934/math.2022047-9 doi: 10.3934/math.2019.3.343 – ident: key-10.3934/math.2022047-20 – ident: key-10.3934/math.2022047-25 doi: 10.2298/FIL1719945I – ident: key-10.3934/math.2022047-23 doi: 10.12691/tjant-2-3-1 – ident: key-10.3934/math.2022047-10 – ident: key-10.3934/math.2022047-29 doi: 10.1063/1.5047879 – ident: key-10.3934/math.2022047-14 – ident: key-10.3934/math.2022047-26 doi: 10.1186/1029-242X-2014-45 – ident: key-10.3934/math.2022047-2 doi: 10.1155/2014/386806 – ident: key-10.3934/math.2022047-18 – ident: key-10.3934/math.2022047-13 doi: 10.1007/s00010-004-2730-1 – ident: key-10.3934/math.2022047-31 doi: 10.13001/1081-3810.1684 – ident: key-10.3934/math.2022047-21 doi: 10.1016/j.laa.2006.02.030 – ident: key-10.3934/math.2022047-16 doi: 10.15352/afa/1399900197 – ident: key-10.3934/math.2022047-27 – ident: key-10.3934/math.2022047-24 doi: 10.20852/ntmsci.2016318838 |
| SSID | ssj0002124274 |
| Score | 2.167904 |
| Snippet | In this paper we find further versions of generalized Hadamard type fractional integral inequality for $ k $-fractional integrals. For this purpose we utilize... In this paper we find further versions of generalized Hadamard type fractional integral inequality for k-fractional integrals. For this purpose we utilize the... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 784 |
| SubjectTerms | convex function fractional integrals hermite-hadamard inequality jensen-mercer inequality |
| Title | Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function |
| URI | https://doaj.org/article/595e027e0c9c428991d488fb668e5289 |
| Volume | 7 |
| WOSCitedRecordID | wos000718878200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5gtJo0juOMgFpViFYMFeoWxfEZkFCL0lDBwm_nLg5VmFhYLCW2EuvO8n3f-XzH2CUUeZAX4IRJrBEy0UoYqZxIDMSRCUOX1-XbHu-TyUTPZulDq9QXxYT59MBecL04jQGpEwRFWkhiB6HFNeeMUhpifKbdN0jSFpmiPRg3ZIl8y0e6R2kke4j_6Oyh3w-okkrLBrVS9dc2ZbjLdhowyK_9JPbYBsz32fZ4nUl1ecDKYemvHuC4lfdt8YXjOILfAfmFxZhCU0qezy0fUWRLBeJ3D3lZOYJJf38SmTFHoMqX5AN_ev3kz6KOPP_gZOLoT4dsOhxMb0eiqZMg8killYg1FFYb0IHVkYm07bs4Be0sYJO6ODHYgiKo5qRCew9FomIEXlKDkxAdsc58MYdjxq2zGgEaHRYmUlmVI72xEJnChXVx0C67-hFc9uazYWTIIkjAGQk4awTcZTck1fUYymFdv0DNZo1ms780e_IfHzllWzQn7zQ5Y52qfIdztlmsqpdleVEvGmzHX4Nv7iXKPg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+version+of+the+Jensen-Mercer+and+Hermite-Jensen-Mercer+type+inequalities+for+strongly+h-convex+function&rft.jtitle=AIMS+mathematics&rft.au=Ma%2C+Fangfang&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=1&rft.spage=784&rft.epage=803&rft_id=info:doi/10.3934%2Fmath.2022047&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |