Theory and Applications of Ordered Fuzzy Numbers A Tribute to Professor Witold Kosiński

This book is open access under a CC BY 4.0 license.This open access book offers comprehensive coverage on Ordered Fuzzy Numbers, providing readers with both the basic information and the necessary expertise to use them in a variety of real-world applications. The respective chapters, written by lead...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Prokopowicz, Piotr, Czerniak, Jacek, Mikołajewski, Dariusz, Apiecionek, Łukasz, Ślȩzak, Dominik
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Cham Springer Nature 2017
Springer Open
Springer International Publishing AG
SpringerOpen
Vydání:1
Edice:Studies in Fuzziness and Soft Computing
Témata:
ISBN:3319596144, 9783319596143, 3319596136, 9783319596136
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This book is open access under a CC BY 4.0 license.This open access book offers comprehensive coverage on Ordered Fuzzy Numbers, providing readers with both the basic information and the necessary expertise to use them in a variety of real-world applications. The respective chapters, written by leading researchers, discuss the main techniques and applications, together with the advantages and shortcomings of these tools in comparison to other fuzzy number representation models. Primarily intended for engineers and researchers in the field of fuzzy arithmetic, the book also offers a valuable source of basic information on fuzzy models and an easy-to-understand reference guide to their applications for advanced undergraduate students, operations researchers, modelers and managers alike.
AbstractList This book is open access under a CC BY 4.0 license.This open access book offers comprehensive coverage on Ordered Fuzzy Numbers, providing readers with both the basic information and the necessary expertise to use them in a variety of real-world applications. The respective chapters, written by leading researchers, discuss the main techniques and applications, together with the advantages and shortcomings of these tools in comparison to other fuzzy number representation models. Primarily intended for engineers and researchers in the field of fuzzy arithmetic, the book also offers a valuable source of basic information on fuzzy models and an easy-to-understand reference guide to their applications for advanced undergraduate students, operations researchers, modelers and managers alike.
fuzzy arithmetic; defuzzyfication; fuzzy prediction models; analysis; trend processing; uncertainty modeling; propagation of uncertainty; Kosinski’s fuzzy numbers
Author Prokopowicz, Piotr
Czerniak, Jacek
Mikołajewski, Dariusz
Ślȩzak, Dominik
Apiecionek, Łukasz
Author_xml – sequence: 1
  fullname: Prokopowicz, Piotr
– sequence: 2
  fullname: Czerniak, Jacek
– sequence: 3
  fullname: Mikołajewski, Dariusz
– sequence: 4
  fullname: Apiecionek, Łukasz
– sequence: 5
  fullname: Ślȩzak, Dominik
BackLink https://cir.nii.ac.jp/crid/1130000798208615296$$DView record in CiNii
BookMark eNqFks1v1DAQxYP4ELRUnBE9RAgJOATs2OMPJA5l1QJS1b1UXK2JY--GZuNg74K2fz3ezQK9cbH19H6emTfyUfFgCIMriueUvKOEyPdaqopVjOoKtKC8YveKI5blXvH7d8Wj4tl8dvWhpEQqDVwT_rg4Sek7IYRqRoRWTwpyvXQhbksc2vJsHPvO4roLQyqDL-exddG15cXm9nZbXm1WjYvpafHQY5_cyeE-Lr5dnF_PvlSX889fZ2eXFTIhharAewAHComjzFkULcNaWw8CCQJ6qrlH8I1vJW9AS28ZtY3jqm6ZA9Ky48JMhZuu6bvQBIytCaMboksOo132XRMxbk3AztxlbFgZBZ5ZgcqAU95wT5VpqJIGGkmFJUBQ2tzh7dQB0437lZahXyfzs3dNCDfJ5EX_XSXL7OuJHWP4sXFpbfaYdcM6Ym_OP80ANM0rzuSb_5CMSsZ5vUNPD6iLvVsEM3WuGVN52Gx_nOyAObYZY7f6k_df9p0T4sLUxAAhhtYCpKml3E_y4u77NuChvgZJsvtqcoeuM7bbnZSy_DeI1KomSlCotcjYywmzmLDPmFmFISwijstkgHPBGbDfNt7H0g
ContentType eBook
Book
Copyright https://creativecommons.org/licenses/by/4.0/legalcode
Copyright_xml – notice: https://creativecommons.org/licenses/by/4.0/legalcode
DBID I4C
RYH
V1H
A7I
YSPEL
BIANM
DEWEY 620
DOI 10.1007/978-3-319-59614-3
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
CiNii Complete
DOAB: Directory of Open Access Books
OAPEN
Perlego
Open Research Library (Open Access)
DatabaseTitleList




Database_xml – sequence: 1
  dbid: V1H
  name: DOAB: Directory of Open Access Books
  url: https://directory.doabooks.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Mathematics
EISBN 3319596144
9783319596143
Edition 1
1st Edition 2017
Editor Prokopowicz, Piotr
Czerniak, Jacek
Mikołajewski, Dariusz
Ślȩzak, Dominik
Apiecionek, Łukasz
Editor_xml – sequence: 1
  fullname: Prokopowicz, Piotr
– sequence: 2
  fullname: Czerniak, Jacek
– sequence: 3
  fullname: Mikołajewski, Dariusz
– sequence: 4
  fullname: Apiecionek, Łukasz
– sequence: 5
  fullname: Ślȩzak, Dominik
ExternalDocumentID oai_biblioboard_com_85f3c6a8_5e8f_4f18_b187_5b716c050a7c
9783319596143
EBC5591904
EBC31734424
2338187
oai_library_oapen_org_20_500_12657_27704
29570
BB26102302
5446435
Genre Electronic books
GroupedDBID 0D9
0DA
38.
