PERSISTENT DIRECTED FLAG LAPLACIAN

Topological data analysis (TDA) has had enormous success in science and engineering in the past decade. Persistent topological Laplacians (PTLs) overcome some limitations of persistent homology, a key technique in TDA, and provide substantial insight to the behavior of various geometric and topologi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of data science Jg. 7; H. 3; S. 737
Hauptverfasser: Jones, Benjamin, Wei, Guo-Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.09.2025
Schlagworte:
ISSN:2639-8001, 2639-8001
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topological data analysis (TDA) has had enormous success in science and engineering in the past decade. Persistent topological Laplacians (PTLs) overcome some limitations of persistent homology, a key technique in TDA, and provide substantial insight to the behavior of various geometric and topological objects. This work extends PTLs to directed flag complexes, which are an exciting generalization to flag complexes, also known as clique complexes, that arise naturally in many situations. We introduce the directed flag Laplacian and show that the proposed persistent directed flag Laplacian (PDFL) is a distinct way of analyzing these flag complexes. Example calculations are provided to demonstrate the potential of the proposed PDFL in real world applications.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2639-8001
2639-8001
DOI:10.3934/fods.2024048