Spring protection and sustainable management of groundwater resources in a spring field
[Display omitted] •A new S/O model is developed for spring protection and groundwater management.•MOFHS is adopted to find the optimal solutions under changing climatic conditions.•Robust extraction strategies under different hydrological conditions are provided.•Optimization results demonstrate the...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 582; s. 124498 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.03.2020
|
| Témata: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•A new S/O model is developed for spring protection and groundwater management.•MOFHS is adopted to find the optimal solutions under changing climatic conditions.•Robust extraction strategies under different hydrological conditions are provided.•Optimization results demonstrate the applicability and usefulness of the new method.
Springs are the natural discharge points of groundwater. They are of considerable value for drinking water supply and some springs are of historical and tourism value. However, increasing industrial and urban expansion has led to serious problems of overdraft of groundwater resources, which in turn had caused the disappearance of springs globally. Thus, the protection of springs while at the same time allowing for the use of local groundwater resources is an important task of water resources management. In this study, we propose a new multi-objective simulation and optimization (S/O) model to find an optimal extraction strategy which balances the competitive relationship between spring outflow and groundwater extraction. In the newly developed model, the extraction rates of different groundwater wells are taken as the decision variables, and maximization of groundwater extraction and maximization of spring outflow are taken as the two objective functions. Baotu Spring which is located in northern China has been famous since the Shang Dynasty (1600 BCE). However, Baotu Spring has been drying up since the 1990s due to over extraction of the local groundwater. Thus, we take Baotu Spring as a case study to demonstrate the applicability of the newly developed model. Simultaneously, a multi-objective evolutionary algorithm (MOEA), the multi-objective fast harmony search algorithm (MOFHS) which is coupled with the commonly used groundwater flow code MODFLOW, is adopted to search the Pareto optimal solutions (the optimal extraction strategies). The optimization results of Baotu Spring field during the management period from July 2013 to June 2014 show that more groundwater resources could be extracted without threatening the sustainable outflow of Baotu Spring and Black Tiger Spring. The optimization results for different hydrological years show that climate variability (mainly in precipitation) is an important factor when choosing the optimal extraction strategy. The optimization results of Baotu Spring in northern China show that the newly developed model is a promising tool to find the optimal groundwater extraction strategies which can protect springs while maximizing the extraction of groundwater resources in a spring field. |
|---|---|
| AbstractList | [Display omitted]
•A new S/O model is developed for spring protection and groundwater management.•MOFHS is adopted to find the optimal solutions under changing climatic conditions.•Robust extraction strategies under different hydrological conditions are provided.•Optimization results demonstrate the applicability and usefulness of the new method.
Springs are the natural discharge points of groundwater. They are of considerable value for drinking water supply and some springs are of historical and tourism value. However, increasing industrial and urban expansion has led to serious problems of overdraft of groundwater resources, which in turn had caused the disappearance of springs globally. Thus, the protection of springs while at the same time allowing for the use of local groundwater resources is an important task of water resources management. In this study, we propose a new multi-objective simulation and optimization (S/O) model to find an optimal extraction strategy which balances the competitive relationship between spring outflow and groundwater extraction. In the newly developed model, the extraction rates of different groundwater wells are taken as the decision variables, and maximization of groundwater extraction and maximization of spring outflow are taken as the two objective functions. Baotu Spring which is located in northern China has been famous since the Shang Dynasty (1600 BCE). However, Baotu Spring has been drying up since the 1990s due to over extraction of the local groundwater. Thus, we take Baotu Spring as a case study to demonstrate the applicability of the newly developed model. Simultaneously, a multi-objective evolutionary algorithm (MOEA), the multi-objective fast harmony search algorithm (MOFHS) which is coupled with the commonly used groundwater flow code MODFLOW, is adopted to search the Pareto optimal solutions (the optimal extraction strategies). The optimization results of Baotu Spring field during the management period from July 2013 to June 2014 show that more groundwater resources could be extracted without threatening the sustainable outflow of Baotu Spring and Black Tiger Spring. The optimization results for different hydrological years show that climate variability (mainly in precipitation) is an important factor when choosing the optimal extraction strategy. The optimization results of Baotu Spring in northern China show that the newly developed model is a promising tool to find the optimal groundwater extraction strategies which can protect springs while maximizing the extraction of groundwater resources in a spring field. Springs are the natural discharge points of groundwater. They are of considerable value for drinking water supply and some springs are of historical and tourism value. However, increasing industrial and urban expansion has led to serious problems of overdraft of groundwater resources, which in turn had caused the disappearance of springs globally. Thus, the protection of springs while at the same time allowing for the use of local groundwater resources is an important task of water resources management. In this study, we propose a new multi-objective simulation and optimization (S/O) model to find an optimal extraction strategy which balances the competitive relationship between spring outflow and groundwater extraction. In the newly developed model, the extraction rates of different groundwater wells are taken as the decision variables, and maximization of groundwater extraction and maximization of spring outflow are taken as the two objective functions. Baotu Spring which is located in northern China has been famous since the Shang Dynasty (1600 BCE). However, Baotu Spring has been drying up since the 1990s due to over extraction of the local groundwater. Thus, we take Baotu Spring as a case study to demonstrate the applicability of the newly developed model. Simultaneously, a multi-objective evolutionary algorithm (MOEA), the multi-objective fast harmony search algorithm (MOFHS) which is coupled with the commonly used groundwater flow code MODFLOW, is adopted to search the Pareto optimal solutions (the optimal extraction strategies). The optimization results of Baotu Spring field during the management period from July 2013 to June 2014 show that more groundwater resources could be extracted without threatening the sustainable outflow of Baotu Spring and Black Tiger Spring. The optimization results for different hydrological years show that climate variability (mainly in precipitation) is an important factor when choosing the optimal extraction strategy. The optimization results of Baotu Spring in northern China show that the newly developed model is a promising tool to find the optimal groundwater extraction strategies which can protect springs while maximizing the extraction of groundwater resources in a spring field. |
| ArticleNumber | 124498 |
| Author | Chang, Xing Yang, Yun Luo, Qiankun Ma, Lei Li, Fulin Wang, Xiuxuan Wu, Jianfeng Qian, Jiazhong |
| Author_xml | – sequence: 1 givenname: Qiankun surname: Luo fullname: Luo, Qiankun email: QKLuo@hfut.edu.cn organization: School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China – sequence: 2 givenname: Yun surname: Yang fullname: Yang, Yun organization: Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, China – sequence: 3 givenname: Jiazhong surname: Qian fullname: Qian, Jiazhong organization: School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China – sequence: 4 givenname: Xiuxuan surname: Wang fullname: Wang, Xiuxuan organization: School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China – sequence: 5 givenname: Xing surname: Chang fullname: Chang, Xing organization: School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China – sequence: 6 givenname: Lei surname: Ma fullname: Ma, Lei organization: School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China – sequence: 7 givenname: Fulin surname: Li fullname: Li, Fulin organization: Water Conservancy Research Institute of Shandong Province, Jinan 250013, China – sequence: 8 givenname: Jianfeng surname: Wu fullname: Wu, Jianfeng organization: Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, China |
| BookMark | eNqFkD1PBCEQhonRxPPjJ5hQ2uzJAssdsTDG-JWYWKixJCwMJ5c9UGA1_nu5rJWN08wU87yZeQ7QbogBEDppybwlrThbz9dv3zbFYU5JK-ct5Vwud9CsXS5kQxdksYtmhFDatELyfXSQ85rUYozP0OvTe_Jhhd9TLGCKjwHrYHEec9E-6H4AvNFBr2ADoeDo8CrFMdgvXSDhBDmOyUDGvmI4T1HOw2CP0J7TQ4bj336IXm6un6_umofH2_ury4dGM9GVhnIrGSXUaGFk52wvKadCUy5cT1kve-ocs7x3gghuGFBwXWelEXZRZ7pkh-h0yq0PfIyQi9r4bGAYdIA4ZkU5IVwsBZN1tZtWTYo5J3Cq3rvR6Vu1RG1FqrX6Fam2ItUksnLnfzjji96qKkn74V_6YqKhWvj0kFQ2HoIB61MVrmz0_yT8AMRIloU |
| CitedBy_id | crossref_primary_10_1007_s10040_023_02627_4 crossref_primary_10_1007_s12517_021_08410_7 crossref_primary_10_1016_j_jhydrol_2022_127677 crossref_primary_10_1016_j_jhydrol_2025_133634 crossref_primary_10_3390_w16060829 crossref_primary_10_3390_su16156580 crossref_primary_10_1080_19475705_2024_2433115 crossref_primary_10_1016_j_jhydrol_2024_131370 crossref_primary_10_1016_j_scitotenv_2020_141430 crossref_primary_10_1016_j_jhydrol_2024_132661 crossref_primary_10_1038_s41598_022_08744_6 crossref_primary_10_1007_s10040_021_02398_w crossref_primary_10_2166_ws_2023_309 crossref_primary_10_1007_s42241_022_0024_5 crossref_primary_10_2166_ws_2023_179 crossref_primary_10_3390_ijerph19116610 crossref_primary_10_3389_frwa_2025_1636613 crossref_primary_10_3390_land13030361 crossref_primary_10_1007_s11356_022_20380_1 crossref_primary_10_1007_s11356_020_11353_3 crossref_primary_10_26599_JGSE_2025_9280052 crossref_primary_10_1016_j_gsd_2023_100927 crossref_primary_10_1016_j_jhydrol_2021_126258 crossref_primary_10_1016_j_jhydrol_2022_128637 crossref_primary_10_3389_feart_2023_1270063 crossref_primary_10_3390_w15223899 crossref_primary_10_1016_j_chemosphere_2023_139013 crossref_primary_10_1016_j_jhydrol_2020_125427 crossref_primary_10_1016_j_jhydrol_2023_129904 |
| Cites_doi | 10.1007/s00254-005-1311-5 10.1007/s10040-006-0061-0 10.1016/S0309-1708(01)00020-3 10.1061/(ASCE)0733-9496(2004)130:2(140) 10.1007/s11269-015-0914-1 10.1016/j.jconhyd.2017.03.004 10.2166/hydro.2016.006 10.1016/j.advwatres.2012.01.005 10.1002/2015WR017349 10.1029/2000WR900232 10.1016/j.jhydrol.2003.09.007 10.1016/S0022-1694(01)00535-2 10.1016/j.advwatres.2008.01.017 10.1007/s10040-012-0900-0 10.5194/hess-22-4771-2018 10.1007/s100400000080 10.1016/j.envsoft.2018.11.018 10.1016/j.envsoft.2014.09.013 10.1016/j.jhydrol.2013.03.022 10.1007/s002540050330 10.1109/4235.996017 10.1016/j.envsoft.2005.12.021 10.1016/j.jhydrol.2014.10.023 10.1016/j.jhydrol.2017.10.041 10.1029/2005WR004436 10.3133/ofr96486 10.1016/j.jhydrol.2017.06.011 10.5194/piahs-379-263-2018 10.30638/eemj.2016.139 10.1061/(ASCE)HE.1943-5584.0001510 10.1007/s10040-011-0725-2 |
| ContentType | Journal Article |
| Copyright | 2019 |
| Copyright_xml | – notice: 2019 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2019.124498 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| ExternalDocumentID | 10_1016_j_jhydrol_2019_124498 S0022169419312338 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a365t-24d93202ca6c95fdb92426a246fb23b9b2ff3d4bf6064c3e2ef55d9c6d7e2e283 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517663700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Sun Nov 09 09:54:22 EST 2025 Sat Nov 29 06:57:41 EST 2025 Tue Nov 18 22:25:24 EST 2025 Fri Feb 23 02:47:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Groundwater management Simulation and optimization Multi-objective optimization Spring protection MOFHS Baotu Spring |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a365t-24d93202ca6c95fdb92426a246fb23b9b2ff3d4bf6064c3e2ef55d9c6d7e2e283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2400468639 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2400468639 crossref_primary_10_1016_j_jhydrol_2019_124498 crossref_citationtrail_10_1016_j_jhydrol_2019_124498 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_124498 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Harbaugh, A.W., McDonald, M.G, 1996. Programmer's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report, pp. 96–486. Gao (b0035) 2016 Javadi, Hussain, Sherif, Farmani (b0045) 2015; 29 JWRB (Jinan Water Resources Bureau) and JURWAB (Jinan Urban and Rural Water Affairs Bureau), 2017. Water Resources Bulletin of Jinan. Luo, Wang, Zhu (b0085) 2011; 38 Richey, Thomas, Lo, Reager, Famiglietti, Voss, Swenson, Rodell (b0165) 2015; 51 Yang, Wu, Sun, Wu, Zheng (b0210) 2013; 490 Kollat, Reed, Kasprzyk (b0070) 2008; 31 Oraseanu, Mather (b0120) 2000; 8 Obolewski, Strzelczak, Glińska-Lewczuk, Osadowski, Astel, Timofte (b0115) 2016; 15 Qian, Zhan, Wu, Li, Wang (b0130) 2006; 14 JURWAB (Jinan Urban and Rural Water Affairs Bureau), 2008. Investigation and Evaluation of Groundwater Resources in Jinan City. Rajabi, Ketabchi (b0135) 2017; 555 Dev (b0020) 1995 Wang, Duan, Gao, Fred, Zhou, Li (b0195) 2009; 5 Wu, Xu (b0200) 2005; 48 Birk, Liedl, Sauter (b0010) 2004; 286 Deb, Pratap, Agarwal, Meyarivan (b0015) 2002; 6 Maier, Kapelan, Kasprzyk, Kollat, Matott, Cunha, Dancy, Gibbs, Keedwell, Marchi, Ostfeld, Savic, Solomatine, Vrugt, Zecchin, Minsker, Barbour, Kuczera, Pasha, Castelletti, Giuliani, Reed (b0105) 2014; 62 Rao (b0140) 1991 Yang, Wu, Luo, Zhang, Wu, Wang (b0205) 2017; 22 Sadeghi-Tabas, Samadi, Akbarpour, Pourreza-Bilonbi (b0170) 2017; 19 Labat, Mangin, Ababou (b0075) 2002; 256 Reed, Kollat, Devireddy (b0155) 2007; 22 Zhang, Liu, Zhang, Zhang (b0215) 2017; 128 Luo, Wu, Yang, Qian, Wu (b0095) 2014; 519 Sato, M., Ohara, K., Ono, K., Mori, Y., Osato, K., Okabe, T., Nakata, H., Yanagisawa, N., Muraoka, H., 2015. Development of Micro Grid Kalina Cycle System – The First Demonstration Plant in Hot Spring Area in Japan. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April. Maier, Razavi, Kapelan, Matott, Kasprzyk, Tolson (b0110) 2019; 114 Singh, Minsker (b0180) 2008; 44 Alizadeh, Nikoo, Rakhshandehroo (b0005) 2017; 551 Sun, Peng (b0185) 2014; 33 Luo, Wu, Sun, Yang, Wu (b0090) 2012; 20 Reed, Minsker, Valocchi (b0150) 2000; 36 Kang, Jin, Qin (b0060) 2011; 19 Liu, Hu, Sun (b0080) 2018; 379 Reed, Hadaka, Herman, Kasprzyk, Kollat (b0160) 2013; 51 Elhatip, Günay (b0030) 1998; 36 Reed, Minsker (b0145) 2004; 130 Ouyang, Lu, Hou, Zhang, Li, Luo (b0125) 2017; 200 Erickson, Mayer, Horn (b0025) 2002; 25 Khosraxi, Panahi, Bui (b0065) 2018; 22 Wang, Zhang (b0190) 1999; 39 Alizadeh (10.1016/j.jhydrol.2019.124498_b0005) 2017; 551 Obolewski (10.1016/j.jhydrol.2019.124498_b0115) 2016; 15 Elhatip (10.1016/j.jhydrol.2019.124498_b0030) 1998; 36 Kang (10.1016/j.jhydrol.2019.124498_b0060) 2011; 19 Maier (10.1016/j.jhydrol.2019.124498_b0105) 2014; 62 10.1016/j.jhydrol.2019.124498_b0040 Sadeghi-Tabas (10.1016/j.jhydrol.2019.124498_b0170) 2017; 19 Reed (10.1016/j.jhydrol.2019.124498_b0145) 2004; 130 Zhang (10.1016/j.jhydrol.2019.124498_b0215) 2017; 128 Gao (10.1016/j.jhydrol.2019.124498_b0035) 2016 Rao (10.1016/j.jhydrol.2019.124498_b0140) 1991 Singh (10.1016/j.jhydrol.2019.124498_b0180) 2008; 44 Yang (10.1016/j.jhydrol.2019.124498_b0205) 2017; 22 10.1016/j.jhydrol.2019.124498_b0175 10.1016/j.jhydrol.2019.124498_b0055 Liu (10.1016/j.jhydrol.2019.124498_b0080) 2018; 379 Richey (10.1016/j.jhydrol.2019.124498_b0165) 2015; 51 Wang (10.1016/j.jhydrol.2019.124498_b0195) 2009; 5 Ouyang (10.1016/j.jhydrol.2019.124498_b0125) 2017; 200 Luo (10.1016/j.jhydrol.2019.124498_b0095) 2014; 519 Wang (10.1016/j.jhydrol.2019.124498_b0190) 1999; 39 Erickson (10.1016/j.jhydrol.2019.124498_b0025) 2002; 25 Javadi (10.1016/j.jhydrol.2019.124498_b0045) 2015; 29 Labat (10.1016/j.jhydrol.2019.124498_b0075) 2002; 256 Luo (10.1016/j.jhydrol.2019.124498_b0085) 2011; 38 Birk (10.1016/j.jhydrol.2019.124498_b0010) 2004; 286 10.1016/j.jhydrol.2019.124498_b0050 Oraseanu (10.1016/j.jhydrol.2019.124498_b0120) 2000; 8 Khosraxi (10.1016/j.jhydrol.2019.124498_b0065) 2018; 22 Rajabi (10.1016/j.jhydrol.2019.124498_b0135) 2017; 555 Kollat (10.1016/j.jhydrol.2019.124498_b0070) 2008; 31 Sun (10.1016/j.jhydrol.2019.124498_b0185) 2014; 33 Deb (10.1016/j.jhydrol.2019.124498_b0015) 2002; 6 Reed (10.1016/j.jhydrol.2019.124498_b0160) 2013; 51 Luo (10.1016/j.jhydrol.2019.124498_b0090) 2012; 20 Reed (10.1016/j.jhydrol.2019.124498_b0150) 2000; 36 Yang (10.1016/j.jhydrol.2019.124498_b0210) 2013; 490 Dev (10.1016/j.jhydrol.2019.124498_b0020) 1995 Qian (10.1016/j.jhydrol.2019.124498_b0130) 2006; 14 Maier (10.1016/j.jhydrol.2019.124498_b0110) 2019; 114 Reed (10.1016/j.jhydrol.2019.124498_b0155) 2007; 22 Wu (10.1016/j.jhydrol.2019.124498_b0200) 2005; 48 |
| References_xml | – reference: Harbaugh, A.W., McDonald, M.G, 1996. Programmer's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report, pp. 96–486. – volume: 8 start-page: 379 year: 2000 end-page: 389 ident: b0120 article-title: Karst hydrogeology and origin of thermal waters in the Codru Moma Mountains, Romainia publication-title: Hydrog. J. – volume: 33 start-page: 271 year: 2014 end-page: 279 ident: b0185 article-title: Boundary condition, water cycle and water environment changes in the Jinan spring region publication-title: Carsol. Ainica – volume: 44 start-page: W02404 year: 2008 ident: b0180 article-title: Uncertainty-based multi-objective optimization of groundwater remediation design publication-title: Water Resour. Res. – volume: 551 start-page: 540 year: 2017 end-page: 554 ident: b0005 article-title: Hydro-environmental management of groundwater resources: a fuzzy-based multi-objective compromise approach publication-title: J. Hydro. – volume: 22 start-page: 683 year: 2007 end-page: 692 ident: b0155 article-title: Using interactive archives in evolutionary multi-objective optimization: a case study for long-term groundwater monitoring design publication-title: Enviro. Model. Softw. – volume: 15 start-page: 1281 year: 2016 end-page: 1291 ident: b0115 article-title: Ecohydrological relationship between benthic communities and environmental conditions in the spring area publication-title: Environ. Eng. Manag. J. – volume: 29 start-page: 1843 year: 2015 end-page: 1857 ident: b0045 article-title: Multi-objective optimization of different management scenarios to control seawater intrusion in coastal aquifers publication-title: Water Resour. Manage. – reference: Sato, M., Ohara, K., Ono, K., Mori, Y., Osato, K., Okabe, T., Nakata, H., Yanagisawa, N., Muraoka, H., 2015. Development of Micro Grid Kalina Cycle System – The First Demonstration Plant in Hot Spring Area in Japan. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April. – volume: 490 start-page: 56 year: 2013 end-page: 73 ident: b0210 article-title: A niched Pareto tabu search for multi-objective optimal design of groundwater remediation systems publication-title: J. Hydro. – volume: 31 start-page: 828 year: 2008 end-page: 845 ident: b0070 article-title: A new epsilon-dominance hierarchical bayesian optimization algorithm for large multiobjective monitoring network design problems publication-title: Adv. Water Resour. – volume: 128 year: 2017 ident: b0215 article-title: Study on dynamic relationship of spring water in Jinan spring area based on gray relational analysis publication-title: IOP Conf. Series: Earth Environ. Sci. – year: 2016 ident: b0035 article-title: Geochemical Evolution of Niangziguan Karst Water System in Shanxi Province, Northern China – volume: 379 start-page: 263 year: 2018 end-page: 268 ident: b0080 article-title: Analysis of spring flow change in the Jinan city under influences of recent human activities publication-title: Proc. IAHS – volume: 48 start-page: 551 year: 2005 end-page: 558 ident: b0200 article-title: A three-dimensional model and its potential application to spring protection publication-title: Environ. Geol. – volume: 256 start-page: 176 year: 2002 end-page: 195 ident: b0075 article-title: Rainfall-runoff relations for karstic springs: multifractal analyses publication-title: J. Hydro. – volume: 130 start-page: 140 year: 2004 end-page: 149 ident: b0145 article-title: Striking the balance: long-term groundwater monitoring design for conflicting objectives publication-title: J. Water Resour. Plann. Manage. – year: 1991 ident: b0140 article-title: Optimization Theory and Application – volume: 19 start-page: 97 year: 2017 end-page: 114 ident: b0170 article-title: Sustainable groundwater modeling using single- and multi-objective optimization algorithms publication-title: J. Hydroinform. – volume: 14 start-page: 1192 year: 2006 end-page: 1205 ident: b0130 article-title: Fractured-karst spring-flow protections: a case study in Jinan publication-title: China. Hydroge. J. – volume: 38 start-page: 15 year: 2011 end-page: 19 ident: b0085 article-title: Fast harmony search algorithm and its application to hydrogeological parameters identification (in Chinese with English abstract) publication-title: Hydrog. Eng. Geol. – volume: 519 start-page: 3305 year: 2014 end-page: 3315 ident: b0095 article-title: Optimal design of groundwater remediation system using a probabilistic multi-objective fast harmony search algorithm under uncertainty publication-title: J. Hydrol. – volume: 20 start-page: 1497 year: 2012 end-page: 1510 ident: b0090 article-title: Optimal design of a groundwater remediation system using a multi-objective fast harmony search algorithm publication-title: Hydrog. J. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0015 article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. – volume: 114 start-page: 195 year: 2019 end-page: 213 ident: b0110 article-title: Introductory overview: optimization using evolutionary algorithms and other metaheuristics publication-title: Environ. Model. Softw. – volume: 51 start-page: 438 year: 2013 end-page: 456 ident: b0160 article-title: Evolutionary multi-objective optimization in water resources: the past, present, and future publication-title: Adv. Water Resour. – volume: 555 start-page: 518 year: 2017 end-page: 534 ident: b0135 article-title: Uncertainty-based simulation-optimization using Gaussian process emulation: application to coastal groundwater management publication-title: J. Hydro. – volume: 39 start-page: 689 year: 1999 end-page: 693 ident: b0190 article-title: Research on management model for Jinan fissure-karst water system publication-title: J. Dalian Univ. Technol. – volume: 36 start-page: 3731 year: 2000 end-page: 3741 ident: b0150 article-title: Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation publication-title: Water Resour. Res. – volume: 5 start-page: 53 year: 2009 end-page: 60 ident: b0195 article-title: Groundwater flow modelling in the Jinan karst spring area publication-title: Hydrog. Eng. Geol. – volume: 286 start-page: 179 year: 2004 end-page: 193 ident: b0010 article-title: Identification of localised recharge and conduit flow by combined analysis of hydraulic and physico-chemical spring responses (Urenbrunnen, SW-Germany) publication-title: J. Hydro. – volume: 25 start-page: 51 year: 2002 end-page: 65 ident: b0025 article-title: Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA) publication-title: Adv. Water Resour. – volume: 200 start-page: 15 year: 2017 end-page: 23 ident: b0125 article-title: Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method publication-title: J. Contam. Hydrol. – reference: JURWAB (Jinan Urban and Rural Water Affairs Bureau), 2008. Investigation and Evaluation of Groundwater Resources in Jinan City. – volume: 51 start-page: 5217 year: 2015 end-page: 5238 ident: b0165 article-title: Quantifying renewable groundwater stress with GRACE publication-title: Water Resour. Res. – reference: JWRB (Jinan Water Resources Bureau) and JURWAB (Jinan Urban and Rural Water Affairs Bureau), 2017. Water Resources Bulletin of Jinan. – year: 1995 ident: b0020 article-title: Optimization for Engineering Design: Algorithms and Examples – volume: 19 start-page: 851 year: 2011 end-page: 863 ident: b0060 article-title: Sustainable yield of a karst aquifer system: a case study of Jinan springs in northern China publication-title: Hydrogeo. J. – volume: 22 start-page: 4771 year: 2018 end-page: 4792 ident: b0065 article-title: Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization publication-title: Hydrol. Earth Syst. Sci. – volume: 62 start-page: 271 year: 2014 end-page: 299 ident: b0105 article-title: Evolutionary algorithm and other metaheuristics in water resources: current status, research challenges and future directions publication-title: Environ. Model. Softw. – volume: 22 start-page: 1084 year: 2017 end-page: 10699 ident: b0205 article-title: Effects of stochastic simulations on multiobjective optimization of groundwater remediation design under uncertainty publication-title: J. Hydrol. Eng. – volume: 36 start-page: 150 year: 1998 end-page: 158 ident: b0030 article-title: Karst hydrogeology of the Kas-Kalkan springs along the Mediterranean coast of Turkey publication-title: Environ. Geol. – volume: 48 start-page: 551 year: 2005 ident: 10.1016/j.jhydrol.2019.124498_b0200 article-title: A three-dimensional model and its potential application to spring protection publication-title: Environ. Geol. doi: 10.1007/s00254-005-1311-5 – volume: 14 start-page: 1192 issue: 7 year: 2006 ident: 10.1016/j.jhydrol.2019.124498_b0130 article-title: Fractured-karst spring-flow protections: a case study in Jinan publication-title: China. Hydroge. J. doi: 10.1007/s10040-006-0061-0 – volume: 128 year: 2017 ident: 10.1016/j.jhydrol.2019.124498_b0215 article-title: Study on dynamic relationship of spring water in Jinan spring area based on gray relational analysis publication-title: IOP Conf. Series: Earth Environ. Sci. – volume: 25 start-page: 51 issue: 1 year: 2002 ident: 10.1016/j.jhydrol.2019.124498_b0025 article-title: Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA) publication-title: Adv. Water Resour. doi: 10.1016/S0309-1708(01)00020-3 – volume: 130 start-page: 140 issue: 2 year: 2004 ident: 10.1016/j.jhydrol.2019.124498_b0145 article-title: Striking the balance: long-term groundwater monitoring design for conflicting objectives publication-title: J. Water Resour. Plann. Manage. doi: 10.1061/(ASCE)0733-9496(2004)130:2(140) – volume: 29 start-page: 1843 year: 2015 ident: 10.1016/j.jhydrol.2019.124498_b0045 article-title: Multi-objective optimization of different management scenarios to control seawater intrusion in coastal aquifers publication-title: Water Resour. Manage. doi: 10.1007/s11269-015-0914-1 – year: 2016 ident: 10.1016/j.jhydrol.2019.124498_b0035 – volume: 200 start-page: 15 year: 2017 ident: 10.1016/j.jhydrol.2019.124498_b0125 article-title: Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2017.03.004 – volume: 19 start-page: 97 issue: 1 year: 2017 ident: 10.1016/j.jhydrol.2019.124498_b0170 article-title: Sustainable groundwater modeling using single- and multi-objective optimization algorithms publication-title: J. Hydroinform. doi: 10.2166/hydro.2016.006 – volume: 51 start-page: 438 year: 2013 ident: 10.1016/j.jhydrol.2019.124498_b0160 article-title: Evolutionary multi-objective optimization in water resources: the past, present, and future publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.01.005 – year: 1995 ident: 10.1016/j.jhydrol.2019.124498_b0020 – year: 1991 ident: 10.1016/j.jhydrol.2019.124498_b0140 – volume: 51 start-page: 5217 year: 2015 ident: 10.1016/j.jhydrol.2019.124498_b0165 article-title: Quantifying renewable groundwater stress with GRACE publication-title: Water Resour. Res. doi: 10.1002/2015WR017349 – ident: 10.1016/j.jhydrol.2019.124498_b0055 – volume: 36 start-page: 3731 issue: 12 year: 2000 ident: 10.1016/j.jhydrol.2019.124498_b0150 article-title: Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation publication-title: Water Resour. Res. doi: 10.1029/2000WR900232 – volume: 286 start-page: 179 year: 2004 ident: 10.1016/j.jhydrol.2019.124498_b0010 article-title: Identification of localised recharge and conduit flow by combined analysis of hydraulic and physico-chemical spring responses (Urenbrunnen, SW-Germany) publication-title: J. Hydro. doi: 10.1016/j.jhydrol.2003.09.007 – volume: 5 start-page: 53 year: 2009 ident: 10.1016/j.jhydrol.2019.124498_b0195 article-title: Groundwater flow modelling in the Jinan karst spring area publication-title: Hydrog. Eng. Geol. – volume: 256 start-page: 176 year: 2002 ident: 10.1016/j.jhydrol.2019.124498_b0075 article-title: Rainfall-runoff relations for karstic springs: multifractal analyses publication-title: J. Hydro. doi: 10.1016/S0022-1694(01)00535-2 – volume: 31 start-page: 828 year: 2008 ident: 10.1016/j.jhydrol.2019.124498_b0070 article-title: A new epsilon-dominance hierarchical bayesian optimization algorithm for large multiobjective monitoring network design problems publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2008.01.017 – volume: 20 start-page: 1497 issue: 8 year: 2012 ident: 10.1016/j.jhydrol.2019.124498_b0090 article-title: Optimal design of a groundwater remediation system using a multi-objective fast harmony search algorithm publication-title: Hydrog. J. doi: 10.1007/s10040-012-0900-0 – volume: 22 start-page: 4771 year: 2018 ident: 10.1016/j.jhydrol.2019.124498_b0065 article-title: Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-4771-2018 – volume: 8 start-page: 379 issue: 4 year: 2000 ident: 10.1016/j.jhydrol.2019.124498_b0120 article-title: Karst hydrogeology and origin of thermal waters in the Codru Moma Mountains, Romainia publication-title: Hydrog. J. doi: 10.1007/s100400000080 – volume: 114 start-page: 195 year: 2019 ident: 10.1016/j.jhydrol.2019.124498_b0110 article-title: Introductory overview: optimization using evolutionary algorithms and other metaheuristics publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2018.11.018 – volume: 62 start-page: 271 year: 2014 ident: 10.1016/j.jhydrol.2019.124498_b0105 article-title: Evolutionary algorithm and other metaheuristics in water resources: current status, research challenges and future directions publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.09.013 – volume: 39 start-page: 689 issue: 5 year: 1999 ident: 10.1016/j.jhydrol.2019.124498_b0190 article-title: Research on management model for Jinan fissure-karst water system publication-title: J. Dalian Univ. Technol. – volume: 490 start-page: 56 year: 2013 ident: 10.1016/j.jhydrol.2019.124498_b0210 article-title: A niched Pareto tabu search for multi-objective optimal design of groundwater remediation systems publication-title: J. Hydro. doi: 10.1016/j.jhydrol.2013.03.022 – ident: 10.1016/j.jhydrol.2019.124498_b0175 – volume: 36 start-page: 150 issue: 1–2 year: 1998 ident: 10.1016/j.jhydrol.2019.124498_b0030 article-title: Karst hydrogeology of the Kas-Kalkan springs along the Mediterranean coast of Turkey publication-title: Environ. Geol. doi: 10.1007/s002540050330 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.jhydrol.2019.124498_b0015 article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/4235.996017 – volume: 22 start-page: 683 year: 2007 ident: 10.1016/j.jhydrol.2019.124498_b0155 article-title: Using interactive archives in evolutionary multi-objective optimization: a case study for long-term groundwater monitoring design publication-title: Enviro. Model. Softw. doi: 10.1016/j.envsoft.2005.12.021 – volume: 33 start-page: 271 issue: 3 year: 2014 ident: 10.1016/j.jhydrol.2019.124498_b0185 article-title: Boundary condition, water cycle and water environment changes in the Jinan spring region publication-title: Carsol. Ainica – volume: 519 start-page: 3305 year: 2014 ident: 10.1016/j.jhydrol.2019.124498_b0095 article-title: Optimal design of groundwater remediation system using a probabilistic multi-objective fast harmony search algorithm under uncertainty publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.10.023 – volume: 555 start-page: 518 year: 2017 ident: 10.1016/j.jhydrol.2019.124498_b0135 article-title: Uncertainty-based simulation-optimization using Gaussian process emulation: application to coastal groundwater management publication-title: J. Hydro. doi: 10.1016/j.jhydrol.2017.10.041 – volume: 44 start-page: W02404 year: 2008 ident: 10.1016/j.jhydrol.2019.124498_b0180 article-title: Uncertainty-based multi-objective optimization of groundwater remediation design publication-title: Water Resour. Res. doi: 10.1029/2005WR004436 – ident: 10.1016/j.jhydrol.2019.124498_b0040 doi: 10.3133/ofr96486 – volume: 551 start-page: 540 year: 2017 ident: 10.1016/j.jhydrol.2019.124498_b0005 article-title: Hydro-environmental management of groundwater resources: a fuzzy-based multi-objective compromise approach publication-title: J. Hydro. doi: 10.1016/j.jhydrol.2017.06.011 – volume: 379 start-page: 263 year: 2018 ident: 10.1016/j.jhydrol.2019.124498_b0080 article-title: Analysis of spring flow change in the Jinan city under influences of recent human activities publication-title: Proc. IAHS doi: 10.5194/piahs-379-263-2018 – volume: 15 start-page: 1281 issue: 6 year: 2016 ident: 10.1016/j.jhydrol.2019.124498_b0115 article-title: Ecohydrological relationship between benthic communities and environmental conditions in the spring area publication-title: Environ. Eng. Manag. J. doi: 10.30638/eemj.2016.139 – volume: 22 start-page: 1084 issue: 8 year: 2017 ident: 10.1016/j.jhydrol.2019.124498_b0205 article-title: Effects of stochastic simulations on multiobjective optimization of groundwater remediation design under uncertainty publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0001510 – ident: 10.1016/j.jhydrol.2019.124498_b0050 – volume: 19 start-page: 851 issue: 4 year: 2011 ident: 10.1016/j.jhydrol.2019.124498_b0060 article-title: Sustainable yield of a karst aquifer system: a case study of Jinan springs in northern China publication-title: Hydrogeo. J. doi: 10.1007/s10040-011-0725-2 – volume: 38 start-page: 15 issue: 4 year: 2011 ident: 10.1016/j.jhydrol.2019.124498_b0085 article-title: Fast harmony search algorithm and its application to hydrogeological parameters identification (in Chinese with English abstract) publication-title: Hydrog. Eng. Geol. |
| SSID | ssj0000334 |
| Score | 2.4695208 |
| Snippet | [Display omitted]
•A new S/O model is developed for spring protection and groundwater management.•MOFHS is adopted to find the optimal solutions under changing... Springs are the natural discharge points of groundwater. They are of considerable value for drinking water supply and some springs are of historical and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 124498 |
| SubjectTerms | algorithms Baotu Spring case studies China climate drinking water drying groundwater groundwater extraction groundwater flow Groundwater management hydrologic models MOFHS Multi-objective optimization Simulation and optimization Spring protection springs (water) urbanization water supply wells |
| Title | Spring protection and sustainable management of groundwater resources in a spring field |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2019.124498 https://www.proquest.com/docview/2400468639 |
| Volume | 582 |
| WOSCitedRecordID | wos000517663700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELegQ4IXxKfY-JCREC9VSus4if1YoU6AqgJSJ7InK3ZstYWlXdtAx1_POXaSCm3aeOAlilxf2t79Yv98Pt8h9EYOEi0l0YGShgc0su-cznRgk52phEk1yFhVbCKZTFia8i8-bGxTlRNIioLtdnz1X00NbWBse3T2H8zdPBQa4B6MDlcwO1xvZHjnquv6BAx1tPFm76DUWRPyYqmiPddR5L8ymy1x7Z35VZBs1nWbtt0qyu0KFju7yNcujRNQ1eGZTbuQW4w1_oVxWTljvwIMv5cNEk-9m_q0bbI9KkzNs9-zpZ9QK1e_65rOy13psezdFLAmbeK09o4NDGJX0bgeeiNGuquepRicBZcO6M63sOgt3N-xsXjcC7QzWL1rP_ksjk_GYzEdpdO3q_PA1haze_C-0MptdECSiLMOOhh-HKWf2hk7DGmdVd7-xPak17tLv_kqDvPXbF5RlOkDdN9bBQ8dJh6iW7p4hO76Mvezi8fom8MGbrGBARt4Dxu4xQZeGryHDdxgA89BDDts4AobT9DJ8Wj6_kPgK2sEWRhH24DQHHh7n6gsVjwyueSWqWWExkaSUHJJjAlzKg0sb6kKNdEminKu4jyBe2CkT1GnWBb6GcKqLw2Fz3nY1zQ3oB2iGEwbHBai_b5KDhGtdSWUTztvq5_8EHV84UJ4FQurYuFUfIh6jdjK5V25ToDVhhCePDpSKABK14m-rg0nYHC1O2ZZoZflRtgAaxozYPFHN-jzHN1rkf8CdbbrUr9Ed9TP7XyzfuVB9wci2qAe |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spring+protection+and+sustainable+management+of+groundwater+resources+in+a+spring+field&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Luo%2C+Qiankun&rft.au=Yang%2C+Yun&rft.au=Qian%2C+Jiazhong&rft.au=Wang%2C+Xiuxuan&rft.date=2020-03-01&rft.issn=0022-1694&rft.volume=582+p.124498-&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.124498&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |