Structural equation modeling : applications using Mplus

Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using M plus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Wang, Jichuan, Wang, Xiaoqian
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Hoboken Wiley 2019
John Wiley & Sons, Incorporated
Wiley-Blackwell
Vydání:2
Edice:Wiley Series in Probability and Statistics
Témata:
ISBN:1119422701, 9781119422709, 9781119422723, 1119422728
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using M plus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. * Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models * Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes * Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of M plus results using real data sets * Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using M plus.
AbstractList Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus. 
Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using M plus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. * Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models * Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes * Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of M plus results using real data sets * Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using M plus.
Author Wang, Jichuan
Wang, Xiaoqian
Author_xml – sequence: 1
  fullname: Wang, Jichuan
– sequence: 2
  fullname: Wang, Xiaoqian
BackLink https://cir.nii.ac.jp/crid/1130848326944940928$$DView record in CiNii
BookMark eNpNkL1Pw0AMxQ9BEbR0ZGPIgIQYCvZ9HxtU5UMqYgCxRpfkUgJH0uYS-PdJmyJ1sfX8fnqyPSQHZVU6Qk4RrhCAXhulEdFwShWDPTLe0Sj3yfBfAA7IkAIaoJwLetg7EinT7IiMQ_iELo5SCQyOiXpt6jZt2tr6yK1a2xRVGX1XmfNFuYhuIrtc-iLdjEPUhvXweenbcEIGufXBjbd9RN7vZ2_Tx8n85eFpejufWCalxAmXmbPdMokyNtfWKpcJp5Jc2ZwpLRBSFBQpCtdJ0EwpRrPEgnQguFKGjchlH2zDl_sNH5VvQvzjXVJVXyHeeQJlHXvRs8u6WrUuNPEGS13ZdPfFs7up0IZygR15tiVd7d2iivs4RK614p193ttlUcRpsa6IDDTXjErDueFgqGZ_XtZwtw
ContentType eBook
Book
DBID RYH
YSPEL
DEWEY 519.5/3
DOI 10.1002/9781119422730
DatabaseName CiNii Complete
Perlego
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
Social Sciences (General)
EISBN 9781119422716
111942271X
9781119422723
1119422728
Edition 2
Second edition
ExternalDocumentID 9781119422723
EBC5892451
1148874
BB29267295
Genre Electronic books
GroupedDBID 38.
3XM
AABBV
AATND
ABARN
ABQPQ
ACBYE
ACLGV
ADVEM
AERYV
AFOJC
AFPKT
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
AUUOE
BBABE
CZZ
ERSLE
GEOUK
IVUIE
JFSCD
KKBTI
LQKAK
LWYJN
LYPXV
MRDEW
OHILO
OODEK
RYH
W1A
WIIVT
YPLAZ
YSPEL
ZEEST
ACCPI
ID FETCH-LOGICAL-a36661-46dea019b79af8aa7ed5e7bf7af378510c1521215e3780837732dba06e0547793
ISBN 1119422701
9781119422709
9781119422723
1119422728
IngestDate Thu Apr 17 08:57:53 EDT 2025
Wed Nov 26 05:38:48 EST 2025
Tue Dec 02 18:18:05 EST 2025
Fri Jun 27 00:18:30 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2019024452
LCCallNum_Ident H61.3 .W364 2020
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a36661-46dea019b79af8aa7ed5e7bf7af378510c1521215e3780837732dba06e0547793
Notes Includes bibliographical references (p. [483]-505) and index
OCLC 1119612383
PQID EBC5892451
PageCount 537
ParticipantIDs askewsholts_vlebooks_9781119422723
proquest_ebookcentral_EBC5892451
perlego_books_1148874
nii_cinii_1130848326944940928
PublicationCentury 2000
PublicationDate 2020
2019
2019-09-17
PublicationDateYYYYMMDD 2020-01-01
2019-01-01
2019-09-17
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2020
2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Newark
PublicationSeriesTitle Wiley Series in Probability and Statistics
PublicationYear 2020
2019
Publisher Wiley
John Wiley & Sons, Incorporated
Wiley-Blackwell
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Incorporated
– name: Wiley-Blackwell
SSID ssj0002226030
Score 2.665552
Snippet Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using M plus Focusing on the conceptual and practical...
Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical...
