Estimating the soil salinity over partially vegetated surfaces from multispectral remote sensing image using non-negative matrix factorization

Multispectral remote sensing technique has been extensively applied in recent years for the detection of soil salinity on bare soil; however, multispectral remote sensing is restricted in areas covered with vegetation, largely due to the mixed pixel problem. In the present study, non-negative matrix...

Full description

Saved in:
Bibliographic Details
Published in:Geoderma Vol. 354; p. 113887
Main Authors: Liu, Ya, Zhang, Fangfang, Wang, Changkun, Wu, Shiwen, Liu, Jie, Xu, Aiai, Pan, Kai, Pan, Xianzhang
Format: Journal Article
Language:English
Published: Elsevier B.V 15.11.2019
Subjects:
ISSN:0016-7061, 1872-6259
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multispectral remote sensing technique has been extensively applied in recent years for the detection of soil salinity on bare soil; however, multispectral remote sensing is restricted in areas covered with vegetation, largely due to the mixed pixel problem. In the present study, non-negative matrix factorization (NMF) was implemented to separate soil spectral signal from mixed pixels of Landsat 5 Thematic Mapper (TM) to further estimate the soil salinity in a partially vegetated area. Four methods, namely, partial least squares regression (PLSR), least-squares support vector machine (LS-SVM), back propagation neural network (BPNN), and random forest (RF), were applied and compared. The results showed that the NMF-separated soil spectra could greatly improve the prediction accuracy compared with the mixed spectra, and among the four modeling methods, RF performed better than the rest of the methods, with the averaged results of determination of the prediction R2p = 0.67, a root mean square error of the prediction RMSEp = 0.73 ms cm−1, and the ratio of the standard deviation to RMSEp RPD = 1.61 after 100 times of random sampling and modeling. This approach could propose a new method for accurate and timely monitoring of soil salinity in a partially vegetation-covered area. •Vegetation decreased the prediction accuracy of soil salinity.•NMF was used initially on multispectral remote sending image to alleviate vegetation effects.•Prediction accuracy of soil salinity was greatly improved from original models.
AbstractList Multispectral remote sensing technique has been extensively applied in recent years for the detection of soil salinity on bare soil; however, multispectral remote sensing is restricted in areas covered with vegetation, largely due to the mixed pixel problem. In the present study, non-negative matrix factorization (NMF) was implemented to separate soil spectral signal from mixed pixels of Landsat 5 Thematic Mapper (TM) to further estimate the soil salinity in a partially vegetated area. Four methods, namely, partial least squares regression (PLSR), least-squares support vector machine (LS-SVM), back propagation neural network (BPNN), and random forest (RF), were applied and compared. The results showed that the NMF-separated soil spectra could greatly improve the prediction accuracy compared with the mixed spectra, and among the four modeling methods, RF performed better than the rest of the methods, with the averaged results of determination of the prediction R2p = 0.67, a root mean square error of the prediction RMSEp = 0.73 ms cm−1, and the ratio of the standard deviation to RMSEp RPD = 1.61 after 100 times of random sampling and modeling. This approach could propose a new method for accurate and timely monitoring of soil salinity in a partially vegetation-covered area.
Multispectral remote sensing technique has been extensively applied in recent years for the detection of soil salinity on bare soil; however, multispectral remote sensing is restricted in areas covered with vegetation, largely due to the mixed pixel problem. In the present study, non-negative matrix factorization (NMF) was implemented to separate soil spectral signal from mixed pixels of Landsat 5 Thematic Mapper (TM) to further estimate the soil salinity in a partially vegetated area. Four methods, namely, partial least squares regression (PLSR), least-squares support vector machine (LS-SVM), back propagation neural network (BPNN), and random forest (RF), were applied and compared. The results showed that the NMF-separated soil spectra could greatly improve the prediction accuracy compared with the mixed spectra, and among the four modeling methods, RF performed better than the rest of the methods, with the averaged results of determination of the prediction R2p = 0.67, a root mean square error of the prediction RMSEp = 0.73 ms cm−1, and the ratio of the standard deviation to RMSEp RPD = 1.61 after 100 times of random sampling and modeling. This approach could propose a new method for accurate and timely monitoring of soil salinity in a partially vegetation-covered area. •Vegetation decreased the prediction accuracy of soil salinity.•NMF was used initially on multispectral remote sending image to alleviate vegetation effects.•Prediction accuracy of soil salinity was greatly improved from original models.
ArticleNumber 113887
Author Zhang, Fangfang
Wang, Changkun
Liu, Jie
Xu, Aiai
Pan, Kai
Wu, Shiwen
Pan, Xianzhang
Liu, Ya
Author_xml – sequence: 1
  givenname: Ya
  surname: Liu
  fullname: Liu, Ya
  organization: Jinling Institute of Technology, Nanjing 211169, China
– sequence: 2
  givenname: Fangfang
  surname: Zhang
  fullname: Zhang, Fangfang
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 3
  givenname: Changkun
  surname: Wang
  fullname: Wang, Changkun
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 4
  givenname: Shiwen
  surname: Wu
  fullname: Wu, Shiwen
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 5
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 6
  givenname: Aiai
  surname: Xu
  fullname: Xu, Aiai
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 7
  givenname: Kai
  surname: Pan
  fullname: Pan, Kai
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 8
  givenname: Xianzhang
  surname: Pan
  fullname: Pan, Xianzhang
  email: panxz@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
BookMark eNqFkcFu1DAQhi3USmxbXgH5yCWLx06cROIAqlqKVIkLnC3HmQSvHHuxnRXLQ_DMeLvlwqUn26P__2Y8_xW58MEjIW-BbYGBfL_bzhhGjIvecgb9FkB0XfuKbKBreSV501-QDSvKqmUSXpOrlHbl2TLONuTPXcp20dn6meYfSFOwjibtrLf5SMMBI93rmK127kgPOGPWGUea1jhpg4lOMSx0WV22aY8mR-1oxCXkQkKfTtRCn5GuT_cyeeVxLu0OSEvXaH_Rwskh2t-lGPwNuZy0S_jm-bwm3-_vvt0-VI9fP3-5_fRYaSG7XIm2azgTctTTBFyYUdSyH5pm6gcU9dBzJqd6HLRgukEQrRz4YABq0QEw3nBxTd6dufsYfq6YslpsMuic9hjWpLhgDcga2rpIP5ylJoaUIk7K2Pw0bPmtdQqYOsWgdupfDOoUgzrHUOzyP_s-lpXE48vGj2cjlj0cLEaVjEVvcLSxbFqNwb6E-AurTqxB
CitedBy_id crossref_primary_10_1139_cgj_2023_0105
crossref_primary_10_1016_j_compag_2023_107859
crossref_primary_10_1016_j_envres_2022_114870
crossref_primary_10_3390_su142416486
crossref_primary_10_1016_j_geoderma_2023_116697
crossref_primary_10_1016_j_icheatmasstransfer_2022_106139
crossref_primary_10_1002_saj2_20223
crossref_primary_10_1088_1755_1315_568_1_012012
crossref_primary_10_1016_j_ejrh_2025_102326
crossref_primary_10_1002_jsfa_13817
crossref_primary_10_3390_s20051447
crossref_primary_10_1016_j_still_2024_106124
crossref_primary_10_3390_rs13204165
crossref_primary_10_1109_ACCESS_2021_3064040
crossref_primary_10_1002_ldr_4741
crossref_primary_10_1016_j_icheatmasstransfer_2023_107092
crossref_primary_10_1109_ACCESS_2020_2995458
crossref_primary_10_1016_j_ecolind_2025_113642
crossref_primary_10_1016_j_geoderma_2023_116417
crossref_primary_10_1016_j_catena_2022_106900
crossref_primary_10_1016_j_ecolind_2023_110037
crossref_primary_10_1007_s11368_023_03647_z
crossref_primary_10_3390_rs14184448
crossref_primary_10_1016_j_ecolind_2022_109139
crossref_primary_10_3390_ijerph20042853
crossref_primary_10_1016_j_infrared_2024_105361
crossref_primary_10_3390_rs12244118
crossref_primary_10_1016_j_infrared_2023_104656
crossref_primary_10_1016_j_asr_2021_10_024
crossref_primary_10_1016_j_agwat_2025_109608
crossref_primary_10_3390_su151712943
crossref_primary_10_1007_s12517_020_05572_8
crossref_primary_10_1016_j_ecoinf_2023_102111
crossref_primary_10_1016_j_geoderma_2021_115656
crossref_primary_10_1016_j_jclepro_2022_132922
crossref_primary_10_3390_rs15133358
crossref_primary_10_18393_ejss_1380500
crossref_primary_10_1016_j_scitotenv_2022_157416
crossref_primary_10_1109_ACCESS_2020_2970121
crossref_primary_10_1002_saj2_20193
Cites_doi 10.1016/j.laa.2005.06.025
10.1016/S0034-4257(98)00064-9
10.1016/j.ecolind.2011.03.025
10.1016/j.rse.2008.09.019
10.1016/S0003-2670(01)01506-9
10.1016/j.geoderma.2013.09.016
10.1016/j.scitotenv.2017.10.025
10.1080/01431169508954546
