Probabilistic analysis of linear-quadratic logistic-type models with hybrid uncertainties via probability density functions
We provide a full stochastic description, via the first probability density function, of the solution of linear-quadratic logistic-type differential equation whose parameters involve both continuous and discrete random variables with arbitrary distributions. For the sake of generality, the initial c...
Uloženo v:
| Vydáno v: | AIMS mathematics Ročník 6; číslo 5; s. 4938 - 4957 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
AIMS Press
01.01.2021
|
| Témata: | |
| ISSN: | 2473-6988, 2473-6988 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We provide a full stochastic description, via the first probability density function, of the solution of linear-quadratic logistic-type differential equation whose parameters involve both continuous and discrete random variables with arbitrary distributions. For the sake of generality, the initial condition is assumed to be a random variable too. We use the Dirac delta function to unify the treatment of hybrid (discrete-continuous) uncertainty. Under general hypotheses, we also compute the density of time until a certain value (usually representing the population) of the linear-quadratic logistic model is reached. The theoretical results are illustrated by means of several examples, including an application to modelling the number of users of Spotify using real data. We apply the Principle Maximum Entropy to assign plausible distributions to model parameters. |
|---|---|
| ISSN: | 2473-6988 2473-6988 |
| DOI: | 10.3934/math.2021290 |