SourceID askewsholts
proquest
perlego
nii
SourceType Aggregation Database
Publisher
SubjectTerms Mplus
Multivariate analysis
Multivariate analysis -- Data processing
Social sciences
Social sciences -- Statistical methods -- Data processing
Social sciences-Research-Data processing
Structural equation modeling
Structural equation modeling -- Data processing
TableOfContents Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction to structural equation modeling -- 1.1 Introduction -- 1.2 Model formulation -- 1.2.1 Measurement models -- 1.2.2 Structural models -- 1.2.3 Model formulation in equations -- 1.3 Model identification -- 1.4 Model estimation -- 1.4.1 Bayes estimator -- 1.5 Model fit evaluation -- 1.5.1 The model X2 statistic -- 1.5.2 Comparative fit index (CFI) -- 1.5.3 Tucker Lewis index (TLI) or non‐normed fit index (NNFI) -- 1.5.4 Root mean square error of approximation (RMSEA) -- 1.5.5 Root mean‐square residual (RMR), standardized RMR (SRMR), and weighted RMR (WRMR) -- 1.5.6 Information criteria indices -- 1.5.7 Model fit evaluation with Bayes estimator -- 1.5.8 Model comparison -- 1.6 Model modification -- 1.7 Computer programs for SEM -- Chapter 2 Confirmatory factor analysis -- 2.1 Introduction -- 2.2 Basics of CFA models -- 2.2.1 Latent variables/factors -- 2.2.2 Indicator variables -- 2.2.3 Item parceling -- 2.2.4 Factor loadings -- 2.2.5 Measurement errors -- 2.2.6 Item reliability -- 2.2.7 Scale reliability -- 2.3 CFA models with continuous indicators -- 2.3.1 Alternative methods for factor scaling -- 2.3.2 Model estimated item reliability -- 2.3.3 Model modification based on modification indices -- 2.3.4 Model estimated scale reliability -- 2.3.5 Item parceling -- 2.4 CFA models with non‐normal and censored continuous indicators -- 2.4.1 Testing non‐normality -- 2.4.2 CFA models with non‐normal indicators -- 2.4.3 CFA models with censored data -- 2.5 CFA models with categorical indicators -- 2.5.1 CFA models with binary indicators -- 2.5.2 CFA models with ordinal categorical indicators -- 2.6 The item response theory (IRT) model and the graded response model (GRM) -- 2.6.1 The item response theory (IRT) model -- 2.6.2 The graded response model (GRM)
5.1 Introduction -- 5.2 Multigroup CFA models -- 5.2.1 Multigroup first‐order CFA -- 5.2.2 Multigroup second‐order CFA -- 5.2.3 Multigroup CFA with categorical indicators -- 5.3 Multigroup SEM -- 5.3.1 Testing invariance of structural path coefficients across groups -- 5.3.2 Testing invariance of indirect effects across groups -- 5.4 Multigroup latent growth modeling (LGM) -- 5.4.1 Testing invariance of the growth function -- 5.4.2 Testing invariance of latent growth factor means -- Chapter 6 Mixture modeling -- 6.1 Introduction -- 6.2 Latent class analysis (LCA) modeling -- 6.2.1 Description of LCA models -- 6.2.2 Defining the latent classes -- 6.2.3 Predicting class membership -- 6.2.4 Unconditional LCA -- 6.2.5 Directly including covariates into LCA models -- 6.2.6 Approaches for auxiliary variables in LCA models -- 6.2.7 Implementing the PC, three‐step, Lanza's, and BCH methods -- 6.2.8 LCA with residual covariances -- 6.3 Extending LCA to longitudinal data analysis -- 6.3.1 Longitudinal latent class analysis (LLCA) -- 6.3.2 Latent transition analysis (LTA) models -- 6.4 Growth mixture modeling (GMM) -- 6.4.1 Unconditional growth mixture modeling (GMM) -- 6.4.2 GMM with covariates and a distal outcome -- 6.5 Factor mixture modeling (FMM) -- 6.5.1 LCFA models -- 6.A Including covariates in LTA model -- 6.B Manually implementing three-step mixture modeling -- Chapter 7 Sample size for structural equation modeling -- 7.1 Introduction -- 7.2 The rules of thumb for sample size in SEM -- 7.3 The Satorra‐Saris method for estimating sample size -- 7.3.1 Application of The Satorra‐Saris method to CFA models -- 7.3.2 Application of the Satorra‐Saris's method to latent growth models -- 7.4 Monte Carlo simulation for estimating sample sizes -- 7.4.1 Application of a Monte Carlo simulation to CFA models