A7I
AABBV
AAKKN
AALVI
AAQKC
AAXZC
AAYZJ
AAZIN
ABBVZ
ABQUB
ACLYY
ADCXD
ADOGT
AEKFX
AEZAY
AFNRJ
AGIGN
AGYGE
AIODD
AKAAH
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
BIANM
CEWPM
DBMNP
I4C
IEZ
LEG
NUC
PYIOH
SAR
SBO
SWYDZ
TPJZQ
V1H
YSPEL
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z85
Z87
Z88
AALJR
ABEEZ
ACBYE
AEJLV
AGWHU
AIQUZ
ALNDD
CZZ
EIXGO
RYH
Z84
ID FETCH-LOGICAL-a36768-5ff55e58a0e13eca6d3a29cf56a0a5af194fa5fbfd74b597fc31cbe482d3e50d3
IEDL.DBID A7I
ISBN 3319596144
9783319596143
3319596136
9783319596136
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000094192&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue Dec 02 16:36:15 EST 2025
Tue Mar 04 07:18:09 EST 2025
Sat May 31 00:08:50 EDT 2025
Mon Aug 11 05:55:53 EDT 2025
Tue Dec 02 16:06:51 EST 2025
Mon Dec 01 21:17:07 EST 2025
Wed Oct 08 00:05:18 EDT 2025
Thu Jun 26 23:58:44 EDT 2025
Tue Nov 14 23:00:52 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a36768-5ff55e58a0e13eca6d3a29cf56a0a5af194fa5fbfd74b597fc31cbe482d3e50d3
Notes Includes bibliographical references
MODID-eea0d14d732:Springer Open
OCLC OCN: 1078954904
1078954904
1076234313
OpenAccessLink http://library.oapen.org/handle/20.500.12657/27704
PQID EBC31734424
PageCount 373
ParticipantIDs biblioboard_openresearchlibrary_oai_biblioboard_com_85f3c6a8_5e8f_4f18_b187_5b716c050a7c
askewsholts_vlebooks_9783319596143
proquest_ebookcentral_EBC5591904
proquest_ebookcentral_EBC31734424
perlego_books_2338187
oapen_primary_oai_library_oapen_org_20_500_12657_27704
oapen_doabooks_29570
nii_cinii_1130000798208615296
casalini_monographs_5446435
PublicationCentury 2000
PublicationDate 2017
c2017
2017-10-18
2017-01-01T00:00:00Z
PublicationDateYYYYMMDD 2017-01-01
2017-10-18
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Netherlands
– name: Cham
PublicationSeriesTitle Studies in Fuzziness and Soft Computing
PublicationYear 2017
Publisher Springer Nature
Springer Open
Springer International Publishing AG
SpringerOpen
Publisher_xml – name: Springer Nature
– name: Springer Open
– name: Springer International Publishing AG
– name: SpringerOpen
SSID ssj0001930698
Score 2.1722891
Snippet fuzzy arithmetic; defuzzyfication; fuzzy prediction models; analysis; trend processing; uncertainty modeling; propagation of uncertainty; Kosinski’s fuzzy...
fuzzy arithmetic; defuzzyfication; fuzzy prediction models; analysis; trend processing; uncertainty modeling; propagation of uncertainty; Kosinski's fuzzy...
This book is open access under a CC BY 4.0 license.This open access book offers comprehensive coverage on Ordered Fuzzy Numbers, providing readers with both...
