Probabilistic analysis of linear-quadratic logistic-type models with hybrid uncertainties via probability density functions

We provide a full stochastic description, via the first probability density function, of the solution of linear-quadratic logistic-type differential equation whose parameters involve both continuous and discrete random variables with arbitrary distributions. For the sake of generality, the initial c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics Jg. 6; H. 5; S. 4938 - 4957
Hauptverfasser: Burgos, Clara, Cortés, Juan Carlos, López-Navarro, Elena, Villanueva, Rafael Jacinto
Format: Journal Article
Sprache:Englisch
Veröffentlicht: AIMS Press 01.01.2021
Schlagworte:
ISSN:2473-6988, 2473-6988
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a full stochastic description, via the first probability density function, of the solution of linear-quadratic logistic-type differential equation whose parameters involve both continuous and discrete random variables with arbitrary distributions. For the sake of generality, the initial condition is assumed to be a random variable too. We use the Dirac delta function to unify the treatment of hybrid (discrete-continuous) uncertainty. Under general hypotheses, we also compute the density of time until a certain value (usually representing the population) of the linear-quadratic logistic model is reached. The theoretical results are illustrated by means of several examples, including an application to modelling the number of users of Spotify using real data. We apply the Principle Maximum Entropy to assign plausible distributions to model parameters.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021290