10.1016/S0168-1699(01)00163-6
10.2136/sssaj2017.07.0235
10.2134/jeq2005.0327
10.1016/0924-2716(90)90034-9
10.1016/j.ecolind.2016.11.043
10.1007/s10661-017-5877-7
10.1016/S0167-8655(03)00089-8
10.3732/ajb.93.1.110
10.1016/j.geoderma.2011.04.019
10.1016/j.neucom.2014.01.043
10.1016/0034-4257(94)90017-5
10.1002/cem.1180070407
10.1016/S0034-4257(02)00188-8
10.1016/j.rse.2007.02.005
10.1016/j.eja.2016.12.003
10.1023/A:1010933404324
10.2136/sssaj2001.652480x
10.1016/j.geoderma.2008.06.011
10.1038/44565
10.1016/j.scitotenv.2015.08.088
10.1016/j.imavis.2008.04.016
10.1016/S0169-7439(01)00155-1
10.1016/j.neucom.2015.10.132
10.1016/j.csda.2006.11.006
10.1016/j.geoderma.2009.04.005
10.1016/j.envpol.2015.07.009
10.2136/sssaj2009.0218
10.1016/0034-4257(93)90013-N
10.1021/ac00162a020
10.2136/sssaj2017.04.0122
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2019.113887
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2019_113887
S0016706119301570
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
VH1
WUQ
XPP
Y6R
ZMT
~HD
7S9
L.6
ID FETCH-LOGICAL-a368t-37852036daff123cd3469b55f9be34b9206f4dba30a5e1376b2bc114381102523
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000486133300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-7061
IngestDate Sun Nov 09 13:16:04 EST 2025
Tue Nov 18 20:07:36 EST 2025
Sat Nov 29 07:28:54 EST 2025
Fri Feb 23 02:30:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mixed pixel
Multispectral imaging
Non-negative matrix factorization
Soil salinity
Prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a368t-37852036daff123cd3469b55f9be34b9206f4dba30a5e1376b2bc114381102523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2305164174
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2305164174
crossref_citationtrail_10_1016_j_geoderma_2019_113887
crossref_primary_10_1016_j_geoderma_2019_113887
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_113887
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bartholomeus, Kooistra, Stevens, van Leeuwen, van Wesemael, Ben-Dor, Tychon (bb0005) 2011; 13
Du, Wang, Wang, Zhang, Tao, Zhang (bb0035) 2016; 204
Wiegand, Rhoades, Escobar, Everitt (bb0200) 1994; 49
Farifteh, Farshad (bb0040) 2002
Wold, Sjöström, Eriksson (bb0205) 2001; 58
Zeng, Yu, Li, You, Jin (bb0210) 2014; 138
Liu, Pan, Shi, Li, Wang, Li (bb0105) 2015; 8
Pauca, Piper, Plemmons (bb0135) 2006; 416
Tilley, Ahmed, Son, Badrinarayanan (bb0175) 2007; 36
Lee, Seung (bb0095) 1999; 401
Gorji, Sertel, Tanik (bb0060) 2017; 74
Zhang, Zeng, Gao, Ouyang, Li, Fang, Zhao (bb0215) 2011; 11
Kruse, Lefkoff, Boardman, Heidebrecht, Shapiro, Barloon, Goetz (bb0090) 1993; 44
Chang, Laird, Mausbach, Hurburgh (bb0025) 2001; 65
Hummel, Sudduth, Hollinger (bb0085) 2001; 32
Heung, Bulmer, Schmidt (bb0080) 2014; 214–215
Ouerghemmi, Gomez, Naceur, Lagacherie (bb0130) 2011; 163
Wester, Lundén, Bax (bb0195) 1990; 45
Breiman (bb0020) 2001; 45
Ben-Dor, Chabrillat, Demattê, Taylor, Hill, Whiting, Sommer (bb0010) 2009; 113
Farifteh, Van der Meer, Atzberger, Carranza (bb0045) 2007; 110
Wakeling, Morris (bb0185) 1993; 7
Metternicht (bb0115) 1998; 24
Ramcharan, Hengl, Nauman, Brungard, Waltman, Wills, Thompson (bb0140) 2018; 82
Chen, Chang, Clevers, Kooistra (bb0030) 2015; 206
Triki Fourati, Bouaziz, Benzina, Bouaziz (bb0180) 2017; 189
Metternicht, Zinck (bb0120) 2003; 85
Green, Eastwood, Sarture, Chrien, Aronsson, Chippendale, Faust, Pavri, Chovit, Solis (bb0065) 1998; 65
Wang, Zhang, Ding, Kung, Latif, Johnson (bb0190) 2017; 615
Berry, Browne, Langville, Pauca, Plemmons (bb0015) 2007; 52