SourceID biblioboard
askewsholts
proquest
perlego
oapen
nii
casalini
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms analysis
Computer Engineering
Computer science
Computers
Computing and Information Technology
defuzzyfication
Engineering & allied operations
fuzzy arithmetic
fuzzy prediction models
Kosinski’s fuzzy numbers
Mathematics
Mathematics and Science
propagation of uncertainty
trend processing
uncertainty modeling
Subtitle A Tribute to Professor Witold Kosiński
TableOfContents 13.4 New Hybrid OFNBee Method -- 13.5 Experimental Results -- 13.6 Conclusion -- References -- 14 Fuzzy Observation of DDoS Attack -- 14.1 Introduction -- 14.2 DDoS Attack Description and Recognition -- 14.3 The Idea of Attack Recognition and Prevention -- 14.4 Attack Observation Using OFNs -- 14.5 Experiment Test Results -- 14.5.1 Test Description -- 14.5.2 Attack Detection Using Proposed Method -- 14.6 Conclusions-Method Comparision -- References -- 15 Fuzzy Control for Secure TCP Transfer -- 15.1 Introduction -- 15.2 Multipath TCP -- 15.3 Multipath TCP Schedulers -- 15.3.1 Multipath TCP Standard Scheduler -- 15.3.2 Multipath TCP Secure Scheduler -- 15.3.3 Multipath TCP Scheduler with OFN Usage -- 15.3.4 OFN for Problem Detection -- 15.4 OFN Scheduler Algorithm -- 15.5 Simulation Test Results -- 15.6 Conclusions -- References -- 16 Fuzzy Numbers Applied to a Heat Furnace Control -- 16.1 Introduction -- 16.2 Selected Definitions -- 16.2.1 The Essence of Ordered Fuzzy Numbers -- 16.2.2 Fuzzy Controller -- 16.2.3 Control of the Stove on Solid Fuel -- 16.3 Classic Fuzzy Controller -- 16.4 The Controller for the OFNs -- 16.4.1 Directed OFN as a Combustion Trend -- 16.5 Modeling Trend in the Inference Process -- 16.6 Conclusions -- References -- 17 Analysis of Temporospatial Gait Parameters -- 17.1 Introduction -- 17.2 Methods -- 17.2.1 Subjects -- 17.2.2 Methods -- 17.2.3 Statistical Analysis -- 17.2.4 Fuzzy-Based Tool for Gait Assessment -- 17.2.5 Main Ideas of the OFN Model -- 17.2.6 OFN Model in Gait Assessment -- 17.3 Results -- 17.4 Discussion -- 17.5 Conclusions -- References -- 18 OFN-Based Brain Function Modeling -- 18.1 Introduction -- 18.2 State of the Art -- 18.2.1 Theory -- 18.2.2 Modeling Complex Ideas with Fuzzy Systems -- 18.2.3 Clinical Practice -- 18.2.4 Models for Linking Hypotheses and Experimental Studies -- 18.3 Concepts
Intro -- Foreword -- Memories of Professor Witold Kosiński -- Scientific Development -- Scientific and Academic Achievements (Part I) -- Scientific and Academic Achievements (Part II) -- Scientific Collaboration -- Teaching and Supervision -- Scientific and Social Services -- Personality and Memoires -- Acknowledgements -- Contents -- Part I Background of Fuzzy Set Theory -- 1 Introduction to Fuzzy Sets -- 1.1 Classic and Fuzzy Sets -- 1.2 Fuzzy Sets---Basic Definitions -- 1.3 Extension Principle -- 1.4 Fuzzy Relations -- 1.5 Cylindrical Extension and Projection of a Fuzzy Set -- 1.6 Fuzzy Numbers -- 1.7 Summary -- References -- 2 Introduction to Fuzzy Systems -- 2.1 Introduction -- 2.2 Fuzzy Conditional Rules -- 2.3 Approximate Reasoning -- 2.3.1 Compositional Rule of Inference -- 2.3.2 Approximate Reasoning with Knowledge Base -- 2.3.3 Fuzzification and Defuzzification -- 2.4 Basic Types of Fuzzy Systems -- 2.4.1 Mamdani--Assilan Fuzzy Model -- 2.4.2 Takagi--Sugeno--Kang Fuzzy System -- 2.4.3 Tsukamoto Fuzzy System -- 2.5 Summary -- References -- Part II Theory of Ordered Fuzzy Numbers -- 3 Ordered Fuzzy Numbers: Sources and