SchNetPack: A Deep Learning Toolbox For Atomistic Systems
SchNetPack is a toolbox for the development and application of deep neural networks that predict potential energy surfaces and other quantum-chemical properties of molecules and materials. It contains basic building blocks of atomistic neural networks, manages their training, and provides simple acc...
Saved in:
| Published in: | Journal of chemical theory and computation Vol. 15; no. 1; p. 448 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
08.01.2019
|
| ISSN: | 1549-9626, 1549-9626 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | SchNetPack is a toolbox for the development and application of deep neural networks that predict potential energy surfaces and other quantum-chemical properties of molecules and materials. It contains basic building blocks of atomistic neural networks, manages their training, and provides simple access to common benchmark datasets. This allows for an easy implementation and evaluation of new models. For now, SchNetPack includes implementations of (weighted) atom-centered symmetry functions and the deep tensor neural network SchNet, as well as ready-to-use scripts that allow one to train these models on molecule and material datasets. Based on the PyTorch deep learning framework, SchNetPack allows one to efficiently apply the neural networks to large datasets with millions of reference calculations, as well as parallelize the model across multiple GPUs. Finally, SchNetPack provides an interface to the Atomic Simulation Environment in order to make trained models easily accessible to researchers that are not yet familiar with neural networks. |
|---|---|
| AbstractList | SchNetPack is a toolbox for the development and application of deep neural networks that predict potential energy surfaces and other quantum-chemical properties of molecules and materials. It contains basic building blocks of atomistic neural networks, manages their training, and provides simple access to common benchmark datasets. This allows for an easy implementation and evaluation of new models. For now, SchNetPack includes implementations of (weighted) atom-centered symmetry functions and the deep tensor neural network SchNet, as well as ready-to-use scripts that allow one to train these models on molecule and material datasets. Based on the PyTorch deep learning framework, SchNetPack allows one to efficiently apply the neural networks to large datasets with millions of reference calculations, as well as parallelize the model across multiple GPUs. Finally, SchNetPack provides an interface to the Atomic Simulation Environment in order to make trained models easily accessible to researchers that are not yet familiar with neural networks. SchNetPack is a toolbox for the development and application of deep neural networks that predict potential energy surfaces and other quantum-chemical properties of molecules and materials. It contains basic building blocks of atomistic neural networks, manages their training, and provides simple access to common benchmark datasets. This allows for an easy implementation and evaluation of new models. For now, SchNetPack includes implementations of (weighted) atom-centered symmetry functions and the deep tensor neural network SchNet, as well as ready-to-use scripts that allow one to train these models on molecule and material datasets. Based on the PyTorch deep learning framework, SchNetPack allows one to efficiently apply the neural networks to large datasets with millions of reference calculations, as well as parallelize the model across multiple GPUs. Finally, SchNetPack provides an interface to the Atomic Simulation Environment in order to make trained models easily accessible to researchers that are not yet familiar with neural networks.SchNetPack is a toolbox for the development and application of deep neural networks that predict potential energy surfaces and other quantum-chemical properties of molecules and materials. It contains basic building blocks of atomistic neural networks, manages their training, and provides simple access to common benchmark datasets. This allows for an easy implementation and evaluation of new models. For now, SchNetPack includes implementations of (weighted) atom-centered symmetry functions and the deep tensor neural network SchNet, as well as ready-to-use scripts that allow one to train these models on molecule and material datasets. Based on the PyTorch deep learning framework, SchNetPack allows one to efficiently apply the neural networks to large datasets with millions of reference calculations, as well as parallelize the model across multiple GPUs. Finally, SchNetPack provides an interface to the Atomic Simulation Environment in order to make trained models easily accessible to researchers that are not yet familiar with neural networks. |
| Author | Nicoli, K A Müller, K-R Schütt, K T Kessel, P Gastegger, M Tkatchenko, A |
| Author_xml | – sequence: 1 givenname: K T orcidid: 0000-0001-8342-0964 surname: Schütt fullname: Schütt, K T organization: Machine Learning Group , Technische Universität Berlin , 10587 Berlin , Germany – sequence: 2 givenname: P surname: Kessel fullname: Kessel, P organization: Machine Learning Group , Technische Universität Berlin , 10587 Berlin , Germany – sequence: 3 givenname: M surname: Gastegger fullname: Gastegger, M organization: Machine Learning Group , Technische Universität Berlin , 10587 Berlin , Germany – sequence: 4 givenname: K A surname: Nicoli fullname: Nicoli, K A organization: Machine Learning Group , Technische Universität Berlin , 10587 Berlin , Germany – sequence: 5 givenname: A orcidid: 0000-0002-1012-4854 surname: Tkatchenko fullname: Tkatchenko, A organization: Physics and Materials Science Research Unit , University of Luxembourg , L-1511 Luxembourg , Luxembourg – sequence: 6 givenname: K-R surname: Müller fullname: Müller, K-R organization: Max-Planck-Institut für Informatik , Saarbrücken , Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30481453$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj81LwzAchoNM3IfePUmOXlrz1TTxNqZTYaiweS7Jr6l2tk1tMnD_vQMneHrfw8PD-07RqPOdQ-iSkpQSRm8MhHQLEVJlCdFEnaAJzYROtGRy9K-P0TSELSGcC8bP0JgToajI-ATpNXw8u_hq4PMWz_Gdcz1eOTN0dfeON9431n_jpR_wPPq2DrEGvN6H6Npwjk4r0wR3ccwZelvebxaPyerl4WkxXyWGSxETW0JeWZtXgknDqkoAiAwMSKOhVEaRjGVUCCMFtbokkFWUSCvBamWdyTWboetfbz_4r50LsTjsANc0pnN-FwpGuZKC5UQe0KsjurOtK4t-qFsz7Iu_u-wH9tRZbA |
| CitedBy_id | crossref_primary_10_1021_acs_jcim_5c00676 crossref_primary_10_1038_s41524_019_0181_4 crossref_primary_10_1021_acscentsci_3c00870 crossref_primary_10_3390_biom12091246 crossref_primary_10_1002_smtd_202300534 crossref_primary_10_1007_s10822_020_00346_6 crossref_primary_10_1039_D4CP00535J crossref_primary_10_1016_j_pecs_2025_101220 crossref_primary_10_1186_s13321_019_0391_2 crossref_primary_10_1016_j_cpc_2025_109701 crossref_primary_10_1039_D2CS00203E crossref_primary_10_1088_2632_2153_ad5074 crossref_primary_10_1038_s41467_020_19267_x crossref_primary_10_1109_MSP_2022_3153277 crossref_primary_10_1016_j_commatsci_2022_111612 crossref_primary_10_1016_j_cpc_2019_02_007 crossref_primary_10_1021_acs_jcim_5c00948 crossref_primary_10_1007_s10822_021_00409_2 crossref_primary_10_1016_j_mtcomm_2025_111997 crossref_primary_10_1038_s41467_024_48609_2 crossref_primary_10_1038_s41563_020_0777_6 crossref_primary_10_1063_5_0274240 crossref_primary_10_1002_aisy_202100014 crossref_primary_10_1038_s41524_022_00734_6 crossref_primary_10_1039_D1SC01542G crossref_primary_10_1039_D3NR00399J crossref_primary_10_1039_D3SC00841J crossref_primary_10_1016_j_compchemeng_2021_107599 crossref_primary_10_1038_s41467_022_28526_y crossref_primary_10_1038_s41570_020_0189_9 crossref_primary_10_1021_acs_jpclett_5c00952 crossref_primary_10_1016_j_commatsci_2024_112966 crossref_primary_10_1002_qua_26870 crossref_primary_10_1063_5_0155600 crossref_primary_10_1016_j_bpc_2022_106854 crossref_primary_10_1039_D4DD00265B crossref_primary_10_1088_2632_2153_ada220 crossref_primary_10_1002_jcc_70121 crossref_primary_10_1039_D4CY00763H crossref_primary_10_1073_pnas_2313023120 crossref_primary_10_1038_s43588_022_00391_1 crossref_primary_10_1088_2632_2153_abfe3f crossref_primary_10_1088_2632_2153_ad871d crossref_primary_10_1016_j_mser_2025_101050 crossref_primary_10_1063_5_0021915 crossref_primary_10_1038_s41524_021_00510_y crossref_primary_10_1038_s41557_022_00950_z crossref_primary_10_1063_5_0276133 crossref_primary_10_1002_jcc_70081 crossref_primary_10_1016_j_cpc_2022_108580 crossref_primary_10_1016_j_commatsci_2023_112535 crossref_primary_10_1088_1361_648X_ada106 crossref_primary_10_1038_s41524_022_00884_7 crossref_primary_10_3390_molecules26226761 crossref_primary_10_1063_5_0133023 crossref_primary_10_1016_j_chemphys_2021_111347 crossref_primary_10_1039_D4NH00487F crossref_primary_10_1016_j_mtcomm_2021_102294 crossref_primary_10_1038_s41570_022_00416_3 crossref_primary_10_1021_acs_jctc_4c01386 crossref_primary_10_1088_2632_2153_accd45 crossref_primary_10_1088_1361_6528_adf64b crossref_primary_10_1088_2632_2153_ad652c crossref_primary_10_1109_TMBMC_2020_3035383 crossref_primary_10_1021_acs_jctc_5c00340 crossref_primary_10_1039_D5CP01580D crossref_primary_10_1038_s41467_023_39214_w crossref_primary_10_1088_2752_5724_ac681d crossref_primary_10_1063_5_0253847 crossref_primary_10_1139_cjc_2023_0152 crossref_primary_10_1016_j_cpc_2025_109512 crossref_primary_10_1063_5_0159349 crossref_primary_10_1038_s41598_023_46382_8 crossref_primary_10_1038_s43246_022_00315_6 crossref_primary_10_1088_2632_2153_abba6f crossref_primary_10_1088_2632_2153_ab9c3e crossref_primary_10_1039_D5CP01632K crossref_primary_10_1021_acs_jctc_4c01792 crossref_primary_10_1016_j_chempr_2020_12_009 crossref_primary_10_1146_annurev_matsci_070218_010015 crossref_primary_10_1002_wcms_1558 crossref_primary_10_1021_acsomega_5c05634 crossref_primary_10_1039_D5CP02987B crossref_primary_10_1088_2632_2153_abfd96 crossref_primary_10_1186_s13321_021_00533_z crossref_primary_10_1002_advs_202302816 crossref_primary_10_1039_D4NR00017J crossref_primary_10_1007_s40843_023_2836_0 crossref_primary_10_1146_annurev_physchem_042018_052331 crossref_primary_10_1002_qua_27110 crossref_primary_10_3389_fchem_2023_1100210 crossref_primary_10_1021_acs_jcim_4c02441 crossref_primary_10_1038_s41524_022_00865_w crossref_primary_10_1111_jace_19934 crossref_primary_10_1002_qute_201900023 crossref_primary_10_1007_s10910_022_01334_x crossref_primary_10_1038_s41467_023_41343_1 crossref_primary_10_1039_D2ME00073C crossref_primary_10_1002_jcc_70053 crossref_primary_10_1002_jcc_27269 crossref_primary_10_1038_s41524_022_00807_6 crossref_primary_10_1016_j_cclet_2019_12_006 crossref_primary_10_1038_s42004_023_01045_7 crossref_primary_10_1371_journal_pone_0256990 crossref_primary_10_1016_j_commatsci_2021_110567 crossref_primary_10_1557_mrc_2019_107 crossref_primary_10_1021_acs_jctc_5c00085 crossref_primary_10_1038_s41524_022_00736_4 crossref_primary_10_1088_2632_2153_ac9955 crossref_primary_10_1039_D5CP00005J crossref_primary_10_1002_qua_70036 crossref_primary_10_1038_s41467_024_50407_9 crossref_primary_10_1016_j_commatsci_2024_113459 crossref_primary_10_1109_TPAMI_2021_3115452 crossref_primary_10_1016_j_csbj_2021_06_034 crossref_primary_10_1039_D4SC05655H crossref_primary_10_1016_j_cpc_2020_107206 crossref_primary_10_1063_5_0155760 crossref_primary_10_1039_D4DD00394B crossref_primary_10_1063_5_0244175 crossref_primary_10_1039_D4NR02114B crossref_primary_10_1021_acs_jctc_5c00996 crossref_primary_10_1088_2515_7655_ab2060 crossref_primary_10_1039_D5SC05579B crossref_primary_10_1002_pssb_202200553 crossref_primary_10_1016_j_mattod_2021_08_012 crossref_primary_10_1016_j_physrep_2021_08_002 crossref_primary_10_1039_D4CP04275A crossref_primary_10_1038_s41467_025_56481_x crossref_primary_10_3390_cryst14110930 crossref_primary_10_1038_s41578_020_00255_y crossref_primary_10_1088_2632_2153_ac191c crossref_primary_10_1002_aenm_201903242 crossref_primary_10_1016_j_compbiolchem_2022_107656 crossref_primary_10_1063_5_0227821 crossref_primary_10_1038_s41467_019_12875_2 crossref_primary_10_1088_1361_6404_ab7027 crossref_primary_10_1063_1_5126701 crossref_primary_10_1088_1361_651X_ad9d63 crossref_primary_10_1038_s41570_021_00278_1 crossref_primary_10_1038_s41467_024_48567_9 crossref_primary_10_1007_s40192_020_00179_z crossref_primary_10_1021_acs_jpca_5c02047 crossref_primary_10_1039_D5CP00373C crossref_primary_10_1063_5_0023697 crossref_primary_10_1016_j_rser_2025_115358 crossref_primary_10_1002_jcc_27327 crossref_primary_10_1063_5_0152215 crossref_primary_10_1029_2022GL100337 crossref_primary_10_1002_wcms_1645 crossref_primary_10_1016_j_cpc_2019_106913 crossref_primary_10_1063_5_0214754 crossref_primary_10_1186_s13321_025_01010_7 crossref_primary_10_1016_j_comptc_2023_114161 crossref_primary_10_1039_C9NR10687A crossref_primary_10_1016_j_inffus_2024_102923 crossref_primary_10_1038_s41524_019_0221_0 crossref_primary_10_1360_SSC_2024_0270 crossref_primary_10_1021_prechem_4c00060 crossref_primary_10_1038_s41524_025_01762_8 crossref_primary_10_1039_D2SC04056E crossref_primary_10_1088_2515_7639_ab8c2d crossref_primary_10_1016_j_joule_2022_08_008 crossref_primary_10_1103_PhysRevMaterials_6_063802 crossref_primary_10_1002_advs_202409009 crossref_primary_10_1016_j_coche_2019_02_008 crossref_primary_10_1073_pnas_2120333119 crossref_primary_10_1021_acs_jpcc_5c01790 crossref_primary_10_3390_computation11050095 crossref_primary_10_1063_5_0287366 crossref_primary_10_1088_2515_7639_ab084b crossref_primary_10_1088_2632_2153_ad4ae5 crossref_primary_10_1038_s41524_025_01523_7 crossref_primary_10_1038_s41467_023_36666_y crossref_primary_10_1016_j_micromeso_2024_113219 crossref_primary_10_3390_ma16072633 crossref_primary_10_1007_s11814_021_0869_2 crossref_primary_10_1016_j_scib_2025_07_007 crossref_primary_10_1088_2632_2153_ac6ec6 crossref_primary_10_1038_s41524_021_00650_1 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/acs.jctc.8b00908 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-9626 |
| ExternalDocumentID | 30481453 |
| Genre | Journal Article |
| GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABJNI ABMVS ABQRX ABUCX ACGFS ACIWK ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L DU5 EBS ED~ EJD F5P GGK GNL IH9 J9A JG~ NPM P2P RNS ROL UI2 VF5 VG9 W1F 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a364t-bdc7fbb7f426a2ff4cc45cac6a9cd8a80525144a641b9d0c5f106b6cb98bea792 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 335 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455558200040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-9626 |
| IngestDate | Fri Jul 11 07:52:23 EDT 2025 Thu Jan 02 23:05:26 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a364t-bdc7fbb7f426a2ff4cc45cac6a9cd8a80525144a641b9d0c5f106b6cb98bea792 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1012-4854 0000-0001-8342-0964 |
| PMID | 30481453 |
| PQID | 2138642706 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2138642706 pubmed_primary_30481453 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-08 |
| PublicationDateYYYYMMDD | 2019-01-08 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of chemical theory and computation |
| PublicationTitleAlternate | J Chem Theory Comput |
| PublicationYear | 2019 |
| SSID | ssj0033423 |
| Score | 2.6840625 |
| Snippet | SchNetPack is a toolbox for the development and application of deep neural networks that predict potential energy surfaces and other quantum-chemical... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 448 |
| Title | SchNetPack: A Deep Learning Toolbox For Atomistic Systems |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30481453 https://www.proquest.com/docview/2138642706 |
| Volume | 15 |
| WOSCitedRecordID | wos000455558200040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1qBd34ftQXEdxOO490kriRUi1uHApW6G5IbhLfM7Uzip9vMp3RlSC4yS4Qbm5yT-4J5yB0Jv1QCi1CD2KuPBIr5UlOA08aCHyjKqqqMpugScImEz6qG25F_a2yuROri1rl4Hrk3TCImMXK1I8vpm-ec41y7GptobGIWpGFMi6r6eSbRYicul2ll0qcCmXY0JS2rHUFFJ0nKKHDbN5xn_0OMKtCM1z_7xI30FoNMXF_nhObaEFnW2hl0Di7bSN-Cw-JLkcCns9xH19qPcW1zuo9Huf5i8w_8TCf4X6Zv1ZCzrgWNt9Bd8Or8eDaqy0UPBHFpPSkAmqkpMYWYhEaQwBIDwTEgoNiwvkZWMREREwCyZUPPWOfiDIGyZnUgvJwFy1leab3Eab25EeBoEoxRlTkW-AYisBGT7HY2FdLG502UUnt2hzvIDKdvxfpT1zaaG8e2nQ619JII6dXQ3rRwR9mH6JVC1d41QBhR6hl7AHVx2gZPsrHYnZS7b0dk9HNF6TAuOY |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SchNetPack%3A+A+Deep+Learning+Toolbox+For+Atomistic+Systems&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Sch%C3%BCtt%2C+K+T&rft.au=Kessel%2C+P&rft.au=Gastegger%2C+M&rft.au=Nicoli%2C+K+A&rft.date=2019-01-08&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=15&rft.issue=1&rft.spage=448&rft_id=info:doi/10.1021%2Facs.jctc.8b00908&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9626&client=summon |