Rao, Sharma, Ravi Sankar, Das, Dwivedi, Thammappa, Venkataratnam (bb0145) 1995; 16
Reeves (bb0150) 2010; 158
Zhang, Liao, Li, Quan (bb0220) 2013; 21
Li, Liu, Wu, Wang, Xu, Pan (bb0100) 2017; 84
Thorhaug, Richardson, Berlyn (bb0170) 2006; 93
Guillamet, Vitrià, Schiele (bb0070) 2003; 24
Haaland, Thomas (bb0075) 1988; 60
Oh, Lee, Lee (bb0125) 2008; 26
Rial, Cortizas, Rodríguez-Lado (bb0155) 2016; 539
Terhoeven-Urselmans, Vagen, Spaargaren, Shepherd (bb0165) 2010; 74
Gomez, Viscarra Rossel, McBratney (bb0055) 2008; 146
Suykens, Van, Brabanter, Moor, Vandewalle (bb0160) 2002
Liu, Xie, Wang, Zhao, Pan (bb0110) 2018; 82
Fidêncio, Poppi, Andrade (bb0050) 2002; 453
Kruse (10.1016/j.geoderma.2019.113887_bb0090) 1993; 44
Pauca (10.1016/j.geoderma.2019.113887_bb0135) 2006; 416
Wester (10.1016/j.geoderma.2019.113887_bb0195) 1990; 45
Hummel (10.1016/j.geoderma.2019.113887_bb0085) 2001; 32
Chen (10.1016/j.geoderma.2019.113887_bb0030) 2015; 206
Green (10.1016/j.geoderma.2019.113887_bb0065) 1998; 65
Haaland (10.1016/j.geoderma.2019.113887_bb0075) 1988; 60
Du (10.1016/j.geoderma.2019.113887_bb0035) 2016; 204
Triki Fourati (10.1016/j.geoderma.2019.113887_bb0180) 2017; 189
Lee (10.1016/j.geoderma.2019.113887_bb0095) 1999; 401
Zeng (10.1016/j.geoderma.2019.113887_bb0210) 2014; 138
Rao (10.1016/j.geoderma.2019.113887_bb0145) 1995; 16
Wakeling (10.1016/j.geoderma.2019.113887_bb0185) 1993; 7
Berry (10.1016/j.geoderma.2019.113887_bb0015) 2007; 52
Metternicht (10.1016/j.geoderma.2019.113887_bb0120) 2003; 85
Guillamet (10.1016/j.geoderma.2019.113887_bb0070) 2003; 24
Tilley (10.1016/j.geoderma.2019.113887_bb0175) 2007; 36
Zhang (10.1016/j.geoderma.2019.113887_bb0220) 2013; 21
Breiman (10.1016/j.geoderma.2019.113887_bb0020) 2001; 45
Chang (10.1016/j.geoderma.2019.113887_bb0025) 2001; 65
Fidêncio (10.1016/j.geoderma.2019.113887_bb0050) 2002; 453
Farifteh (10.1016/j.geoderma.2019.113887_bb0040) 2002
Gomez (10.1016/j.geoderma.2019.113887_bb0055) 2008; 146
Gorji (10.1016/j.geoderma.2019.113887_bb0060) 2017; 74
Rial (10.1016/j.geoderma.2019.113887_bb0155) 2016; 539
Liu (10.1016/j.geoderma.2019.113887_bb0110) 2018; 82
Zhang (10.1016/j.geoderma.2019.113887_bb0215) 2011; 11
Suykens (10.1016/j.geoderma.2019.113887_bb0160) 2002
Ramcharan (10.1016/j.geoderma.2019.113887_bb0140) 2018; 82
Liu (10.1016/j.geoderma.2019.113887_bb0105) 2015; 8
Ben-Dor (10.1016/j.geoderma.2019.113887_bb0010) 2009; 113
Reeves (10.1016/j.geoderma.2019.113887_bb0150) 2010; 158
Bartholomeus (10.1016/j.geoderma.2019.113887_bb0005) 2011; 13
Ouerghemmi (10.1016/j.geoderma.2019.113887_bb0130) 2011; 163
Wang (10.1016/j.geoderma.2019.113887_bb0190) 2017; 615
Farifteh (10.1016/j.geoderma.2019.113887_bb0045) 2007; 110
Terhoeven-Urselmans (10.1016/j.geoderma.2019.113887_bb0165) 2010; 74
Metternicht (10.1016/j.geoderma.2019.113887_bb0115) 1998; 24
Wold (10.1016/j.geoderma.2019.113887_bb0205) 2001; 58
Li (10.1016/j.geoderma.2019.113887_bb0100) 2017; 84
Oh (10.1016/j.geoderma.2019.113887_bb0125) 2008; 26
Wiegand (10.1016/j.geoderma.2019.113887_bb0200) 1994; 49
Heung (10.1016/j.geoderma.2019.113887_bb0080) 2014; 214–215
Thorhaug (10.1016/j.geoderma.2019.113887_bb0170) 2006; 93
References_xml – volume: 52
  start-page: 155
  year: 2007
  end-page: 173
  ident: bb0015
  article-title: Algorithms and applications for approximate nonnegative matrix factorization
  publication-title: Comput. Stat. Data An.
– volume: 189
  start-page: 177
  year: 2017
  ident: bb0180
  article-title: Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques
  publication-title: Environ. Monit. Assess.
– volume: 7
  start-page: 291
  year: 1993
  end-page: 304
  ident: bb0185
  article-title: A test of significance for partial least squares regression
  publication-title: J. Chemom.
– volume: 138
  start-page: 209
  year: 2014
  end-page: 217
  ident: bb0210
  article-title: Image clustering by hyper-graph regularized non-negative matrix factorization
  publication-title: Neurocomputing
– volume: 113
  start-page: S38
  year: 2009
  end-page: S55
  ident: bb0010
  article-title: Using imaging spectroscopy to study soil properties
  publication-title: Remote Sens. Environ.
– volume: 146
  start-page: 403
  year: 2008
  end-page: 411
  ident: bb0055
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study
  publication-title: Geoderma
– volume: 539
  start-page: 26
  year: 2016
  end-page: 35
  ident: bb0155
  article-title: Mapping soil organic carbon content using spectroscopic and environmental data: a case study in acidic soils from NW Spain
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 2125
  year: 1995
  end-page: 2136
  ident: bb0145
  article-title: Spectral behaviour of salt-affected soils
  publication-title: Int. J. Remote Sens.
– volume: 24
  start-page: 2447
  year: 2003
  end-page: 2454
  ident: bb0070
  article-title: Introducing a weighted non-negative matrix factorization for image classification
  publication-title: Pattern Recogn. Lett.
– volume: 82
  start-page: 186
  year: 2018
  end-page: 201
  ident: bb0140
  article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution
  publication-title: Soil Sci. Soc. Am. J.
– volume: 74
  start-page: 1792
  year: 2010
  end-page: 1799
  ident: bb0165
  article-title: Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library
  publication-title: Soil Sci. Soc. Am. J.
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  ident: bb0025
  article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 110
  start-page: 59
  year: 2007
  end-page: 78
  ident: bb0045
  article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN)
  publication-title: Remote Sens. Environ.
– volume: 32
  start-page: 149
  year: 2001
  end-page: 165
  ident: bb0085
  article-title: Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor
  publication-title: Comput. Electron. Agr.
– volume: 45
  start-page: 442
  year: 1990
  end-page: 460
  ident: bb0195
  article-title: Analytically processed Landsat TM images for visual geological interpretation in the northern Scandinavian Caledonides
  publication-title: ISPRS J. Photogramm. Rem. Sens.
– volume: 21
  start-page: 506
  year: 2013
  end-page: 512
  ident: bb0220
  article-title: Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data
  publication-title: Int. J. Appl. Earth Obs.
– volume: 65
  start-page: 227
  year: 1998
  end-page: 248
  ident: bb0065
  article-title: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)
  publication-title: Remote Sens. Environ.
– volume: 84
  start-page: 58
  year: 2017
  end-page: 66
  ident: bb0100
  article-title: Hyper-spectral estimation of wheat biomass after alleviating of soil effects on spectra by non-negative matrix factorization
  publication-title: Eur. J. Agron.
– volume: 615
  start-page: 918
  year: 2017
  end-page: 930
  ident: bb0190
  article-title: Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices
  publication-title: Sci. Total Environ.
– volume: 453
  start-page: 125
  year: 2002
  end-page: 134
  ident: bb0050
  article-title: Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy
  publication-title: Anal. Chim. Acta
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0020
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 13
  start-page: 81
  year: 2011
  end-page: 88
  ident: bb0005
  article-title: Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy
  publication-title: Int. J. Appl. Earth Obs.
– volume: 206
  start-page: 217
  year: 2015
  end-page: 226
  ident: bb0030
  article-title: Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy
  publication-title: Environ. Pollut.
– volume: 204
  start-page: 153
  year: 2016
  end-page: 161
  ident: bb0035
  article-title: Hyperspectral signal unmixing based on constrained non-negative matrix factorization approach
  publication-title: Neurocomputing
– volume: 93
  start-page: 110
  year: 2006
  end-page: 117
  ident: bb0170
  article-title: Spectral reflectance of ThalassiaTestudinum (Hydrocharitaceae) seagrass: low salinity effects
  publication-title: Am. J. Bot.
– volume: 82
  start-page: 87
  year: 2018
  end-page: 95
  ident: bb0110
  article-title: Removing the effects of iron oxides from vis-NIR spectra for soil organic matter prediction
  publication-title: Soil Sci. Soc. Am. J.
– volume: 74
  start-page: 384
  year: 2017
  end-page: 391
  ident: bb0060
  article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey
  publication-title: Ecol. Indic.
– volume: 44
  start-page: 145
  year: 1993
  end-page: 163
  ident: bb0090
  article-title: The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data
  publication-title: Remote Sens. Environ.
– year: 2002
  ident: bb0160
  article-title: Least Squares Support Vector Machines
– volume: 85
  start-page: 1
  year: 2003
  end-page: 20
  ident: bb0120
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote Sens. Environ.
– volume: 36
  start-page: 780
  year: 2007
  end-page: 789
  ident: bb0175
  article-title: Hyperspectral reflectance response of freshwater macrophytes to salinity in a brackish subtropical marsh
  publication-title: J. Environ. Qual.
– volume: 416
  start-page: 29
  year: 2006
  end-page: 47
  ident: bb0135
  article-title: Nonnegative matrix factorization for spectral data analysis
  publication-title: Linear Algebra Appl.
– volume: 58
  start-page: 109
  year: 2001
  end-page: 130
  ident: bb0205
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemometr. Intell. Lab.
– volume: 26
  start-page: 1515
  year: 2008
  end-page: 1523
  ident: bb0125
  article-title: Occlusion invariant face recognition using selective local non-negative matrix factorization basis images
  publication-title: Image Vis. Comput.
– volume: 214–215
  start-page: 141
  year: 2014
  end-page: 154
  ident: bb0080
  article-title: Predictive soil parent material mapping at a regional-scale: a random forest approach
  publication-title: Geoderma
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bb0095
  article-title: Learning the parts of objects by nonnegative matrix factorization
  publication-title: Nature
– volume: 163
  start-page: 227
  year: 2011
  end-page: 237
  ident: bb0130
  article-title: Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces
  publication-title: Geoderma
– volume: 11
  start-page: 1552
  year: 2011
  end-page: 1562
  ident: bb0215
  article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity
  publication-title: Ecol. Indic.
– year: 2002
  ident: bb0040
  article-title: Remote sensing and modeling of topsoil properties, a clue for assessing land degradation
  publication-title: 17th WCSS. Thailand
– volume: 49
  start-page: 212
  year: 1994
  end-page: 223
  ident: bb0200
  article-title: Photographic and video-graphic observations for determining and mapping the response of cotton to soil-salinity
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 5305
  year: 2015
  end-page: 5316
  ident: bb0105
  article-title: Predicting soil salt content over partially vegetated surfaces using non-negative matrix factorization
  publication-title: IEEE J-STARS
– volume: 24
  start-page: 359
  year: 1998
  end-page: 370
  ident: bb0115
  article-title: Analyzing the relationship between ground based reflectance and environment indicators of salinity processes in the Cochabamba Valley (Bolivia)
  publication-title: Int. J. Ecol. Environ. Sci.
– volume: 158
  start-page: 3
  year: 2010
  end-page: 14
  ident: bb0150
  article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done?
  publication-title: Geoderma
– volume: 60
  start-page: 1193
  year: 1988
  end-page: 1202
  ident: bb0075
  article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
  publication-title: Anal. Chem.
– volume: 416
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.geoderma.2019.113887_bb0135
  article-title: Nonnegative matrix factorization for spectral data analysis
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2005.06.025
– volume: 65
  start-page: 227
  issue: 3
  year: 1998
  ident: 10.1016/j.geoderma.2019.113887_bb0065
  article-title: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00064-9
– volume: 11
  start-page: 1552
  issue: 6
  year: 2011
  ident: 10.1016/j.geoderma.2019.113887_bb0215
  article-title: Using hyperspectral vegetation indices as a proxy to monitor soil salinity
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2011.03.025
– volume: 113
  start-page: S38
  year: 2009
  ident: 10.1016/j.geoderma.2019.113887_bb0010
  article-title: Using imaging spectroscopy to study soil properties
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.019
– volume: 453
  start-page: 125
  issue: 1
  year: 2002
  ident: 10.1016/j.geoderma.2019.113887_bb0050
  article-title: Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)01506-9
– volume: 8
  start-page: 5305
  issue: 11
  year: 2015
  ident: 10.1016/j.geoderma.2019.113887_bb0105
  article-title: Predicting soil salt content over partially vegetated surfaces using non-negative matrix factorization
  publication-title: IEEE J-STARS
– volume: 214–215
  start-page: 141
  year: 2014
  ident: 10.1016/j.geoderma.2019.113887_bb0080
  article-title: Predictive soil parent material mapping at a regional-scale: a random forest approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.016
– volume: 615
  start-page: 918
  year: 2017
  ident: 10.1016/j.geoderma.2019.113887_bb0190
  article-title: Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.025
– volume: 16
  start-page: 2125
  issue: 12
  year: 1995
  ident: 10.1016/j.geoderma.2019.113887_bb0145
  article-title: Spectral behaviour of salt-affected soils
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169508954546
– volume: 32
  start-page: 149
  issue: 2
  year: 2001
  ident: 10.1016/j.geoderma.2019.113887_bb0085
  article-title: Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor
  publication-title: Comput. Electron. Agr.
  doi: 10.1016/S0168-1699(01)00163-6
– volume: 82
  start-page: 87
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.113887_bb0110
  article-title: Removing the effects of iron oxides from vis-NIR spectra for soil organic matter prediction
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2017.07.0235
– volume: 36
  start-page: 780
  issue: 3
  year: 2007
  ident: 10.1016/j.geoderma.2019.113887_bb0175
  article-title: Hyperspectral reflectance response of freshwater macrophytes to salinity in a brackish subtropical marsh
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2005.0327
– volume: 45
  start-page: 442
  issue: 4–5
  year: 1990
  ident: 10.1016/j.geoderma.2019.113887_bb0195
  article-title: Analytically processed Landsat TM images for visual geological interpretation in the northern Scandinavian Caledonides
  publication-title: ISPRS J. Photogramm. Rem. Sens.
  doi: 10.1016/0924-2716(90)90034-9
– volume: 74
  start-page: 384
  year: 2017
  ident: 10.1016/j.geoderma.2019.113887_bb0060
  article-title: Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2016.11.043
– volume: 24
  start-page: 359
  issue: 4
  year: 1998
  ident: 10.1016/j.geoderma.2019.113887_bb0115
  article-title: Analyzing the relationship between ground based reflectance and environment indicators of salinity processes in the Cochabamba Valley (Bolivia)
  publication-title: Int. J. Ecol. Environ. Sci.
– volume: 189
  start-page: 177
  issue: 4
  year: 2017
  ident: 10.1016/j.geoderma.2019.113887_bb0180
  article-title: Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-017-5877-7
– volume: 24
  start-page: 2447
  issue: 14
  year: 2003
  ident: 10.1016/j.geoderma.2019.113887_bb0070
  article-title: Introducing a weighted non-negative matrix factorization for image classification
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(03)00089-8
– volume: 93
  start-page: 110
  issue: 1
  year: 2006
  ident: 10.1016/j.geoderma.2019.113887_bb0170
  article-title: Spectral reflectance of ThalassiaTestudinum (Hydrocharitaceae) seagrass: low salinity effects
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.93.1.110
– volume: 163
  start-page: 227
  issue: 3–4
  year: 2011
  ident: 10.1016/j.geoderma.2019.113887_bb0130
  article-title: Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.04.019
– year: 2002
  ident: 10.1016/j.geoderma.2019.113887_bb0160
– volume: 138
  start-page: 209
  year: 2014
  ident: 10.1016/j.geoderma.2019.113887_bb0210
  article-title: Image clustering by hyper-graph regularized non-negative matrix factorization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.043
– volume: 49
  start-page: 212
  year: 1994
  ident: 10.1016/j.geoderma.2019.113887_bb0200
  article-title: Photographic and video-graphic observations for determining and mapping the response of cotton to soil-salinity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90017-5
– year: 2002
  ident: 10.1016/j.geoderma.2019.113887_bb0040
  article-title: Remote sensing and modeling of topsoil properties, a clue for assessing land degradation
– volume: 7
  start-page: 291
  issue: 4
  year: 1993
  ident: 10.1016/j.geoderma.2019.113887_bb0185
  article-title: A test of significance for partial least squares regression
  publication-title: J. Chemom.
  doi: 10.1002/cem.1180070407
– volume: 85
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2019.113887_bb0120
  article-title: Remote sensing of soil salinity: potentials and constraints
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00188-8
– volume: 110
  start-page: 59
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2019.113887_bb0045
  article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.005
– volume: 84
  start-page: 58
  year: 2017
  ident: 10.1016/j.geoderma.2019.113887_bb0100
  article-title: Hyper-spectral estimation of wheat biomass after alleviating of soil effects on spectra by non-negative matrix factorization
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2016.12.003
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geoderma.2019.113887_bb0020
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 65
  start-page: 480
  issue: 2
  year: 2001
  ident: 10.1016/j.geoderma.2019.113887_bb0025
  article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.652480x
– volume: 146
  start-page: 403
  issue: 3–4
  year: 2008
  ident: 10.1016/j.geoderma.2019.113887_bb0055
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.06.011
– volume: 401
  start-page: 788
  year: 1999
  ident: 10.1016/j.geoderma.2019.113887_bb0095
  article-title: Learning the parts of objects by nonnegative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 539
  start-page: 26
  year: 2016
  ident: 10.1016/j.geoderma.2019.113887_bb0155
  article-title: Mapping soil organic carbon content using spectroscopic and environmental data: a case study in acidic soils from NW Spain
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.08.088
– volume: 26
  start-page: 1515
  issue: 11
  year: 2008
  ident: 10.1016/j.geoderma.2019.113887_bb0125
  article-title: Occlusion invariant face recognition using selective local non-negative matrix factorization basis images
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.04.016
– volume: 58
  start-page: 109
  issue: 2
  year: 2001
  ident: 10.1016/j.geoderma.2019.113887_bb0205
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemometr. Intell. Lab.