Intuitions -- 3.1 Introduction -- 3.2 Problems with Calculations on Fuzzy Numbers -- 3.3 Related Work -- 3.4 Decomposition of Fuzzy Memberships -- 3.5 Idea of Ordered Fuzzy Numbers -- 3.6 Summary -- References -- 4 Ordered Fuzzy Numbers: Definitions and Operations -- 4.1 Introduction -- 4.2 The Ordered Fuzzy Number Model -- 4.3 Basic Notions for OFNs -- 4.3.1 Standard Representation of OFNs -- 4.3.2 OFN Support -- 4.3.3 OFN Membership Function -- 4.3.4 Real Numbers as OFN Singletons -- 4.4 Improper OFNs -- 4.5 Basic Operations on OFNs -- 4.5.1 Addition and Subtraction -- 4.5.2 Multiplication and Division -- 4.5.3 General Model of Operations -- 4.5.4 Solving Equations -- 4.6 Interpretations of OFNs
4.6.1 Direction as a Trend -- 4.6.2 Validity of Operations -- 4.6.3 The Meaning of Improper OFNs -- 4.7 Summary and Further Intuitions -- References -- 5 Processing Direction with Ordered Fuzzy Numbers -- 5.1 Introduction -- 5.2 Direction Measurement Tool -- 5.2.1 The PART Function -- 5.2.2 The Direction Determinant -- 5.3 Compatibility Between OFNs -- 5.4 Inference Sensitive to Direction -- 5.4.1 Directed Inference Operation -- 5.4.2 Examples -- 5.5 Aggregation of OFNs -- 5.5.1 The Aggregation's Basic Properties -- 5.5.2 Arithmetic Mean Directed Aggregation -- 5.5.3 Aggregation for Premise Parts of Fuzzy Rules -- 5.6 Summary -- References -- 6 Comparing Fuzzy Numbers Using Defuzzificators on OFN Shapes -- 6.1 Introduction -- 6.2 Formal Approach to the Problem -- 6.3 Defuzzification Methods -- 6.3.1 Defuzzification Methods for OFN -- 6.4 Definition of Golden Ratio Defuzzification Operator -- 6.4.1 Golden Ratio for OFN -- 6.5 Golden Ratio -- 6.6 Defuzzification Conditions for GR -- 6.6.1 Normalization -- 6.6.2 Restricted Additivity -- 6.6.3 Homogeneity -- 6.7 Definition of Mandala Factor Defuzzification Operator -- 6.8 Mandala Factor -- 6.9 Defuzzification Conditions for MF -- 6.9.1 Normalization -- 6.9.2 Restricted Additivity -- 6.9.3 Homogeneity -- 6.10 Catalogue of the Shapes of Numbers in OFN Notation -- 6.11 Conclusion -- References -- 7 Two Approaches to Fuzzy Implication -- 7.1 Introduction -- 7.2 Lattice Structure and Implications on SOFNs -- 7.2.1 Step-Ordered Fuzzy Numbers -- 7.2.2 Lattice on mathcalRK -- 7.2.3 Complements and Negation on calN -- 7.2.4 Fuzzy Implication on BSOFN -- 7.2.5 Applications -- 7.3 Metasets -- 7.3.1 The Binary Tree T and the Boolean Algebra mathfrakB -- 7.3.2 General Definition of Metaset -- 7.3.3 Interpretations of Metasets -- 7.3.4 Forcing -- 7.3.5 Set-Theoretic Relations for Metasets
18.3.1 Data Ladder -- 18.3.2 Models of a Single Neuron -- 18.3.3 Models of Biologically Relevant Neural Networks -- 18.3.4 Models of Human Behavior -- 18.4 Traditional versus Fuzzy Approach -- 18.5 OFN as an Alternative Approach to Fuzziness -- 18.6 Patterns and Examples -- 18.6.1 Intuitive Modeling of the Complex Functions -- 18.6.2 Improving Policy Gradient Method -- 18.6.3 Modeling Learning Rate with the OFNs -- 18.7 Discussion -- 18.7.1 Results of Other Scientists -- 18.7.2 Limitations of Our Approach and Directions for Further Research -- 18.8 Conclusions -- References
7.3.6 Applications of Metasets -- 7.3.7 Classical and Fuzzy Implication -- 7.4 Conclusions and Further Research -- References -- Part III Examples of Applications -- 8 OFN Capital Budgeting Under Uncertainty and Risk -- 8.1 Introduction -- 8.2 Ordered Fuzzy Numbers -- 8.3 Classic Capital Budgeting Methods -- 8.4 Fuzzy Approach to the Discount Methods -- 8.5 Computational Example of the Investment Project -- 8.6 Summary -- References -- 9 Input-Output Model Based on Ordered Fuzzy Numbers -- 9.1 Introduction -- 9.2 Input-Output Analysis -- 9.3 Example of Application of OFNs in the Leontief Model -- 9.4 Conclusions -- References -- 10 Ordered Fuzzy Candlesticks -- 10.1 Introduction -- 10.2 Ordered Fuzzy Candlesticks -- 10.3 Volume and Spread -- 10.3.1 Volume -- 10.3.2 Spread -- 10.4 Ordered Fuzzy Candlesticks in Technical Analysis -- 10.4.1 Ordered Fuzzy Technical Analysis Indicators -- 10.4.2 Ordered Fuzzy Candlestick as Technical Analysis Indicator -- 10.5 Ordered Fuzzy Time Series Models -- 10.6 Conclusion and Future Works -- References -- 11 Detecting Nasdaq Composite Index Trends with OFNs -- 11.1 Introduction -- 11.2 Application of OFN Notation for the Fuzzy Observation of NASDAQ Composite -- 11.3 Ordered Fuzzy Number Formulas -- 11.4 Conclusions -- References -- 12 OFNAnt Method Based on TSP Ant Colony Optimization -- 12.1 Introduction -- 12.2 Application of Ant Colony Algorithms in Searching for the Optimal Route -- 12.3 OFNAnt, a New Ant Colony Algorithm -- 12.4 Experiment -- 12.4.1 Experiment Execution Method -- 12.4.2 Software Used for Experiment -- 12.4.3 Experimental Data -- 12.5 Results of Experiment -- 12.6 Summary and Conclusions -- References -- 13 A New OFNBee Method as an Example of Fuzzy Observance Applied for ABC Optimization -- 13.1 Introduction -- 13.2 ABC (Artificial Bee Colony) Model -- 13.3 Selected OFN Issues
Title Theory and Applications of Ordered Fuzzy Numbers
URI http://digital.casalini.it/9783319596143
https://cir.nii.ac.jp/crid/1130000798208615296
https://directory.doabooks.org/handle/20.500.12854/29570
http://library.oapen.org/handle/20.500.12657/27704
https://www.perlego.com/book/2338187/theory-and-applications-of-ordered-fuzzy-numbers-a-tribute-to-professor-witold-kosiski-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=31734424
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5591904
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319596143
https://openresearchlibrary.org/viewer/85f3c6a8-5e8f-4f18-b187-5b716c050a7c
Volume 356
WOSCitedRecordID wos000094192&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VLQd6KdAiQikyiGuqxI5jm9tSdVUEWnpAZTlZjmOLqKtNlWwr0TN_jf_F2MnSrRCXXiI5X5rNPI9nPDtvAN45j4s2czblhtO0EEWZSlxI09rW1CleM-sjz-xnMZvJ-VydbwG9v3Vx3BoM5mMifyAbwBj9mGeBC6HECJ4KEShAd0pKVQi4JuLj3b6KQidYyVDGwQJxSgh4BqKdv2O2zm6OBLOhwEyl8VLKdmHX9JdoYND4rHocVU21aNqqRYWFtcv0JpQs4lK0bJrQJSlIis7zleswzm__MelxnZruPeQXPoEdFyoensKWWz6DvXWfBzJO-334PhTwE3wDmWwkvEnryZcudvsk0-vb259kFvuL9O_JhERKkpUjq5acD_QfbUe-of1Y1ORT2ze_f_WXzQFcTE-_npylY0uG1ARqN5ly7zl3XJrM5ahiU9bMUGU9L01muPG5KrzhvvK1KCoMVrxlua1cIWnNHM9q9hy2l-3SvQCCA8ZdVnvGROGkU7mhiOvKciONyfME3m5oQt8sYvq41_dUmcB8Q0E6tBwbWZJ-jF9aBwLtzXtwJmvJPbOlkZo76XXhc6mrXArNK4wfbcYzI2wCh2ttazQJA4N4rzkG0OhjJnCEANC2Ccc8JAURTgr9KYR6yGUnsB9VrOvWDHJTxUWWQDmcvhrIRKJ0d5KGK4gJTTONYNARDDqCIYGDEWJ6fB0LzpZI4M0acDp-oPFPvfr0wwn6hqwoKD5L_nsPRpToExYvHyrXITymwdOJu1KvYHvVXbsjeGRvVk3fvY5zE48X-dkfQUU0XA
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Theory+and+applications+of+ordered+fuzzy+numbers+%3A+a+tribute+to+Professor+Witold+Kosi%C5%84ski&rft.au=Prokopowicz%2C+Piotr&rft.date=2017-01-01&rft.pub=Springer+Open&rft.isbn=9783319596136&rft_id=info:doi/10.1007%2F978-3-319-59614-3&rft.externalDocID=BB26102302
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fopen_research_library_iudilif%2F9783319596136.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97833195%2F9783319596143.jpg