2.7 Higher‐order CFA models -- 2.8 Bifactor models -- 2.9 Bayesian CFA models -- 2.10 Plausible values of latent variables -- 2.A BSI-18 instrument -- 2.B Item reliability -- 2.C Cronbach's alpha coefficient -- 2.D Calculating probabilities using probit regression coefficients -- Chapter 3 Structural equation models -- 3.1 Introduction -- 3.2 Multiple indicators, multiple causes (MIMIC) model -- 3.2.1 Interaction effects between covariates -- 3.2.2 Differential item functioning (DIF) -- 3.3 General structural equation models -- 3.3.1 Testing indirect effects -- 3.4 Correcting for measurement error in single indicator variables -- 3.5 Testing interactions involving latent variables -- 3.6 Moderated mediating effect models -- 3.6.1 Bootstrap confidence intervals -- 3.6.2 Estimating counterfactual‐based causal effects in Mplus -- 3.7 Using plausible values of latent variables in secondary analysis -- 3.8 Bayesian structural equation modeling (BSEM) -- 3.A Influence of measurement errors -- 3.B Fraction of missing information (FMI) -- Chapter 4 Latent growth modeling (LGM) for longitudinal data analysis -- 4.1 Introduction -- 4.2 Linear LGM -- 4.2.1 Unconditional linear LGM -- 4.2.2 LGM with time‐invariant covariates -- 4.2.3 LGM with time‐invariant and time‐varying covariates -- 4.3 Nonlinear LGM -- 4.3.1 LGM with polynomial time functions -- 4.3.2 Piecewise LGM -- 4.3.3 Free time scores -- 4.3.4 LGM with distal outcomes -- 4.4 Multiprocess LGM -- 4.5 Two‐part LGM -- 4.6 LGM with categorical outcomes -- 4.7 LGM with individually varying times of observation -- 4.8 Dynamic structural equation modeling (DSEM) -- 4.8.1 DSEM using observed centering for covariates -- 4.8.2 Residual DSEM (RDSEM) using observed centering for covariates -- 4.8.3 Residual DSEM (RDSEM) using latent variable centering for covariates -- Chapter 5 Multigroup modeling
7.4.2 Application of a Monte Carlo simulation to latent growth models -- 7.4.3 Application of a Monte Carlo simulation to latent growth models with covariates -- 7.4.4 Application of a Monte Carlo simulation to latent growth models with missing values -- 7.5 Estimate sample size for SEM based on model fit indexes -- 7.5.1 Application of the MacCallum-Browne-Sugawara's method -- 7.5.2 Application of Kim's method -- 7.6 Estimate sample sizes for latent class analysis (LCA) model -- References -- Index -- Wiley Series in Probability and Statistics -- EULA
Title Structural equation modeling : applications using Mplus
URI https://cir.nii.ac.jp/crid/1130848326944940928
https://www.perlego.com/book/1148874/structural-equation-modeling-applications-using-mplus-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5892451
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781119422723
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH5ihQM98WOIAkMR4oYiEseJ7R07FRCwwWFAb5GTOCOiSrtlnfbn74vrpOl2QBy4WI2V2tL7rOfve47fI3orVailUBA5Iox9XpSxnwVl6ZuY54UIC8Fym2f2qzg5kfO5-u7quDa2nICoa3l9rVb_FWr0Aez26uw_wN0Pig78BuhoATvaW4y4f3SXOmwqWJtGw5xvMnhvCt3YaEB7qXlwWP1ubYMEx6vFumfVv1zs-HOV_15vV03XPa_08rxbTS5QwIJbgQLrZXbUI9yc4owJm5_gri_d5GYdvOcOUHbTU0-nTLEEFD3eoz1olxHd_zj79uNLH-gCAUngSWyVJjdf6HJt9fO75Kd4-f3OfGMa6-YPvD12gssG239dVRAqK3OxMGfLO9un5QSnj2jU3hN5TPdM_YTGx3362-YpiS0UXgeF10HhHXpDIDwLhGeB2KefH2anR598V6HC1xF0H9R3UhgNlpwJpUuptTBFbERWCl1GAmQ2yFt-BFpl8Ai2K0TEikwHiQFVFvCNz2hUL2vznDyeBJnOTKlDrrnOuYYwLtvipUaaKMiSCb0Z2CK9WtjT9CYdGIxFEzqAidK8atsQ_ERyuOxEca4g5Jmc0L4zXrr5dyuHpeAT8jpTpnZc92lwOpsexRIaPQ5f_GXol_Rwu-pe0QiGNgf0IL-6rJqL125V3AAVvjfZ
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Structural+equation+modeling+%3A+applications+using+Mplus&rft.au=Wang%2C+Jichuan&rft.au=Wang%2C+Xiaoqian&rft.date=2020-01-01&rft.pub=Wiley&rft.isbn=9781119422709&rft_id=info:doi/10.1002%2F9781119422730&rft.externalDocID=BB29267295
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fwiley_hlvwyirv%2F9781119422723.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811194%2F9781119422723.jpg