Probabilistic analysis of linear-quadratic logistic-type models with hybrid uncertainties via probability density functions

We provide a full stochastic description, via the first probability density function, of the solution of linear-quadratic logistic-type differential equation whose parameters involve both continuous and discrete random variables with arbitrary distributions. For the sake of generality, the initial c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 6; číslo 5; s. 4938 - 4957
Hlavní autoři: Burgos, Clara, Cortés, Juan Carlos, López-Navarro, Elena, Villanueva, Rafael Jacinto
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2021
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We provide a full stochastic description, via the first probability density function, of the solution of linear-quadratic logistic-type differential equation whose parameters involve both continuous and discrete random variables with arbitrary distributions. For the sake of generality, the initial condition is assumed to be a random variable too. We use the Dirac delta function to unify the treatment of hybrid (discrete-continuous) uncertainty. Under general hypotheses, we also compute the density of time until a certain value (usually representing the population) of the linear-quadratic logistic model is reached. The theoretical results are illustrated by means of several examples, including an application to modelling the number of users of Spotify using real data. We apply the Principle Maximum Entropy to assign plausible distributions to model parameters.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021290