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 204
  start-page: 153
  year: 2016
  ident: 10.1016/j.geoderma.2019.113887_bb0035
  article-title: Hyperspectral signal unmixing based on constrained non-negative matrix factorization approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.132
– volume: 52
  start-page: 155
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2019.113887_bb0015
  article-title: Algorithms and applications for approximate nonnegative matrix factorization
  publication-title: Comput. Stat. Data An.
  doi: 10.1016/j.csda.2006.11.006
– volume: 158
  start-page: 3
  issue: 1–2
  year: 2010
  ident: 10.1016/j.geoderma.2019.113887_bb0150
  article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.04.005
– volume: 206
  start-page: 217
  year: 2015
  ident: 10.1016/j.geoderma.2019.113887_bb0030
  article-title: Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.07.009
– volume: 74
  start-page: 1792
  issue: 5
  year: 2010
  ident: 10.1016/j.geoderma.2019.113887_bb0165
  article-title: Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0218
– volume: 44
  start-page: 145
  year: 1993
  ident: 10.1016/j.geoderma.2019.113887_bb0090
  article-title: The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(93)90013-N
– volume: 60
  start-page: 1193
  issue: 11
  year: 1988
  ident: 10.1016/j.geoderma.2019.113887_bb0075
  article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
  publication-title: Anal. Chem.
  doi: 10.1021/ac00162a020
– volume: 82
  start-page: 186
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.113887_bb0140
  article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2017.04.0122
– volume: 13
  start-page: 81
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2019.113887_bb0005
  article-title: Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy
  publication-title: Int. J. Appl. Earth Obs.
– volume: 21
  start-page: 506
  year: 2013
  ident: 10.1016/j.geoderma.2019.113887_bb0220
  article-title: Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data
  publication-title: Int. J. Appl. Earth Obs.
SSID ssj0017020
Score 2.4734411
Snippet Multispectral remote sensing technique has been extensively applied in recent years for the detection of soil salinity on bare soil; however, multispectral...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113887
SubjectTerms Landsat
least squares
Mixed pixel
monitoring
Multispectral imaging
Non-negative matrix factorization
Prediction
remote sensing
Soil salinity
standard deviation
support vector machines
thematic maps
vegetation
Title Estimating the soil salinity over partially vegetated surfaces from multispectral remote sensing image using non-negative matrix factorization
URI https://dx.doi.org/10.1016/j.geoderma.2019.113887
https://www.proquest.com/docview/2305164174
Volume 354
WOSCitedRecordID wos000486133300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017020
  issn: 0016-7061
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKxwM8THyKMUBG4q0KpHE-HyvU8SE0IW2IvkVO45SOLK3apZQ_gfjJnGs7actAAyFe0siSnbj3xPfYvueasWdBKKUED3UCV8YO_K3vSEwknFx4AvRDiUCZwyai4-N4NEredzrfGy3MqoyqKl6vk_l_NTXKYGySzv6FudtGUYB7GB1XmB3XPzL8EB8t0VArg1rOpmVvKUkAScEX6E5vTrVkWX7trdSEwg1BOpf1otDRWVpvosMMtQhzoRP_w55oiWLdSQFzTnE-tb6vZpVTqYnJHn5O6f7X9ggfq-_cJr-vFB28tnEE76a19gBtQbt6fYTfQlqnqpf7TbnWQnyuW0B_1A2cfJp-sYo2u37RT0jIZxScZlHtkrDGDNT90Ilck6f9uTJjcxx5Dk3XtgdvYVJQX3IEZk3iDMYwPaMgvoQOsImtf99Nsn2i5Rh4HvgsCFLkXmN7XoTJVpftDd4MR2_bnanItak-7Qtuqc5__bTfEZ6fXL_mM6e32L6diPCBAdBt1lHVHXZzMFnYZCzqLvu2gRIHlDhBiTdQ4gQl3kKJt1DiDZQ4QYnvQIkbKHELJa6hxDWU-DaUuIES34HSPfbhaHj68rVjz-9wpAjjC_iuOKB97lwWBQjSOBd-mGRBUCSZEn6WeG5Y-HkmhSsxIsDTZV42xvwcJBK0N_DEfdbFs9UDxn0V5irLVQ7CTXOQzMsVxhjaRBehGHsHLGj-5HRsk9vTGStl2kQxnqWNcVIyTmqMc8BetPXmJr3LlTWSxoapJamGfKaA3pV1nzZGTzGK09acrNSsXqYe3G4_9NG5h__Q_iG7sfnCHrHuxaJWj9n18Qp2XjyxSP4BsGPNTQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+soil+salinity+over+partially+vegetated+surfaces+from+multispectral+remote+sensing+image+using+non-negative+matrix+factorization&rft.jtitle=Geoderma&rft.au=Liu%2C+Ya&rft.au=Zhang%2C+Fangfang&rft.au=Wang%2C+Changkun&rft.au=Wu%2C+Shiwen&rft.date=2019-11-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=354&rft_id=info:doi/10.1016%2Fj.geoderma.2019.113887&rft.externalDocID=S0016706119301570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon