Anisotropic tomography of the Cascadia subduction zone
The first P-wave tomography of 3-D azimuthal and radial anisotropy of the Cascadia subduction zone is determined by inverting local and teleseismic arrival-time data. Fast-velocity directions (FVDs) of azimuthal anisotropy in the crust are generally trench-parallel, reflecting N-S compression along...
Saved in:
| Published in: | Physics of the earth and planetary interiors Vol. 318; p. 106767 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.09.2021
|
| Subjects: | |
| ISSN: | 0031-9201, 1872-7395 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The first P-wave tomography of 3-D azimuthal and radial anisotropy of the Cascadia subduction zone is determined by inverting local and teleseismic arrival-time data. Fast-velocity directions (FVDs) of azimuthal anisotropy in the crust are generally trench-parallel, reflecting N-S compression along the Cascadia margin. Radial anisotropy (RAN) is negative (i.e., Vpv > Vph) in the crust and upper-mantle wedge beneath the Cascadia volcanoes and back-arc area, reflecting hot and wet upwelling flows associated with fluids from dehydration reactions of the young and warm Juan de Fuca plate that is subducting toward the northeast. Trench-parallel FVDs occur in the subducting slab under the forearc, suggesting that the gently-dipping slab may still keep its original anisotropy produced at the mid-ocean ridge and modified at the outer-rise before subduction. The slab and subslab mantle exhibit the same RAN pattern: positive RAN in the Cascadia forearc whereas negative RAN under the Cascadia volcanoes and the back-arc. This feature suggests that the slab and the subslab asthenosphere are strongly coupled, and subslab mantle flow is formed by entrainment of the asthenosphere with the overriding slab. In northern Cascadia, NE-SW FVDs occur in a prominent subslab low-velocity zone that also exhibits negative RAN, reflecting thermally buoyant mantle materials derived from nearby oceanic hotspots, which flow toward the northeast and gradually accumulate under northern Cascadia, resulting in decompression melting.
[Display omitted]
•The first P-wave anisotropic tomography of the Cascadia subduction zone.•Margin-parallel azimuthal anisotropy in the crust reflects N-S compression.•Subslab low-V zones reflect hot buoyant mantle material from close hotspots.•Subslab mantle flow is formed by entrainment of asthenosphere with the slab. |
|---|---|
| AbstractList | The first P-wave tomography of 3-D azimuthal and radial anisotropy of the Cascadia subduction zone is determined by inverting local and teleseismic arrival-time data. Fast-velocity directions (FVDs) of azimuthal anisotropy in the crust are generally trench-parallel, reflecting N-S compression along the Cascadia margin. Radial anisotropy (RAN) is negative (i.e., Vpv > Vph) in the crust and upper-mantle wedge beneath the Cascadia volcanoes and back-arc area, reflecting hot and wet upwelling flows associated with fluids from dehydration reactions of the young and warm Juan de Fuca plate that is subducting toward the northeast. Trench-parallel FVDs occur in the subducting slab under the forearc, suggesting that the gently-dipping slab may still keep its original anisotropy produced at the mid-ocean ridge and modified at the outer-rise before subduction. The slab and subslab mantle exhibit the same RAN pattern: positive RAN in the Cascadia forearc whereas negative RAN under the Cascadia volcanoes and the back-arc. This feature suggests that the slab and the subslab asthenosphere are strongly coupled, and subslab mantle flow is formed by entrainment of the asthenosphere with the overriding slab. In northern Cascadia, NE-SW FVDs occur in a prominent subslab low-velocity zone that also exhibits negative RAN, reflecting thermally buoyant mantle materials derived from nearby oceanic hotspots, which flow toward the northeast and gradually accumulate under northern Cascadia, resulting in decompression melting.
[Display omitted]
•The first P-wave anisotropic tomography of the Cascadia subduction zone.•Margin-parallel azimuthal anisotropy in the crust reflects N-S compression.•Subslab low-V zones reflect hot buoyant mantle material from close hotspots.•Subslab mantle flow is formed by entrainment of asthenosphere with the slab. |
| ArticleNumber | 106767 |
| Author | Hua, Yuanyuan Zhao, Dapeng |
| Author_xml | – sequence: 1 givenname: Dapeng surname: Zhao fullname: Zhao, Dapeng email: zhao@tohoku.ac.jp organization: Department of Geophysics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan – sequence: 2 givenname: Yuanyuan surname: Hua fullname: Hua, Yuanyuan email: huayuanyuan@gig.ac.cn organization: Department of Geophysics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan |
| BookMark | eNp9j81KAzEUhYNUsK2-gKt5gRmT3E5mAm5K8Q8KbnQd0uTGprSTIUmF-vTOUFcuurpw4DvnfjMy6UKHhNwzWjHKxMOu6rH3FaecDYFoRHNFpqxteNmArCdkSimwUnLKbsgspR2llAGHKRHLzqeQY-i9KXI4hK-o--2pCK7IWyxWOhltvS7ScWOPJvvQFT_D9C25dnqf8O7vzsnn89PH6rVcv7-8rZbrUoOAXDoKlluOwJFuQKKoxQJqlO3CSEMll5o6pwH4QjbM1nIj0DIwwjHklrUM5oSfe00MKUV0qo_-oONJMapGc7VTo7kazdXZfIDaf5DxWY-_56j9_jL6eEZxkPr2GFUyHjuD1kc0WdngL-G_Ztt18w |
| CitedBy_id | crossref_primary_10_1029_2024JB030275 crossref_primary_10_1016_j_pepi_2025_107316 crossref_primary_10_1016_j_jseaes_2021_105050 crossref_primary_10_1029_2024GC011500 crossref_primary_10_1029_2023GL105611 crossref_primary_10_1016_j_jseaes_2025_106627 crossref_primary_10_1139_cjes_2024_0020 crossref_primary_10_1016_j_jvolgeores_2023_107870 crossref_primary_10_1029_2022JB024757 crossref_primary_10_1016_j_jog_2023_101975 crossref_primary_10_1016_j_pepi_2022_106853 crossref_primary_10_1007_s10712_022_09764_7 crossref_primary_10_1029_2021JB022854 crossref_primary_10_1007_s11430_021_9876_y crossref_primary_10_1029_2022JB025484 crossref_primary_10_1016_j_epsl_2022_117388 crossref_primary_10_1016_j_tecto_2024_230272 crossref_primary_10_1029_2021JB022518 crossref_primary_10_1029_2023GL105527 crossref_primary_10_1016_j_tecto_2022_229329 crossref_primary_10_1029_2022JB024621 crossref_primary_10_1016_j_jsames_2024_105064 crossref_primary_10_1029_2022JB025976 crossref_primary_10_1007_s40515_025_00663_z crossref_primary_10_1038_s41598_022_26158_2 crossref_primary_10_1016_j_jvolgeores_2021_107441 |
| Cites_doi | 10.1016/j.epsl.2017.05.034 10.1029/2018JB016389 10.1146/annurev-earth-040610-133354 10.1029/2009JB006754 10.1145/355984.355989 10.1029/2019GC008512 10.1016/j.pepi.2013.10.003 10.1029/2010JB007448 10.1016/j.jog.2016.09.006 10.1016/j.gr.2015.05.008 10.1016/j.epsl.2010.07.015 10.2747/0020-6814.44.10.913 10.1111/j.1365-246X.1991.tb06724.x 10.1145/279232.279236 10.1016/j.gr.2012.08.004 10.1038/nature07376 10.1029/2019GL083437 10.1016/j.pepi.2019.106296 10.1016/j.epsl.2016.01.036 10.1029/94JB01149 10.1029/96GL00976 10.1016/S0012-821X(03)00263-2 10.1016/j.epsl.2015.01.010 10.1186/BF03352385 10.1111/j.1365-246X.2011.05231.x 10.1016/j.tecto.2012.02.008 10.1029/94JB01238 10.1093/gji/ggt086 10.1126/science.1062235 10.1016/j.earscirev.2021.103507 10.1029/2000GL011978 10.1038/s41561-021-00728-x 10.1029/2008GL034669 10.1002/2013JB010559 10.1029/98JB02140 10.1029/JB095iB05p06715 10.1016/j.epsl.2018.08.015 10.1002/2014JB011321 10.1002/2015JB012651 10.1029/95JB00516 10.1029/JB082i002p00277 10.1093/gji/ggx247 10.1016/j.epsl.2011.06.026 10.1016/j.epsl.2007.09.047 10.1785/gssrl.81.5.689 10.1029/2019EA000897 10.1029/2005JB004108 10.1002/grl.50525 10.1016/j.epsl.2019.115965 10.1016/j.tecto.2015.02.012 10.1126/science.266.5183.237 10.1002/2014JB011784 10.1029/2017JB015321 10.1093/gji/ggz051 10.1029/2018GL078700 10.1038/s41467-018-03655-5 10.1002/2016JB013831 10.1002/2017JB013983 10.1016/j.epsl.2010.06.047 10.1029/2018JB016639 10.1145/2049662.2049669 10.1016/j.pepi.2008.07.042 10.1029/2009GC002376 10.1111/j.1365-246X.2003.02044.x 10.1002/2014GC005267 10.1029/2003JB002718 10.1029/2018GL079518 10.1002/2013EO450001 10.1785/0120120355 10.1029/2018JB015873 10.1002/ggge.20275 10.1029/96JB00114 10.1016/j.pepi.2018.12.001 10.1029/2012GC004353 10.1016/j.epsl.2010.06.036 10.1029/93JB01227 10.1029/2018GL077436 10.1029/2012JB009602 10.1111/j.1365-246X.2007.03371.x 10.1126/science.aad8104 10.1038/ngeo2569 10.1146/annurev.earth.32.101802.120252 10.1016/j.epsl.2007.11.013 10.1093/gji/ggz339 10.1016/j.pepi.2012.04.004 10.1002/2017GC007064 10.1029/92JB00603 10.1038/375774a0 10.1016/j.pepi.2006.03.005 10.1029/2012JB009407 10.1146/annurev.earth.36.031207.124120 10.1111/j.1365-246X.1994.tb03974.x 10.1029/JZ070i014p03429 10.1016/j.lithos.2019.02.019 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors |
| Copyright_xml | – notice: 2021 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.pepi.2021.106767 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1872-7395 |
| ExternalDocumentID | 10_1016_j_pepi_2021_106767 S0031920121001254 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 5VS 6I. 7-5 71M 85H 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AETEA AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HME HVGLF HZ~ IHE IMUCA J1W KOM LY3 LZ4 M41 MO0 MZR N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SHN SPC SPCBC SPD SSE SSZ T5K T9H TN5 UNMZH WUQ XJT ZMT ZZE ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-a363t-f03d2d2e32e0b39e656435e984c9c0929a0ffa3324971d59b6ed13c6f1e2d1813 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000680296600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9201 |
| IngestDate | Tue Nov 18 22:03:35 EST 2025 Sat Nov 29 07:25:29 EST 2025 Fri Feb 23 02:47:03 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cascadia Volcano Earthquake Seismic anisotropy Seismic tomography Subduction zone Azimuthal anisotropy Radial anisotropy |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a363t-f03d2d2e32e0b39e656435e984c9c0929a0ffa3324971d59b6ed13c6f1e2d1813 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.pepi.2021.106767 |
| ParticipantIDs | crossref_primary_10_1016_j_pepi_2021_106767 crossref_citationtrail_10_1016_j_pepi_2021_106767 elsevier_sciencedirect_doi_10_1016_j_pepi_2021_106767 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Physics of the earth and planetary interiors |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Niu, Zhao, Li, Ruan (bb0300) 2016; 121 O'Hara, Karlstrom, Ramsey (bb0305) 2020; 48 Moschetti, Ritzwoller, Lin, Yang (bb0285) 2010; 115 Hyndman, Peacock (bb0185) 2003; 212 Martin-Short, Allen, Bastow, Totten, Richards (bb0260) 2015; 8 Verdonck, Zandt (bb0385) 1994; 99 Kennett, Engdahl (bb0215) 1991; 105 Wang, Zhao (bb0420) 2019; 295 Zhang, Karato (bb0460) 1995; 375 Huang, Zhao, Liu (bb0170) 2015; 120 Eakin, Obrebski, Allen, Boyarko, Brudzinski, Porritt (bb0095) 2010; 297 Fan, Zhao (bb0120) 2021; 14 Backus (bb0015) 1965; 70 McCrory, Blair, Waldhauser, Oppenheimer (bb0275) 2012; 117 Roth, Fouch, James, Carlson (bb0340) 2008; 35 Xue, Allen (bb0445) 2007; 264 Ishise, Kawakatsu, Morishige, Shiomi (bb0190) 2018; 45 Cassidy, Ellis, Karavas, Rogers (bb0070) 1998; 103 Crampin (bb0080) 1994; 118 Bostock, Christensen, Peacock (bb0050) 2019; 332 Gou, Zhao, Huang, Wang (bb0135) 2018; 123 Hearn (bb0155) 1996; 101 Gou, Zhao, Huang, Wang (bb0140) 2019; 124 Wang, Zhao (bb0410) 2013; 193 Wei, Zhao, Wei, Bai, Xu (bb0430) 2019; 20 Zhao, Hasegawa, Kanamori (bb0480) 1994; 99 Janiszewski, Gaherty, Abers, Gao, Eilon (bb0195) 2019; 217 Bodmer, Toomey, Hooft, Schmandt (bb0030) 2018; 45 Zhao (bb0470) 2021; 214 Aki, Christofferson, Husebye (bb0005) 1977; 82 Shen, Ritzwoller, Schulte-Pelkum (bb0360) 2013; 118 Zhang, Zhao, Ju, Li, Li, Ding, Chen, Zhao (bb0455) 2020; 47 Bodmer, Toomey, Hooft, Nabelek, Braunmiller (bb0025) 2015; 43 Tauzin, Bodin, Debayle, Perrillat, Reynard (bb0370) 2016; 440 Zhao (bb0465) 2015 Delph, Levander, Niu (bb0090) 2018; 45 Paige, Saunders (bb0310) 1982; 8 Tian, Zhao (bb0375) 2012; 200 Wagner, Fouch, James, Hanson-Hedgecock (bb0395) 2012; 13 Wang, Zhao (bb0425) 2019; 219 Morales, Nocedal (bb0280) 2011; 38 Currie, Cassidy, Hyndman (bb0085) 2001; 28 Hawley, Allen (bb0145) 2019; 46 Hua, Zhao, Xu (bb0160) 2017; 122 Schmidt, Grunder, Rowe (bb0355) 2008; 266 Balfour, Cassidy, Dosso (bb0020) 2012; 188 Burdick (bb0060) 2010; 81 Zhao, Hasegawa, Horiuchi (bb0475) 1992; 97 Wagner, Long (bb0390) 2013; 14 Chen, Zhao, Wu (bb0075) 2015; 647 Karato, Jung, Katayama, Skemer (bb0205) 2008; 36 Huang, Tilmann, Comte, Zhao (bb0175) 2019; 124 Pavlis, Sigloch, Burdick, Fouch, Vernon (bb0320) 2012; 532 Rieger, Park (bb0335) 2010; 115 Matharu, Bostock, Christensen, Tromp (bb0265) 2014; 119 Park, Yuan, Levin (bb0315) 2004; 109 Fan, Zhao (bb0115) 2019; 286 Furlong, Schwartz (bb0125) 2004; 32 Ramachandran, Hyndman, Brocher (bb0330) 2006; 111 Gao (bb0130) 2018; 9 Wessel, Smith, Scharroo, Luis, Wobbe (bb0435) 2013; 94 Bodmer, Toomey, Roering, Karlstrom (bb0035) 2020; 531 Yu, Zhao (bb0450) 2018; 123 Porritt, Allen, Boyarko, Brudzinski (bb0325) 2011; 309 Wang, Mulder, Rogers, Hyndman (bb0415) 1995; 100 Nikulin, Levin, Park (bb0295) 2009; 10 Liu, Gao (bb0230) 2013; 103 Cassidy, Bostock (bb0065) 1996; 23 Zhu, Byrd, Lu, Nocedal (bb0505) 1997; 23 Engdahl, Di Giacomo, Sakarya, Gkarlaouni, Harris, Storchak (bb0105) 2020; 7 Schmandt, Humphreys (bb0350) 2010; 297 Sleep (bb0365) 1990; 95 Huesca-Pérez, Ortega, Valenzuela (bb0180) 2017; 122 Zhao, Wang, Rogers, Peacock (bb0485) 2001; 53 Liu, Elsheikh, Lemnifi, Purevsuren, Ray, Refayee, Yang, Yu, Gao (bb0235) 2014; 15 Hawley, Allen, Richards (bb0150) 2016; 353 Long, Becker (bb0255) 2010; 297 Liu, Zhao (bb0245) 2017; 210 Wagner, Fouch, James, Long (bb0400) 2013; 40 Katayama, Karato (bb0210) 2006; 157 Lay, Garnero (bb0225) 2011; 39 Wilson (bb0440) 1993; 98 Liu, Zhao (bb0240) 2017; 473 Zhao, Yu, Liu (bb0495) 2016; 33 Bostock, Christensen (bb0040) 2012; 117 Zhao, Yamamoto, Yanada (bb0490) 2013; 23 Huang, Zhao (bb0165) 2013; 225 Long (bb0250) 2016; 102 Mullen, Weis (bb0290) 2015; 414 Zhou, Hu, Liu, Chaparro, Stegman, Faccenda (bb0500) 2018; 500 Savage (bb0345) 2002; 44 Trehu, Asudeh, Brocher, Luetgert, Mooney, Nabelek, Nakamura (bb0380) 1994; 266 Babuska, Cara (bb0010) 1991 Jung, Karato (bb0200) 2001; 293 Wang, Zhao (bb0405) 2008; 170 Faccenda, Burlini, Gerya, Mainprice (bb0110) 2008; 455 Krueger, Wirth (bb0220) 2017; 18 Eberhart-Phillips, Henderson (bb0100) 2004; 156 Buehler, Shearer (bb0055) 2014; 119 McCaffrey, Qamar, King, Wells, Khazaradze, Williams, Stevens, Vollick, Zwick (bb0270) 2007; 169 Paige (10.1016/j.pepi.2021.106767_bb0310) 1982; 8 McCrory (10.1016/j.pepi.2021.106767_bb0275) 2012; 117 Zhang (10.1016/j.pepi.2021.106767_bb0455) 2020; 47 McCaffrey (10.1016/j.pepi.2021.106767_bb0270) 2007; 169 Roth (10.1016/j.pepi.2021.106767_bb0340) 2008; 35 Shen (10.1016/j.pepi.2021.106767_bb0360) 2013; 118 Wilson (10.1016/j.pepi.2021.106767_bb0440) 1993; 98 Long (10.1016/j.pepi.2021.106767_bb0255) 2010; 297 Gao (10.1016/j.pepi.2021.106767_bb0130) 2018; 9 Martin-Short (10.1016/j.pepi.2021.106767_bb0260) 2015; 8 Pavlis (10.1016/j.pepi.2021.106767_bb0320) 2012; 532 Liu (10.1016/j.pepi.2021.106767_bb0235) 2014; 15 Wei (10.1016/j.pepi.2021.106767_bb0430) 2019; 20 Balfour (10.1016/j.pepi.2021.106767_bb0020) 2012; 188 Wang (10.1016/j.pepi.2021.106767_bb0420) 2019; 295 O'Hara (10.1016/j.pepi.2021.106767_bb0305) 2020; 48 Liu (10.1016/j.pepi.2021.106767_bb0230) 2013; 103 Huang (10.1016/j.pepi.2021.106767_bb0170) 2015; 120 Gou (10.1016/j.pepi.2021.106767_bb0140) 2019; 124 Burdick (10.1016/j.pepi.2021.106767_bb0060) 2010; 81 Krueger (10.1016/j.pepi.2021.106767_bb0220) 2017; 18 Porritt (10.1016/j.pepi.2021.106767_bb0325) 2011; 309 Savage (10.1016/j.pepi.2021.106767_bb0345) 2002; 44 Huang (10.1016/j.pepi.2021.106767_bb0175) 2019; 124 Currie (10.1016/j.pepi.2021.106767_bb0085) 2001; 28 Babuska (10.1016/j.pepi.2021.106767_bb0010) 1991 Bodmer (10.1016/j.pepi.2021.106767_bb0035) 2020; 531 Rieger (10.1016/j.pepi.2021.106767_bb0335) 2010; 115 Eberhart-Phillips (10.1016/j.pepi.2021.106767_bb0100) 2004; 156 Liu (10.1016/j.pepi.2021.106767_bb0245) 2017; 210 Eakin (10.1016/j.pepi.2021.106767_bb0095) 2010; 297 Wang (10.1016/j.pepi.2021.106767_bb0425) 2019; 219 Faccenda (10.1016/j.pepi.2021.106767_bb0110) 2008; 455 Zhu (10.1016/j.pepi.2021.106767_bb0505) 1997; 23 Schmandt (10.1016/j.pepi.2021.106767_bb0350) 2010; 297 Crampin (10.1016/j.pepi.2021.106767_bb0080) 1994; 118 Zhao (10.1016/j.pepi.2021.106767_bb0480) 1994; 99 Long (10.1016/j.pepi.2021.106767_bb0250) 2016; 102 Mullen (10.1016/j.pepi.2021.106767_bb0290) 2015; 414 Furlong (10.1016/j.pepi.2021.106767_bb0125) 2004; 32 Tauzin (10.1016/j.pepi.2021.106767_bb0370) 2016; 440 Fan (10.1016/j.pepi.2021.106767_bb0115) 2019; 286 Wang (10.1016/j.pepi.2021.106767_bb0410) 2013; 193 Zhao (10.1016/j.pepi.2021.106767_bb0475) 1992; 97 Bodmer (10.1016/j.pepi.2021.106767_bb0025) 2015; 43 Wagner (10.1016/j.pepi.2021.106767_bb0395) 2012; 13 Karato (10.1016/j.pepi.2021.106767_bb0205) 2008; 36 Cassidy (10.1016/j.pepi.2021.106767_bb0065) 1996; 23 Matharu (10.1016/j.pepi.2021.106767_bb0265) 2014; 119 Park (10.1016/j.pepi.2021.106767_bb0315) 2004; 109 Zhou (10.1016/j.pepi.2021.106767_bb0500) 2018; 500 Wagner (10.1016/j.pepi.2021.106767_bb0400) 2013; 40 Morales (10.1016/j.pepi.2021.106767_bb0280) 2011; 38 Xue (10.1016/j.pepi.2021.106767_bb0445) 2007; 264 Bostock (10.1016/j.pepi.2021.106767_bb0050) 2019; 332 Niu (10.1016/j.pepi.2021.106767_bb0300) 2016; 121 Hawley (10.1016/j.pepi.2021.106767_bb0145) 2019; 46 Zhao (10.1016/j.pepi.2021.106767_bb0490) 2013; 23 Buehler (10.1016/j.pepi.2021.106767_bb0055) 2014; 119 Trehu (10.1016/j.pepi.2021.106767_bb0380) 1994; 266 Nikulin (10.1016/j.pepi.2021.106767_bb0295) 2009; 10 Hua (10.1016/j.pepi.2021.106767_bb0160) 2017; 122 Zhao (10.1016/j.pepi.2021.106767_bb0465) 2015 Engdahl (10.1016/j.pepi.2021.106767_bb0105) 2020; 7 Hawley (10.1016/j.pepi.2021.106767_bb0150) 2016; 353 Katayama (10.1016/j.pepi.2021.106767_bb0210) 2006; 157 Verdonck (10.1016/j.pepi.2021.106767_bb0385) 1994; 99 Liu (10.1016/j.pepi.2021.106767_bb0240) 2017; 473 Gou (10.1016/j.pepi.2021.106767_bb0135) 2018; 123 Huang (10.1016/j.pepi.2021.106767_bb0165) 2013; 225 Wagner (10.1016/j.pepi.2021.106767_bb0390) 2013; 14 Zhang (10.1016/j.pepi.2021.106767_bb0460) 1995; 375 Sleep (10.1016/j.pepi.2021.106767_bb0365) 1990; 95 Wang (10.1016/j.pepi.2021.106767_bb0415) 1995; 100 Chen (10.1016/j.pepi.2021.106767_bb0075) 2015; 647 Zhao (10.1016/j.pepi.2021.106767_bb0470) 2021; 214 Janiszewski (10.1016/j.pepi.2021.106767_bb0195) 2019; 217 Moschetti (10.1016/j.pepi.2021.106767_bb0285) 2010; 115 Tian (10.1016/j.pepi.2021.106767_bb0375) 2012; 200 Zhao (10.1016/j.pepi.2021.106767_bb0495) 2016; 33 Ramachandran (10.1016/j.pepi.2021.106767_bb0330) 2006; 111 Lay (10.1016/j.pepi.2021.106767_bb0225) 2011; 39 Zhao (10.1016/j.pepi.2021.106767_bb0485) 2001; 53 Aki (10.1016/j.pepi.2021.106767_bb0005) 1977; 82 Ishise (10.1016/j.pepi.2021.106767_bb0190) 2018; 45 Hearn (10.1016/j.pepi.2021.106767_bb0155) 1996; 101 Bostock (10.1016/j.pepi.2021.106767_bb0040) 2012; 117 Kennett (10.1016/j.pepi.2021.106767_bb0215) 1991; 105 Schmidt (10.1016/j.pepi.2021.106767_bb0355) 2008; 266 Wessel (10.1016/j.pepi.2021.106767_bb0435) 2013; 94 Backus (10.1016/j.pepi.2021.106767_bb0015) 1965; 70 Bodmer (10.1016/j.pepi.2021.106767_bb0030) 2018; 45 Cassidy (10.1016/j.pepi.2021.106767_bb0070) 1998; 103 Yu (10.1016/j.pepi.2021.106767_bb0450) 2018; 123 Huesca-Pérez (10.1016/j.pepi.2021.106767_bb0180) 2017; 122 Jung (10.1016/j.pepi.2021.106767_bb0200) 2001; 293 Hyndman (10.1016/j.pepi.2021.106767_bb0185) 2003; 212 Fan (10.1016/j.pepi.2021.106767_bb0120) 2021; 14 Wang (10.1016/j.pepi.2021.106767_bb0405) 2008; 170 Delph (10.1016/j.pepi.2021.106767_bb0090) 2018; 45 |
| References_xml | – volume: 23 start-page: 550 year: 1997 end-page: 560 ident: bb0505 article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. – volume: 103 start-page: 26949 year: 1998 end-page: 26961 ident: bb0070 article-title: The northern limit of the subducted Juan de Fuca plate system publication-title: J. Geophys. Res. – volume: 119 start-page: 1200 year: 2014 end-page: 1219 ident: bb0055 article-title: Anisotropy and Vp/Vs in the uppermost mantle beneath the western United States from joint analysis of Pn and Sn phases publication-title: J. Geophys. Res. Solid Earth – volume: 266 start-page: 237 year: 1994 end-page: 243 ident: bb0380 article-title: Crustal architecture of the Cascadia forearc publication-title: Science – volume: 99 start-page: 23843 year: 1994 end-page: 23858 ident: bb0385 article-title: Three-dimensional crustal structure of the Mendocino triple junction region from local earthquake travel times publication-title: J. Geophys. Res. – volume: 188 start-page: 165 year: 2012 end-page: 176 ident: bb0020 article-title: Crustal anisotropy in the forearc of the Northern Cascadia subduction zone, British Columbia publication-title: Geophys. J. Int. – volume: 32 start-page: 403 year: 2004 end-page: 433 ident: bb0125 article-title: Influence of the Mendocino triple junction on the tectonics of coastal California publication-title: Annu. Rev. Earth Planet. Sci. – volume: 98 start-page: 16053 year: 1993 end-page: 16071 ident: bb0440 article-title: Confidence intervals for motion and deformation of the Juan de Fuca plate publication-title: J. Geophys. Res. – volume: 531 start-page: 115965 year: 2020 ident: bb0035 article-title: Asthenospheric buoyancy and the origin of high-relief topography along the Cascadia forearc publication-title: Earth Planet. Sci. Lett. – volume: 266 start-page: 166 year: 2008 end-page: 181 ident: bb0355 article-title: Segmentation of the Cascade arc as indicated by Sr and Nd isotopic variation among diverse primitive basalts publication-title: Earth Planet. Sci. Lett. – volume: 123 start-page: 4088 year: 2018 end-page: 4108 ident: bb0135 article-title: Anisotropic 3-D ray tracing and its application to Japan subduction zone publication-title: J. Geophys. Res. Solid Earth – volume: 7 year: 2020 ident: bb0105 article-title: ISC-EHB 1964–2016, an improved data set for studies of Earth structure and global seismicity publication-title: Earth Space Sci. – volume: 157 start-page: 33 year: 2006 end-page: 45 ident: bb0210 article-title: Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones publication-title: Phys. Earth Planet. Inter. – volume: 332 start-page: 55 year: 2019 end-page: 66 ident: bb0050 article-title: Seismicity in Cascadia publication-title: Lithos – volume: 33 start-page: 24 year: 2016 end-page: 43 ident: bb0495 article-title: Seismic anisotropy tomography: new insight into subduction dynamics publication-title: Gondwana Res. – volume: 102 start-page: 151 year: 2016 end-page: 170 ident: bb0250 article-title: The Cascadia paradox: mantle flow and slab fragmentation in the Cascadia subduction zone publication-title: J. Geodyn. – volume: 297 start-page: 341 year: 2010 end-page: 354 ident: bb0255 article-title: Mantle dynamics and seismic anisotropy publication-title: Earth Planet. Sci. Lett. – volume: 532 start-page: 82 year: 2012 end-page: 102 ident: bb0320 article-title: Unraveling the geometry of the Farallon plate: synthesis of three-dimensional imaging results from US Array publication-title: Tectonophys. – volume: 212 start-page: 417 year: 2003 end-page: 432 ident: bb0185 article-title: Serpentinization of the forearc mantle publication-title: Earth Planet. Sci. Lett. – volume: 115 year: 2010 ident: bb0335 article-title: USArray observations of quasi-love surface wave scattering: orienting anisotropy in the Cascadia plate boundary publication-title: J. Geophys. Res. Solid Earth – volume: 8 start-page: 965 year: 2015 end-page: 968 ident: bb0260 article-title: Mantle flow geometry from ridge to trench beneath the Gorda–Juan de Fuca plate system publication-title: Nat. Geosci. – volume: 117 year: 2012 ident: bb0040 article-title: Split from slip and schist: crustal anisotropy beneath northern Cascadia from non-volcanic tremor publication-title: J. Geophys. Res. – volume: 193 start-page: 1166 year: 2013 end-page: 1181 ident: bb0410 article-title: P-wave tomography for 3-D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones publication-title: Geophys. J. Int. – volume: 156 start-page: 237 year: 2004 end-page: 254 ident: bb0100 article-title: Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand publication-title: Geophys. J. Int. – volume: 297 start-page: 435 year: 2010 end-page: 445 ident: bb0350 article-title: Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle publication-title: Earth Planet. Sci. Lett. – volume: 10 year: 2009 ident: bb0295 article-title: Receiver function study of the Cascadia megathrust: evidence for localized serpentinization publication-title: Geochem. Geophys. Geosyst. – volume: 35 year: 2008 ident: bb0340 article-title: Three-dimensional seismic velocity structure of the northwestern United States publication-title: Geophys. Res. Lett. – volume: 81 start-page: 689 year: 2010 end-page: 693 ident: bb0060 article-title: Model update January 2010: upper mantle heterogeneity beneath North America from traveltime tomography with global and USArray transportable array data publication-title: Seismol. Res. Lett. – volume: 309 start-page: 67 year: 2011 end-page: 76 ident: bb0325 article-title: Investigation of Cascadia segmentation with ambient noise tomography publication-title: Earth Planet. Sci. Lett. – volume: 118 start-page: 428 year: 1994 end-page: 438 ident: bb0080 article-title: The fracture criticality of crustal rocks publication-title: Geophys. J. Int. – volume: 109 year: 2004 ident: bb0315 article-title: Subduction zone anisotropy beneath Corvallis, Oregon: a serpentinite skid mark of trench-parallel terrane migration? publication-title: J. Geophys. Res. Solid Earth – volume: 200 start-page: 72 year: 2012 end-page: 84 ident: bb0375 article-title: P-wave tomography of the western United States: insight into the Yellowstone hotspot and the Juan de Fuca slab publication-title: Phys. Earth Planet. Inter. – volume: 70 start-page: 3429 year: 1965 end-page: 3439 ident: bb0015 article-title: Possible forms of seismic anisotropy of the uppermost mantle under oceans publication-title: J. Geophys. Res. – volume: 23 start-page: 595 year: 2013 end-page: 616 ident: bb0490 article-title: Global mantle heterogeneity and its influence on teleseismic regional tomography publication-title: Gondwana Res. – volume: 46 start-page: 7386 year: 2019 end-page: 7394 ident: bb0145 article-title: The fragmented death of the Farallon plate publication-title: Geophys. Res. Lett. – volume: 353 start-page: 1406 year: 2016 end-page: 1408 ident: bb0150 article-title: Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate publication-title: Science – volume: 473 start-page: 33 year: 2017 end-page: 43 ident: bb0240 article-title: Depth-varying azimuthal anisotropy in the Tohoku subduction channel publication-title: Earth Planet. Sci. Lett. – volume: 40 start-page: 2642 year: 2013 end-page: 2646 ident: bb0400 article-title: The role of hydrous phases in the formation of trench parallel anisotropy: evidence from Rayleigh waves in Cascadia publication-title: Geophys. Res. Lett. – volume: 111 year: 2006 ident: bb0330 article-title: Regional P wave velocity structure of the northern Cascadia subduction zone publication-title: J. Geophys. Res. Solid Earth – volume: 28 start-page: 659 year: 2001 end-page: 662 ident: bb0085 article-title: A regional study of shear wave splitting above the Cascadia subduction zone: margin-parallel crustal stress publication-title: Geophys. Res. Lett. – volume: 122 start-page: 4509 year: 2017 end-page: 4528 ident: bb0160 article-title: P wave anisotropic tomography of the Alps publication-title: J. Geophys. Res. Solid Earth – volume: 455 start-page: 1097 year: 2008 end-page: 1100 ident: bb0110 article-title: Fault-induced seismic anisotropy by hydration in subducting oceanic plates publication-title: Nature – volume: 18 start-page: 3592 year: 2017 end-page: 3607 ident: bb0220 article-title: Investigating segmentation in Cascadia: anisotropic crustal structure and mantle wedge serpentinization from receiver functions publication-title: Geochem. Geophys. Geosyst. – volume: 101 start-page: 8403 year: 1996 end-page: 8414 ident: bb0155 article-title: Anisotropic Pn tomography in the western United States publication-title: J. Geophys. Res. – volume: 219 start-page: 1679 year: 2019 end-page: 1697 ident: bb0425 article-title: Updated attenuation tomography of Japan subduction zone publication-title: Geophys. J. Int. – volume: 9 start-page: 1204 year: 2018 ident: bb0130 article-title: Three-dimensional variations of the slab geometry correlate with earthquake distributions at the Cascadia subduction system publication-title: Nat. Commun. – volume: 122 start-page: 3835 year: 2017 end-page: 3851 ident: bb0180 article-title: Continental crust anisotropy measurements from tectonic tremor in Cascadia publication-title: J. Geophys. Res. Solid Earth – volume: 293 start-page: 1460 year: 2001 end-page: 1463 ident: bb0200 article-title: Water-induced fabric transition in olivine publication-title: Science – volume: 124 start-page: 742 year: 2019 end-page: 765 ident: bb0175 article-title: P wave azimuthal anisotropic tomography in northern Chile: insight into deformation in the subduction zone publication-title: J. Geophys. Res. Solid Earth – volume: 264 start-page: 266 year: 2007 end-page: 276 ident: bb0445 article-title: The fate of the Juan de Fuca plate: implications for a Yellowstone plume head publication-title: Earth Planet. Sci. Lett. – volume: 169 start-page: 1315 year: 2007 end-page: 1340 ident: bb0270 article-title: Fault locking, block rotation and crustal deformation in the Pacific Northwest publication-title: Geophys. J. Int. – volume: 15 start-page: 2075 year: 2014 end-page: 2085 ident: bb0235 article-title: A uniform database of teleseismic shear wave splitting measurements for the western and Central United States publication-title: Geochem. Geophys. Geosyst. – volume: 217 start-page: 1929 year: 2019 end-page: 1948 ident: bb0195 article-title: Amphibious surface-wave phase-velocity measurements of the Cascadia subduction zone publication-title: Geophys. J. Int. – volume: 375 start-page: 774 year: 1995 end-page: 777 ident: bb0460 article-title: Lattice preferred orientation of olivine aggregates deformed in simple shear publication-title: Nature – volume: 295 start-page: 106296 year: 2019 ident: bb0420 article-title: Mapping P-wave azimuthal anisotropy of the New Madrid seismic zone publication-title: Phys. Earth Planet. Inter. – volume: 103 start-page: 2680 year: 2013 end-page: 2693 ident: bb0230 article-title: Making reliable shear-wave splitting measurements publication-title: Bull. Seismol. Soc. Am. – volume: 45 start-page: 6954 year: 2018 end-page: 6962 ident: bb0030 article-title: Buoyant asthenosphere beneath Cascadia influences megathrust segmentation publication-title: Geophys. Res. Lett. – volume: 48 year: 2020 ident: bb0305 article-title: Time-evolving surface and subsurface signatures of Quaternary volcanism in the Cascades arc publication-title: Geology – volume: 14 start-page: 4647 year: 2013 end-page: 4666 ident: bb0390 article-title: Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain, Pacific Northwest, USA publication-title: Geochem. Geophys. Geosyst. – volume: 20 start-page: 4505 year: 2019 end-page: 4530 ident: bb0430 article-title: Mantle dynamics of the eastern Mediterranean and Middle East: constraints from P-wave anisotropic tomography publication-title: Geochem. Geophys. Geosyst. – volume: 120 start-page: 3255 year: 2015 end-page: 3277 ident: bb0170 article-title: On the trade-off between seismic anisotropy and heterogeneity: numerical simulations and application to Northeast Japan publication-title: J. Geophys. Res. Solid Earth – volume: 121 start-page: 2636 year: 2016 end-page: 2660 ident: bb0300 article-title: P wave azimuthal and radial anisotropy of the Hokkaido subduction zone publication-title: J. Geophys. Res. Solid Earth – volume: 210 start-page: 1410 year: 2017 end-page: 1431 ident: bb0245 article-title: P-wave anisotropy, mantle wedge flow and olivine fabrics beneath Japan publication-title: Geophys. J. Int. – volume: 100 start-page: 12907 year: 1995 end-page: 12918 ident: bb0415 article-title: Case for very low coupling stress on the Cascadia subduction fault publication-title: J. Geophys. Res. – volume: 214 start-page: 103507 year: 2021 ident: bb0470 article-title: Seismic imaging of Northwest Pacific and East Asia: new insight into volcanism, seismogenesis and geodynamics publication-title: Earth Sci. Rev. – volume: 123 start-page: 8842 year: 2018 end-page: 8857 ident: bb0450 article-title: Lithospheric deformation and asthenospheric flow associated with the Isabella anomaly in Southern California publication-title: J. Geophys. Res. Solid Earth – volume: 647 start-page: 73 year: 2015 end-page: 88 ident: bb0075 article-title: Tomographic imaging of the Cascadia subduction zone: constraints on the Juan de Fuca slab publication-title: Tectonophys. – volume: 45 start-page: 3923 year: 2018 end-page: 3931 ident: bb0190 article-title: Radial and azimuthal anisotropy tomography of the NE Japan subduction zone: implications for the Pacific slab and mantle wedge dynamics publication-title: Geophys. Res. Lett. – volume: 440 start-page: 135 year: 2016 end-page: 146 ident: bb0370 article-title: Multi-mode conversion imaging of the subducted Gorda and Juan de Fuca plates below the north American continent publication-title: Earth Planet. Sci. Lett. – year: 2015 ident: bb0465 article-title: Multiscale Seismic Tomography – volume: 43 start-page: 1095 year: 2015 end-page: 1098 ident: bb0025 article-title: Seismic anisotropy beneath the Juan de Fuca plate system: evidence for heterogeneous mantle flow publication-title: Geology – volume: 119 start-page: 7058 year: 2014 end-page: 7078 ident: bb0265 article-title: Crustal anisotropy in a subduction zone forearc: Northern Cascadia publication-title: J. Geophys. Res. Solid Earth – volume: 23 start-page: 941 year: 1996 end-page: 944 ident: bb0065 article-title: Shear-wave splitting above the subducting Juan de Fuca plate publication-title: Geophys. Res. Lett. – volume: 115 year: 2010 ident: bb0285 article-title: Crustal shear wave velocity structure of the western United States inferred from ambient seismic noise and earthquake data publication-title: J. Geophys. Res. Solid Earth – volume: 13 year: 2012 ident: bb0395 article-title: Crust and upper mantle structure beneath the Pacific Northwest from joint inversions of ambient noise and earthquake data publication-title: Geochem. Geophys. Geosyst. – volume: 39 start-page: 91 year: 2011 end-page: 123 ident: bb0225 article-title: Deep mantle seismic modeling and imaging publication-title: Annu. Rev. Earth Planet. Sci. – volume: 8 start-page: 43 year: 1982 end-page: 71 ident: bb0310 article-title: LSQR: an algorithm for sparse linear equations and sparse least squares publication-title: ACM Trans. Math. Softw. – volume: 82 start-page: 277 year: 1977 end-page: 296 ident: bb0005 article-title: Determination of the three-dimensional seismic structure of the lithosphere publication-title: J. Geophys. Res. – volume: 97 start-page: 19909 year: 1992 end-page: 19928 ident: bb0475 article-title: Tomographic imaging of P and S wave velocity structure beneath northeastern Japan publication-title: J. Geophys. Res. – volume: 117 year: 2012 ident: bb0275 article-title: Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity publication-title: J. Geophys. Res. Solid Earth – volume: 95 start-page: 6715 year: 1990 end-page: 6736 ident: bb0365 article-title: Hotspots and mantle plumes: some phenomenology publication-title: J. Geophys. Res. – volume: 297 start-page: 627 year: 2010 end-page: 632 ident: bb0095 article-title: Seismic anisotropy beneath Cascadia and the Mendocino triple junction: interaction of the subducting slab with mantle flow publication-title: Earth Planet. Sci. Lett. – volume: 414 start-page: 100 year: 2015 end-page: 107 ident: bb0290 article-title: Evidence for trench-parallel mantle flow in the northern Cascade arc from basalt geochemistry publication-title: Earth Planet. Sci. Lett. – volume: 44 start-page: 913 year: 2002 end-page: 937 ident: bb0345 article-title: Seismic anisotropy and mantle deformation in the western United States and southwestern Canada publication-title: Int. Geol. Rev. – volume: 47 year: 2020 ident: bb0455 article-title: Upper mantle deformation of the Terror Rift and northern Transantarctic Mountains in Antarctica: insight from P-wave anisotropic tomography publication-title: Geophys. Res. Lett. – volume: 105 start-page: 429 year: 1991 end-page: 465 ident: bb0215 article-title: Traveltimes for global earthquake location and phase identification publication-title: Geophys. J. Int. – volume: 53 start-page: 285 year: 2001 end-page: 294 ident: bb0485 article-title: Tomographic image of low P velocity anomalies above slab in northern Cascadia subduction zone publication-title: Earth Planets Space – volume: 286 start-page: 154 year: 2019 end-page: 164 ident: bb0115 article-title: P-wave anisotropic tomography of the central and southern Philippines publication-title: Phys. Earth Planet. Inter. – volume: 14 start-page: 349 year: 2021 end-page: 353 ident: bb0120 article-title: Subslab heterogeneity and giant megathrust earthquakes publication-title: Nat. Geosci. – volume: 225 start-page: 28 year: 2013 end-page: 40 ident: bb0165 article-title: Mapping P-wave azimuthal anisotropy in the crust and upper mantle beneath the United States publication-title: Phys. Earth Planet. Inter. – volume: 124 start-page: 1700 year: 2019 end-page: 1724 ident: bb0140 article-title: Aseismic deep slab and mantle flow beneath Alaska: insight from anisotropic tomography publication-title: J. Geophys. Res. Solid Earth – volume: 99 start-page: 22313 year: 1994 end-page: 22329 ident: bb0480 article-title: Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events publication-title: J. Geophys. Res. – volume: 118 start-page: 262 year: 2013 end-page: 276 ident: bb0360 article-title: A 3-D model of the crust and uppermost mantle beneath the central and Western US by joint inversion of receiver functions and surface wave dispersion publication-title: J. Geophys. Res. Solid Earth – volume: 94 start-page: 409 year: 2013 end-page: 410 ident: bb0435 article-title: Generic mapping tools: improved version released publication-title: Eos Trans. AGU – volume: 36 start-page: 59 year: 2008 end-page: 95 ident: bb0205 article-title: Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies publication-title: Annu. Rev. Earth Planet. Sci. – volume: 500 start-page: 156 year: 2018 end-page: 167 ident: bb0500 article-title: Western U.S. seismic anisotropy revealing complex mantle dynamics publication-title: Earth Planet. Sci. Lett. – volume: 38 start-page: 1 year: 2011 end-page: 7 ident: bb0280 article-title: Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization” publication-title: ACM Trans. Math. Softw. – volume: 45 start-page: 11021 year: 2018 end-page: 11029 ident: bb0090 article-title: Fluid controls on the heterogeneous seismic characteristics of the Cascadia margin publication-title: Geophys. Res. Lett. – year: 1991 ident: bb0010 article-title: Seismic Anisotropy in the Earth – volume: 170 start-page: 115 year: 2008 end-page: 133 ident: bb0405 article-title: P-wave anisotropic tomography beneath Northeast Japan publication-title: Phys. Earth Planet. Inter. – volume: 473 start-page: 33 year: 2017 ident: 10.1016/j.pepi.2021.106767_bb0240 article-title: Depth-varying azimuthal anisotropy in the Tohoku subduction channel publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2017.05.034 – volume: 124 start-page: 742 year: 2019 ident: 10.1016/j.pepi.2021.106767_bb0175 article-title: P wave azimuthal anisotropic tomography in northern Chile: insight into deformation in the subduction zone publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2018JB016389 – volume: 39 start-page: 91 year: 2011 ident: 10.1016/j.pepi.2021.106767_bb0225 article-title: Deep mantle seismic modeling and imaging publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-040610-133354 – volume: 115 year: 2010 ident: 10.1016/j.pepi.2021.106767_bb0335 article-title: USArray observations of quasi-love surface wave scattering: orienting anisotropy in the Cascadia plate boundary publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2009JB006754 – volume: 8 start-page: 43 year: 1982 ident: 10.1016/j.pepi.2021.106767_bb0310 article-title: LSQR: an algorithm for sparse linear equations and sparse least squares publication-title: ACM Trans. Math. Softw. doi: 10.1145/355984.355989 – volume: 20 start-page: 4505 year: 2019 ident: 10.1016/j.pepi.2021.106767_bb0430 article-title: Mantle dynamics of the eastern Mediterranean and Middle East: constraints from P-wave anisotropic tomography publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2019GC008512 – volume: 225 start-page: 28 year: 2013 ident: 10.1016/j.pepi.2021.106767_bb0165 article-title: Mapping P-wave azimuthal anisotropy in the crust and upper mantle beneath the United States publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2013.10.003 – volume: 115 year: 2010 ident: 10.1016/j.pepi.2021.106767_bb0285 article-title: Crustal shear wave velocity structure of the western United States inferred from ambient seismic noise and earthquake data publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2010JB007448 – volume: 102 start-page: 151 year: 2016 ident: 10.1016/j.pepi.2021.106767_bb0250 article-title: The Cascadia paradox: mantle flow and slab fragmentation in the Cascadia subduction zone publication-title: J. Geodyn. doi: 10.1016/j.jog.2016.09.006 – volume: 33 start-page: 24 year: 2016 ident: 10.1016/j.pepi.2021.106767_bb0495 article-title: Seismic anisotropy tomography: new insight into subduction dynamics publication-title: Gondwana Res. doi: 10.1016/j.gr.2015.05.008 – volume: 297 start-page: 627 year: 2010 ident: 10.1016/j.pepi.2021.106767_bb0095 article-title: Seismic anisotropy beneath Cascadia and the Mendocino triple junction: interaction of the subducting slab with mantle flow publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.07.015 – volume: 44 start-page: 913 year: 2002 ident: 10.1016/j.pepi.2021.106767_bb0345 article-title: Seismic anisotropy and mantle deformation in the western United States and southwestern Canada publication-title: Int. Geol. Rev. doi: 10.2747/0020-6814.44.10.913 – volume: 105 start-page: 429 year: 1991 ident: 10.1016/j.pepi.2021.106767_bb0215 article-title: Traveltimes for global earthquake location and phase identification publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1991.tb06724.x – volume: 23 start-page: 550 year: 1997 ident: 10.1016/j.pepi.2021.106767_bb0505 article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. doi: 10.1145/279232.279236 – volume: 23 start-page: 595 year: 2013 ident: 10.1016/j.pepi.2021.106767_bb0490 article-title: Global mantle heterogeneity and its influence on teleseismic regional tomography publication-title: Gondwana Res. doi: 10.1016/j.gr.2012.08.004 – volume: 455 start-page: 1097 year: 2008 ident: 10.1016/j.pepi.2021.106767_bb0110 article-title: Fault-induced seismic anisotropy by hydration in subducting oceanic plates publication-title: Nature doi: 10.1038/nature07376 – volume: 46 start-page: 7386 year: 2019 ident: 10.1016/j.pepi.2021.106767_bb0145 article-title: The fragmented death of the Farallon plate publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL083437 – volume: 295 start-page: 106296 year: 2019 ident: 10.1016/j.pepi.2021.106767_bb0420 article-title: Mapping P-wave azimuthal anisotropy of the New Madrid seismic zone publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2019.106296 – volume: 440 start-page: 135 year: 2016 ident: 10.1016/j.pepi.2021.106767_bb0370 article-title: Multi-mode conversion imaging of the subducted Gorda and Juan de Fuca plates below the north American continent publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2016.01.036 – volume: 99 start-page: 22313 year: 1994 ident: 10.1016/j.pepi.2021.106767_bb0480 article-title: Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events publication-title: J. Geophys. Res. doi: 10.1029/94JB01149 – volume: 23 start-page: 941 year: 1996 ident: 10.1016/j.pepi.2021.106767_bb0065 article-title: Shear-wave splitting above the subducting Juan de Fuca plate publication-title: Geophys. Res. Lett. doi: 10.1029/96GL00976 – volume: 212 start-page: 417 year: 2003 ident: 10.1016/j.pepi.2021.106767_bb0185 article-title: Serpentinization of the forearc mantle publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(03)00263-2 – volume: 414 start-page: 100 year: 2015 ident: 10.1016/j.pepi.2021.106767_bb0290 article-title: Evidence for trench-parallel mantle flow in the northern Cascade arc from basalt geochemistry publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2015.01.010 – volume: 53 start-page: 285 year: 2001 ident: 10.1016/j.pepi.2021.106767_bb0485 article-title: Tomographic image of low P velocity anomalies above slab in northern Cascadia subduction zone publication-title: Earth Planets Space doi: 10.1186/BF03352385 – volume: 188 start-page: 165 year: 2012 ident: 10.1016/j.pepi.2021.106767_bb0020 article-title: Crustal anisotropy in the forearc of the Northern Cascadia subduction zone, British Columbia publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2011.05231.x – volume: 532 start-page: 82 year: 2012 ident: 10.1016/j.pepi.2021.106767_bb0320 article-title: Unraveling the geometry of the Farallon plate: synthesis of three-dimensional imaging results from US Array publication-title: Tectonophys. doi: 10.1016/j.tecto.2012.02.008 – volume: 99 start-page: 23843 year: 1994 ident: 10.1016/j.pepi.2021.106767_bb0385 article-title: Three-dimensional crustal structure of the Mendocino triple junction region from local earthquake travel times publication-title: J. Geophys. Res. doi: 10.1029/94JB01238 – volume: 193 start-page: 1166 year: 2013 ident: 10.1016/j.pepi.2021.106767_bb0410 article-title: P-wave tomography for 3-D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones publication-title: Geophys. J. Int. doi: 10.1093/gji/ggt086 – volume: 293 start-page: 1460 year: 2001 ident: 10.1016/j.pepi.2021.106767_bb0200 article-title: Water-induced fabric transition in olivine publication-title: Science doi: 10.1126/science.1062235 – volume: 214 start-page: 103507 year: 2021 ident: 10.1016/j.pepi.2021.106767_bb0470 article-title: Seismic imaging of Northwest Pacific and East Asia: new insight into volcanism, seismogenesis and geodynamics publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2021.103507 – volume: 28 start-page: 659 year: 2001 ident: 10.1016/j.pepi.2021.106767_bb0085 article-title: A regional study of shear wave splitting above the Cascadia subduction zone: margin-parallel crustal stress publication-title: Geophys. Res. Lett. doi: 10.1029/2000GL011978 – volume: 14 start-page: 349 year: 2021 ident: 10.1016/j.pepi.2021.106767_bb0120 article-title: Subslab heterogeneity and giant megathrust earthquakes publication-title: Nat. Geosci. doi: 10.1038/s41561-021-00728-x – volume: 35 year: 2008 ident: 10.1016/j.pepi.2021.106767_bb0340 article-title: Three-dimensional seismic velocity structure of the northwestern United States publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL034669 – volume: 119 start-page: 1200 year: 2014 ident: 10.1016/j.pepi.2021.106767_bb0055 article-title: Anisotropy and Vp/Vs in the uppermost mantle beneath the western United States from joint analysis of Pn and Sn phases publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2013JB010559 – volume: 103 start-page: 26949 year: 1998 ident: 10.1016/j.pepi.2021.106767_bb0070 article-title: The northern limit of the subducted Juan de Fuca plate system publication-title: J. Geophys. Res. doi: 10.1029/98JB02140 – volume: 95 start-page: 6715 year: 1990 ident: 10.1016/j.pepi.2021.106767_bb0365 article-title: Hotspots and mantle plumes: some phenomenology publication-title: J. Geophys. Res. doi: 10.1029/JB095iB05p06715 – volume: 500 start-page: 156 year: 2018 ident: 10.1016/j.pepi.2021.106767_bb0500 article-title: Western U.S. seismic anisotropy revealing complex mantle dynamics publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2018.08.015 – volume: 119 start-page: 7058 year: 2014 ident: 10.1016/j.pepi.2021.106767_bb0265 article-title: Crustal anisotropy in a subduction zone forearc: Northern Cascadia publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2014JB011321 – volume: 121 start-page: 2636 year: 2016 ident: 10.1016/j.pepi.2021.106767_bb0300 article-title: P wave azimuthal and radial anisotropy of the Hokkaido subduction zone publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2015JB012651 – volume: 100 start-page: 12907 year: 1995 ident: 10.1016/j.pepi.2021.106767_bb0415 article-title: Case for very low coupling stress on the Cascadia subduction fault publication-title: J. Geophys. Res. doi: 10.1029/95JB00516 – volume: 82 start-page: 277 year: 1977 ident: 10.1016/j.pepi.2021.106767_bb0005 article-title: Determination of the three-dimensional seismic structure of the lithosphere publication-title: J. Geophys. Res. doi: 10.1029/JB082i002p00277 – volume: 210 start-page: 1410 year: 2017 ident: 10.1016/j.pepi.2021.106767_bb0245 article-title: P-wave anisotropy, mantle wedge flow and olivine fabrics beneath Japan publication-title: Geophys. J. Int. doi: 10.1093/gji/ggx247 – volume: 309 start-page: 67 year: 2011 ident: 10.1016/j.pepi.2021.106767_bb0325 article-title: Investigation of Cascadia segmentation with ambient noise tomography publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2011.06.026 – volume: 264 start-page: 266 year: 2007 ident: 10.1016/j.pepi.2021.106767_bb0445 article-title: The fate of the Juan de Fuca plate: implications for a Yellowstone plume head publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2007.09.047 – volume: 81 start-page: 689 year: 2010 ident: 10.1016/j.pepi.2021.106767_bb0060 article-title: Model update January 2010: upper mantle heterogeneity beneath North America from traveltime tomography with global and USArray transportable array data publication-title: Seismol. Res. Lett. doi: 10.1785/gssrl.81.5.689 – volume: 7 year: 2020 ident: 10.1016/j.pepi.2021.106767_bb0105 article-title: ISC-EHB 1964–2016, an improved data set for studies of Earth structure and global seismicity publication-title: Earth Space Sci. doi: 10.1029/2019EA000897 – year: 2015 ident: 10.1016/j.pepi.2021.106767_bb0465 – volume: 111 year: 2006 ident: 10.1016/j.pepi.2021.106767_bb0330 article-title: Regional P wave velocity structure of the northern Cascadia subduction zone publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2005JB004108 – volume: 40 start-page: 2642 year: 2013 ident: 10.1016/j.pepi.2021.106767_bb0400 article-title: The role of hydrous phases in the formation of trench parallel anisotropy: evidence from Rayleigh waves in Cascadia publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50525 – volume: 531 start-page: 115965 year: 2020 ident: 10.1016/j.pepi.2021.106767_bb0035 article-title: Asthenospheric buoyancy and the origin of high-relief topography along the Cascadia forearc publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2019.115965 – volume: 647 start-page: 73 year: 2015 ident: 10.1016/j.pepi.2021.106767_bb0075 article-title: Tomographic imaging of the Cascadia subduction zone: constraints on the Juan de Fuca slab publication-title: Tectonophys. doi: 10.1016/j.tecto.2015.02.012 – year: 1991 ident: 10.1016/j.pepi.2021.106767_bb0010 – volume: 266 start-page: 237 year: 1994 ident: 10.1016/j.pepi.2021.106767_bb0380 article-title: Crustal architecture of the Cascadia forearc publication-title: Science doi: 10.1126/science.266.5183.237 – volume: 120 start-page: 3255 year: 2015 ident: 10.1016/j.pepi.2021.106767_bb0170 article-title: On the trade-off between seismic anisotropy and heterogeneity: numerical simulations and application to Northeast Japan publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2014JB011784 – volume: 123 start-page: 4088 year: 2018 ident: 10.1016/j.pepi.2021.106767_bb0135 article-title: Anisotropic 3-D ray tracing and its application to Japan subduction zone publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2017JB015321 – volume: 217 start-page: 1929 year: 2019 ident: 10.1016/j.pepi.2021.106767_bb0195 article-title: Amphibious surface-wave phase-velocity measurements of the Cascadia subduction zone publication-title: Geophys. J. Int. doi: 10.1093/gji/ggz051 – volume: 45 start-page: 6954 year: 2018 ident: 10.1016/j.pepi.2021.106767_bb0030 article-title: Buoyant asthenosphere beneath Cascadia influences megathrust segmentation publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL078700 – volume: 9 start-page: 1204 year: 2018 ident: 10.1016/j.pepi.2021.106767_bb0130 article-title: Three-dimensional variations of the slab geometry correlate with earthquake distributions at the Cascadia subduction system publication-title: Nat. Commun. doi: 10.1038/s41467-018-03655-5 – volume: 122 start-page: 4509 year: 2017 ident: 10.1016/j.pepi.2021.106767_bb0160 article-title: P wave anisotropic tomography of the Alps publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2016JB013831 – volume: 122 start-page: 3835 year: 2017 ident: 10.1016/j.pepi.2021.106767_bb0180 article-title: Continental crust anisotropy measurements from tectonic tremor in Cascadia publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2017JB013983 – volume: 297 start-page: 435 year: 2010 ident: 10.1016/j.pepi.2021.106767_bb0350 article-title: Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.06.047 – volume: 117 year: 2012 ident: 10.1016/j.pepi.2021.106767_bb0040 article-title: Split from slip and schist: crustal anisotropy beneath northern Cascadia from non-volcanic tremor publication-title: J. Geophys. Res. – volume: 124 start-page: 1700 year: 2019 ident: 10.1016/j.pepi.2021.106767_bb0140 article-title: Aseismic deep slab and mantle flow beneath Alaska: insight from anisotropic tomography publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2018JB016639 – volume: 38 start-page: 1 year: 2011 ident: 10.1016/j.pepi.2021.106767_bb0280 article-title: Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization” publication-title: ACM Trans. Math. Softw. doi: 10.1145/2049662.2049669 – volume: 170 start-page: 115 year: 2008 ident: 10.1016/j.pepi.2021.106767_bb0405 article-title: P-wave anisotropic tomography beneath Northeast Japan publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2008.07.042 – volume: 10 year: 2009 ident: 10.1016/j.pepi.2021.106767_bb0295 article-title: Receiver function study of the Cascadia megathrust: evidence for localized serpentinization publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2009GC002376 – volume: 156 start-page: 237 year: 2004 ident: 10.1016/j.pepi.2021.106767_bb0100 article-title: Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2003.02044.x – volume: 15 start-page: 2075 year: 2014 ident: 10.1016/j.pepi.2021.106767_bb0235 article-title: A uniform database of teleseismic shear wave splitting measurements for the western and Central United States publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/2014GC005267 – volume: 109 year: 2004 ident: 10.1016/j.pepi.2021.106767_bb0315 article-title: Subduction zone anisotropy beneath Corvallis, Oregon: a serpentinite skid mark of trench-parallel terrane migration? publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2003JB002718 – volume: 45 start-page: 11021 year: 2018 ident: 10.1016/j.pepi.2021.106767_bb0090 article-title: Fluid controls on the heterogeneous seismic characteristics of the Cascadia margin publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL079518 – volume: 94 start-page: 409 year: 2013 ident: 10.1016/j.pepi.2021.106767_bb0435 article-title: Generic mapping tools: improved version released publication-title: Eos Trans. AGU doi: 10.1002/2013EO450001 – volume: 103 start-page: 2680 year: 2013 ident: 10.1016/j.pepi.2021.106767_bb0230 article-title: Making reliable shear-wave splitting measurements publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/0120120355 – volume: 123 start-page: 8842 year: 2018 ident: 10.1016/j.pepi.2021.106767_bb0450 article-title: Lithospheric deformation and asthenospheric flow associated with the Isabella anomaly in Southern California publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2018JB015873 – volume: 14 start-page: 4647 year: 2013 ident: 10.1016/j.pepi.2021.106767_bb0390 article-title: Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain, Pacific Northwest, USA publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/ggge.20275 – volume: 101 start-page: 8403 year: 1996 ident: 10.1016/j.pepi.2021.106767_bb0155 article-title: Anisotropic Pn tomography in the western United States publication-title: J. Geophys. Res. doi: 10.1029/96JB00114 – volume: 286 start-page: 154 year: 2019 ident: 10.1016/j.pepi.2021.106767_bb0115 article-title: P-wave anisotropic tomography of the central and southern Philippines publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2018.12.001 – volume: 48 year: 2020 ident: 10.1016/j.pepi.2021.106767_bb0305 article-title: Time-evolving surface and subsurface signatures of Quaternary volcanism in the Cascades arc publication-title: Geology – volume: 13 year: 2012 ident: 10.1016/j.pepi.2021.106767_bb0395 article-title: Crust and upper mantle structure beneath the Pacific Northwest from joint inversions of ambient noise and earthquake data publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2012GC004353 – volume: 297 start-page: 341 year: 2010 ident: 10.1016/j.pepi.2021.106767_bb0255 article-title: Mantle dynamics and seismic anisotropy publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.06.036 – volume: 98 start-page: 16053 year: 1993 ident: 10.1016/j.pepi.2021.106767_bb0440 article-title: Confidence intervals for motion and deformation of the Juan de Fuca plate publication-title: J. Geophys. Res. doi: 10.1029/93JB01227 – volume: 45 start-page: 3923 year: 2018 ident: 10.1016/j.pepi.2021.106767_bb0190 article-title: Radial and azimuthal anisotropy tomography of the NE Japan subduction zone: implications for the Pacific slab and mantle wedge dynamics publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL077436 – volume: 118 start-page: 262 year: 2013 ident: 10.1016/j.pepi.2021.106767_bb0360 article-title: A 3-D model of the crust and uppermost mantle beneath the central and Western US by joint inversion of receiver functions and surface wave dispersion publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2012JB009602 – volume: 169 start-page: 1315 year: 2007 ident: 10.1016/j.pepi.2021.106767_bb0270 article-title: Fault locking, block rotation and crustal deformation in the Pacific Northwest publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2007.03371.x – volume: 353 start-page: 1406 year: 2016 ident: 10.1016/j.pepi.2021.106767_bb0150 article-title: Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate publication-title: Science doi: 10.1126/science.aad8104 – volume: 47 year: 2020 ident: 10.1016/j.pepi.2021.106767_bb0455 article-title: Upper mantle deformation of the Terror Rift and northern Transantarctic Mountains in Antarctica: insight from P-wave anisotropic tomography publication-title: Geophys. Res. Lett. – volume: 8 start-page: 965 year: 2015 ident: 10.1016/j.pepi.2021.106767_bb0260 article-title: Mantle flow geometry from ridge to trench beneath the Gorda–Juan de Fuca plate system publication-title: Nat. Geosci. doi: 10.1038/ngeo2569 – volume: 32 start-page: 403 year: 2004 ident: 10.1016/j.pepi.2021.106767_bb0125 article-title: Influence of the Mendocino triple junction on the tectonics of coastal California publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.32.101802.120252 – volume: 266 start-page: 166 year: 2008 ident: 10.1016/j.pepi.2021.106767_bb0355 article-title: Segmentation of the Cascade arc as indicated by Sr and Nd isotopic variation among diverse primitive basalts publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2007.11.013 – volume: 219 start-page: 1679 year: 2019 ident: 10.1016/j.pepi.2021.106767_bb0425 article-title: Updated attenuation tomography of Japan subduction zone publication-title: Geophys. J. Int. doi: 10.1093/gji/ggz339 – volume: 200 start-page: 72 year: 2012 ident: 10.1016/j.pepi.2021.106767_bb0375 article-title: P-wave tomography of the western United States: insight into the Yellowstone hotspot and the Juan de Fuca slab publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2012.04.004 – volume: 18 start-page: 3592 year: 2017 ident: 10.1016/j.pepi.2021.106767_bb0220 article-title: Investigating segmentation in Cascadia: anisotropic crustal structure and mantle wedge serpentinization from receiver functions publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/2017GC007064 – volume: 43 start-page: 1095 year: 2015 ident: 10.1016/j.pepi.2021.106767_bb0025 article-title: Seismic anisotropy beneath the Juan de Fuca plate system: evidence for heterogeneous mantle flow publication-title: Geology – volume: 97 start-page: 19909 year: 1992 ident: 10.1016/j.pepi.2021.106767_bb0475 article-title: Tomographic imaging of P and S wave velocity structure beneath northeastern Japan publication-title: J. Geophys. Res. doi: 10.1029/92JB00603 – volume: 375 start-page: 774 year: 1995 ident: 10.1016/j.pepi.2021.106767_bb0460 article-title: Lattice preferred orientation of olivine aggregates deformed in simple shear publication-title: Nature doi: 10.1038/375774a0 – volume: 157 start-page: 33 year: 2006 ident: 10.1016/j.pepi.2021.106767_bb0210 article-title: Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2006.03.005 – volume: 117 year: 2012 ident: 10.1016/j.pepi.2021.106767_bb0275 article-title: Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2012JB009407 – volume: 36 start-page: 59 year: 2008 ident: 10.1016/j.pepi.2021.106767_bb0205 article-title: Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.36.031207.124120 – volume: 118 start-page: 428 year: 1994 ident: 10.1016/j.pepi.2021.106767_bb0080 article-title: The fracture criticality of crustal rocks publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1994.tb03974.x – volume: 70 start-page: 3429 year: 1965 ident: 10.1016/j.pepi.2021.106767_bb0015 article-title: Possible forms of seismic anisotropy of the uppermost mantle under oceans publication-title: J. Geophys. Res. doi: 10.1029/JZ070i014p03429 – volume: 332 start-page: 55 year: 2019 ident: 10.1016/j.pepi.2021.106767_bb0050 article-title: Seismicity in Cascadia publication-title: Lithos doi: 10.1016/j.lithos.2019.02.019 |
| SSID | ssj0001323 |
| Score | 2.4760416 |
| Snippet | The first P-wave tomography of 3-D azimuthal and radial anisotropy of the Cascadia subduction zone is determined by inverting local and teleseismic... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106767 |
| SubjectTerms | Azimuthal anisotropy Cascadia Earthquake Radial anisotropy Seismic anisotropy Seismic tomography Subduction zone Volcano |
| Title | Anisotropic tomography of the Cascadia subduction zone |
| URI | https://dx.doi.org/10.1016/j.pepi.2021.106767 |
| Volume | 318 |
| WOSCitedRecordID | wos000680296600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7395 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001323 issn: 0031-9201 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT6RAEO7oqMleNj7j7K6Gg7cJE-iege7jxLg-DsaDJqMXAv2IGAUyMBv112813YDv6MELIR26YPqrVH8wX1UhtOcRqlgc6vQzTNwRw9xlQhKX6GJlVJHQw7xuNhGentLplJ3ZHu5l3U4gzDJ6f8-Kb4UaxgBsnTr7BbhbozAA5wA6HAF2OH4K-EmWlnk1y4uUA7G8syWpGy3AflxyXY5gUM4TYSrHDh7z7JkgqFaF8rKZAgtk898KrYyttM5OV5mYpXn3V9DVdZwbjXwh7WZYO0vNTS_nEHLm1g_tJwbstxqqNmwS32XYDtmwSWzcNIFPV6IzfTVexWTzeeBmWMgiHWrzw-7i5wWwX2xMrVywUaLdRNpGpG1ExsYiWsLhmNEeWpocH0xP2k0YXrJtvWXz5DZfykj7Xj7J25zkCc84X0U_7QuCMzHArqEFma2jlcO6AfPDBgqewOt08Dq5cgArp4HX6eB1NLyb6OLvwfn-kWt7X7gxCUjlKo8ILLAkWHoJYRJoNxBbyeiIM-4Bp409pWICdJiFvhizJJDCJzxQvsQCWBvZQr0MzG8jByKuGIElphNOuAgSOhaKCMbkyFcJpX3kN78-4rYwvO5Pchu9v-59NGjnFKYsyodXj5tFjSyxM4QtAh_5YN6vL93lN_rROe8f1Ktmc7mDlvm_Ki1nu9ZB_gPLE2yb |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+tomography+of+the+Cascadia+subduction+zone&rft.jtitle=Physics+of+the+earth+and+planetary+interiors&rft.au=Zhao%2C+Dapeng&rft.au=Hua%2C+Yuanyuan&rft.date=2021-09-01&rft.issn=0031-9201&rft.volume=318&rft.spage=106767&rft_id=info:doi/10.1016%2Fj.pepi.2021.106767&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pepi_2021_106767 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9201&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9201&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9201&client=summon |