druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico

Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a proof-of-concept of implementing deep generative adversarial autoencoder (AAE) to identify new molecular fingerprints with predefined anticancer...

Full description

Saved in:
Bibliographic Details
Published in:Molecular pharmaceutics Vol. 14; no. 9; p. 3098
Main Authors: Kadurin, Artur, Nikolenko, Sergey, Khrabrov, Kuzma, Aliper, Alex, Zhavoronkov, Alex
Format: Journal Article
Language:English
Published: United States 05.09.2017
Subjects:
ISSN:1543-8392, 1543-8392
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a proof-of-concept of implementing deep generative adversarial autoencoder (AAE) to identify new molecular fingerprints with predefined anticancer properties. Another popular generative model is the variational autoencoder (VAE), which is based on deep neural architectures. In this work, we developed an advanced AAE model for molecular feature extraction problems, and demonstrated its advantages compared to VAE in terms of (a) adjustability in generating molecular fingerprints; (b) capacity of processing very large molecular data sets; and (c) efficiency in unsupervised pretraining for regression model. Our results suggest that the proposed AAE model significantly enhances the capacity and efficiency of development of the new molecules with specific anticancer properties using the deep generative models.
AbstractList Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a proof-of-concept of implementing deep generative adversarial autoencoder (AAE) to identify new molecular fingerprints with predefined anticancer properties. Another popular generative model is the variational autoencoder (VAE), which is based on deep neural architectures. In this work, we developed an advanced AAE model for molecular feature extraction problems, and demonstrated its advantages compared to VAE in terms of (a) adjustability in generating molecular fingerprints; (b) capacity of processing very large molecular data sets; and (c) efficiency in unsupervised pretraining for regression model. Our results suggest that the proposed AAE model significantly enhances the capacity and efficiency of development of the new molecules with specific anticancer properties using the deep generative models.
Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a proof-of-concept of implementing deep generative adversarial autoencoder (AAE) to identify new molecular fingerprints with predefined anticancer properties. Another popular generative model is the variational autoencoder (VAE), which is based on deep neural architectures. In this work, we developed an advanced AAE model for molecular feature extraction problems, and demonstrated its advantages compared to VAE in terms of (a) adjustability in generating molecular fingerprints; (b) capacity of processing very large molecular data sets; and (c) efficiency in unsupervised pretraining for regression model. Our results suggest that the proposed AAE model significantly enhances the capacity and efficiency of development of the new molecules with specific anticancer properties using the deep generative models.Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a proof-of-concept of implementing deep generative adversarial autoencoder (AAE) to identify new molecular fingerprints with predefined anticancer properties. Another popular generative model is the variational autoencoder (VAE), which is based on deep neural architectures. In this work, we developed an advanced AAE model for molecular feature extraction problems, and demonstrated its advantages compared to VAE in terms of (a) adjustability in generating molecular fingerprints; (b) capacity of processing very large molecular data sets; and (c) efficiency in unsupervised pretraining for regression model. Our results suggest that the proposed AAE model significantly enhances the capacity and efficiency of development of the new molecules with specific anticancer properties using the deep generative models.
Author Zhavoronkov, Alex
Khrabrov, Kuzma
Kadurin, Artur
Aliper, Alex
Nikolenko, Sergey
Author_xml – sequence: 1
  givenname: Artur
  surname: Kadurin
  fullname: Kadurin, Artur
  organization: Kazan Federal University , Kazan, Republic of Tatarstan 420008, Russia
– sequence: 2
  givenname: Sergey
  surname: Nikolenko
  fullname: Nikolenko, Sergey
  organization: Kazan Federal University , Kazan, Republic of Tatarstan 420008, Russia
– sequence: 3
  givenname: Kuzma
  surname: Khrabrov
  fullname: Khrabrov, Kuzma
  organization: Search Department, Mail.Ru Group Ltd. , Moscow 125167, Russia
– sequence: 4
  givenname: Alex
  surname: Aliper
  fullname: Aliper, Alex
  organization: Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern , Baltimore, Maryland 21218, United States
– sequence: 5
  givenname: Alex
  orcidid: 0000-0001-7067-8966
  surname: Zhavoronkov
  fullname: Zhavoronkov, Alex
  organization: Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28703000$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1OwzAQhC0EglJ4BWRuXFr8R5JyiwoUJChIwLna2BvVyLGLnbTiLXhkgiiIy-xo9O0c5pDs-uCRkFPOxpwJfg46jZvgVkuIDWjs2nFeMSZVtkMG_ELJUSEnYvefPyCHKb0xJtSFkPvkQBQ5k4yxAfk0sZuV80taelqaNXiNhs7QY4TWrvE7w5ggWnC07NqAXgeDkT706mgdIjVI52Ed_p6Cp6Gmc9z0jEPdOUx0Y9slvcJkY9--jSHSpxhWGFvbE9bTZ-usDkdkrwaX8Hh7h-T15vpleju6f5zdTcv7EchMtiOdK8ayWtemYrnhIpOgMgZ5DZlWeSVMzYErhYgKqppNikJnqKQEmcsCtRZDcvbTu4rhvcPULhqbNDoHHkOXFnzCi0KpfJL16MkW7aoGzWIVbQPxY_G7ovgCced87g
CitedBy_id crossref_primary_10_1016_j_ymeth_2025_03_001
crossref_primary_10_1039_D1SC04471K
crossref_primary_10_1007_s10822_023_00512_6
crossref_primary_10_3390_ijms22168962
crossref_primary_10_1088_1742_6596_1955_1_012062
crossref_primary_10_2174_1381612828666220608141049
crossref_primary_10_1016_j_compchemeng_2020_107005
crossref_primary_10_1016_j_matdes_2022_110888
crossref_primary_10_1002_jcc_26494
crossref_primary_10_3390_molecules29040903
crossref_primary_10_1016_j_bioorg_2024_107285
crossref_primary_10_3389_fcimb_2020_00388
crossref_primary_10_1186_s13321_018_0286_7
crossref_primary_10_1186_s13321_025_00976_8
crossref_primary_10_1049_cit2_12194
crossref_primary_10_1007_s10115_020_01513_9
crossref_primary_10_1016_j_addma_2024_104478
crossref_primary_10_1016_j_commatsci_2021_110360
crossref_primary_10_1016_j_omtn_2024_102295
crossref_primary_10_1039_D2SC05709C
crossref_primary_10_3389_fphar_2017_00729
crossref_primary_10_1038_s41598_020_78537_2
crossref_primary_10_1021_acs_jcim_5c00665
crossref_primary_10_1053_j_semnuclmed_2020_09_003
crossref_primary_10_1021_acs_jmedchem_4c01616
crossref_primary_10_1038_s41598_021_98933_6
crossref_primary_10_1007_s11030_021_10256_w
crossref_primary_10_1016_j_preteyeres_2024_101291
crossref_primary_10_1016_j_drudis_2018_11_014
crossref_primary_10_3390_ijms231911262
crossref_primary_10_1016_j_crtox_2025_100232
crossref_primary_10_2174_0929867330666230403100008
crossref_primary_10_1080_17460441_2025_2555275
crossref_primary_10_1073_pnas_2404676121
crossref_primary_10_1186_s13321_022_00599_3
crossref_primary_10_1016_j_ailsci_2022_100035
crossref_primary_10_1016_j_isci_2025_112217
crossref_primary_10_1002_minf_201900131
crossref_primary_10_1016_j_drudis_2025_104333
crossref_primary_10_1155_2023_2465414
crossref_primary_10_1007_s00894_021_04674_8
crossref_primary_10_1016_j_biosystems_2022_104790
crossref_primary_10_1093_bib_bbab152
crossref_primary_10_1002_minf_202200215
crossref_primary_10_1016_j_drudis_2021_10_022
crossref_primary_10_1007_s11030_021_10266_8
crossref_primary_10_1016_j_chemolab_2019_103850
crossref_primary_10_1016_j_compbiomed_2023_107187
crossref_primary_10_1016_j_isci_2024_111526
crossref_primary_10_1002_pi_6788
crossref_primary_10_1016_j_ailsci_2022_100045
crossref_primary_10_3390_s23010062
crossref_primary_10_1208_s12248_021_00593_x
crossref_primary_10_1126_science_aat2663
crossref_primary_10_1109_TNNLS_2021_3106392
crossref_primary_10_1186_s13321_023_00693_0
crossref_primary_10_1016_j_cosrev_2023_100553
crossref_primary_10_1038_s41598_025_05555_3
crossref_primary_10_15252_msb_20199198
crossref_primary_10_1109_ACCESS_2023_3285811
crossref_primary_10_2174_0109298673266470231023110841
crossref_primary_10_1016_j_imu_2022_100885
crossref_primary_10_1016_j_semcancer_2021_04_013
crossref_primary_10_1016_j_arr_2020_101050
crossref_primary_10_31799_1684_8853_2018_4_52_60
crossref_primary_10_3389_fphar_2022_1007315
crossref_primary_10_1016_j_tips_2019_07_005
crossref_primary_10_1186_s12859_020_3401_5
crossref_primary_10_1016_j_drudis_2019_07_006
crossref_primary_10_1093_nar_gkaa325
crossref_primary_10_1002_ange_201909987
crossref_primary_10_1039_D0RA07820D
crossref_primary_10_3390_ijms22041676
crossref_primary_10_1038_s41578_018_0005_z
crossref_primary_10_1002_advs_202411385
crossref_primary_10_1016_j_ejmech_2024_117164
crossref_primary_10_1007_s12039_021_01995_2
crossref_primary_10_1002_minf_201700133
crossref_primary_10_1093_bib_bbaa237
crossref_primary_10_5858_arpa_2020_0541_CP
crossref_primary_10_1016_j_jddst_2023_104751
crossref_primary_10_1007_s11427_018_9342_2
crossref_primary_10_3390_ijms20112783
crossref_primary_10_1631_FITEE_1700786
crossref_primary_10_1007_s11831_021_09661_z
crossref_primary_10_3389_fmicb_2023_1194794
crossref_primary_10_1002_minf_202300316
crossref_primary_10_1002_qute_202000003
crossref_primary_10_1002_med_21764
crossref_primary_10_1016_j_drudis_2024_103992
crossref_primary_10_3390_bioengineering12040363
crossref_primary_10_7717_peerj_cs_684
crossref_primary_10_1007_s10994_024_06638_4
crossref_primary_10_1002_aenm_202102698
crossref_primary_10_1080_17460441_2018_1547278
crossref_primary_10_1016_j_compbiomed_2022_106020
crossref_primary_10_1007_s10822_019_00242_8
crossref_primary_10_1109_TCBB_2024_3477592
crossref_primary_10_4081_itjm_2024_1782
crossref_primary_10_1039_D5DD00170F
crossref_primary_10_3389_frai_2019_00012
crossref_primary_10_1016_j_dche_2023_100111
crossref_primary_10_1177_1535370221993422
crossref_primary_10_1371_journal_pone_0246126
crossref_primary_10_1016_j_compbiomed_2024_108486
crossref_primary_10_1021_acs_jcim_5c00892
crossref_primary_10_1093_bib_bbab592
crossref_primary_10_1016_j_comptc_2023_114162
crossref_primary_10_1186_s13321_021_00497_0
crossref_primary_10_1186_s13321_020_00454_3
crossref_primary_10_1038_s41598_020_79682_4
crossref_primary_10_1121_10_0008929
crossref_primary_10_1088_2632_2153_ad1f77
crossref_primary_10_1038_s42256_021_00403_1
crossref_primary_10_1109_TPAMI_2021_3120428
crossref_primary_10_3389_fgene_2024_1450529
crossref_primary_10_1002_minf_201900107
crossref_primary_10_3390_molecules25143250
crossref_primary_10_1007_s00779_020_01448_6
crossref_primary_10_1016_j_tips_2019_06_003
crossref_primary_10_1186_s13321_022_00665_w
crossref_primary_10_1080_07391102_2021_1905559
crossref_primary_10_1080_14728222_2024_2330425
crossref_primary_10_3390_ijms24032026
crossref_primary_10_1016_j_eswa_2023_123127
crossref_primary_10_3390_ijms25136940
crossref_primary_10_3390_pharmacy13020041
crossref_primary_10_1039_C9ME00039A
crossref_primary_10_1007_s11814_021_0869_2
crossref_primary_10_52711_0975_4377_2025_00016
crossref_primary_10_1039_D3RA03954D
crossref_primary_10_1002_ail2_17
crossref_primary_10_1038_s41524_019_0203_2
crossref_primary_10_1109_ACCESS_2020_2974759
crossref_primary_10_3390_ijms25126641
crossref_primary_10_3390_pr11051340
crossref_primary_10_1109_MCI_2022_3155308
crossref_primary_10_1016_j_arr_2018_11_003
crossref_primary_10_1038_s41597_023_02207_x
crossref_primary_10_1146_annurev_biodatasci_122120_124216
crossref_primary_10_1038_s41563_019_0338_z
crossref_primary_10_1038_s41540_022_00247_4
crossref_primary_10_1093_bib_bbz144
crossref_primary_10_1016_j_curpro_2025_100015
crossref_primary_10_1038_s41575_019_0240_9
crossref_primary_10_3389_fmedt_2022_1067144
crossref_primary_10_1002_minf_201900087
crossref_primary_10_1007_s12257_020_0049_y
crossref_primary_10_1080_17460441_2023_2134340
crossref_primary_10_2217_pgs_2018_0008
crossref_primary_10_1186_s12859_018_2517_3
crossref_primary_10_1038_s42256_021_00368_1
crossref_primary_10_1002_jcc_27295
crossref_primary_10_1038_s41573_019_0024_5
crossref_primary_10_1007_s11704_022_2011_y
crossref_primary_10_1016_j_drudis_2018_01_039
crossref_primary_10_1007_s11030_021_10274_8
crossref_primary_10_1021_acsami_5c03612
crossref_primary_10_1002_aic_17971
crossref_primary_10_1002_cjce_25525
crossref_primary_10_1016_j_ejmech_2020_112982
crossref_primary_10_1007_s11219_024_09671_7
crossref_primary_10_1016_j_eswa_2023_120592
crossref_primary_10_1093_bib_bbae142
crossref_primary_10_1021_acs_jcim_5c00853
crossref_primary_10_3390_ijms26093980
crossref_primary_10_1093_bib_bbab430
crossref_primary_10_3390_molecules26226761
crossref_primary_10_1016_j_drudis_2018_05_010
crossref_primary_10_1016_j_apmt_2024_102061
crossref_primary_10_1016_j_nexres_2025_100179
crossref_primary_10_1038_s42003_021_02586_0
crossref_primary_10_1080_10590501_2018_1537118
crossref_primary_10_1039_D0ME00161A
crossref_primary_10_1093_bib_bbab544
crossref_primary_10_1016_j_ces_2022_118119
crossref_primary_10_4155_fmc_2018_0358
crossref_primary_10_1145_3664595
crossref_primary_10_1007_s11030_024_11042_0
crossref_primary_10_1016_j_coche_2021_100739
crossref_primary_10_1109_THMS_2025_3537339
crossref_primary_10_1016_j_media_2022_102704
crossref_primary_10_3390_app15052798
crossref_primary_10_1002_anie_201909987
crossref_primary_10_1002_mef2_18
crossref_primary_10_18311_jnr_2025_48515
crossref_primary_10_1038_s41467_019_13807_w
crossref_primary_10_1016_j_compbiomed_2024_108734
crossref_primary_10_1038_s42256_025_01082_y
crossref_primary_10_1038_s41467_021_23880_9
crossref_primary_10_3390_molecules26227061
crossref_primary_10_1371_journal_pcbi_1008504
crossref_primary_10_1016_j_semcancer_2018_06_003
crossref_primary_10_1038_s43588_023_00548_6
crossref_primary_10_3390_app15105616
crossref_primary_10_1016_j_memlet_2023_100040
crossref_primary_10_3390_pharmaceutics17050612
crossref_primary_10_1002_wcms_1395
crossref_primary_10_3390_ijms22189983
crossref_primary_10_3389_fphar_2019_01631
crossref_primary_10_1016_j_cjche_2024_10_014
crossref_primary_10_1080_17460441_2024_2367014
crossref_primary_10_1016_j_ymeth_2020_06_016
crossref_primary_10_1021_acs_jcim_5c00591
crossref_primary_10_3389_fphar_2024_1331062
crossref_primary_10_1016_j_sbi_2021_10_001
crossref_primary_10_1016_j_ddtec_2020_09_003
crossref_primary_10_2174_0115734099287389240126072433
crossref_primary_10_1016_j_eswa_2023_122443
crossref_primary_10_1186_s13321_019_0355_6
crossref_primary_10_1007_s10822_019_00234_8
crossref_primary_10_1016_j_fct_2019_110921
crossref_primary_10_3390_ijms24076573
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_1016_j_matt_2019_08_017
crossref_primary_10_1109_TIE_2018_2885684
crossref_primary_10_1007_s40290_024_00533_y
crossref_primary_10_1038_s42256_022_00527_y
crossref_primary_10_3389_fchem_2019_00809
crossref_primary_10_3389_fphar_2020_565644
crossref_primary_10_1016_j_drudis_2021_11_023
crossref_primary_10_1088_2632_2153_abae75
crossref_primary_10_1111_cbdd_14062
crossref_primary_10_1038_s41597_019_0121_7
crossref_primary_10_1038_s41587_019_0224_x
crossref_primary_10_2174_0115748936276510231123121404
crossref_primary_10_1002_wcms_1408
crossref_primary_10_1016_j_ijpharm_2025_125789
crossref_primary_10_1002_celc_202400024
crossref_primary_10_58240_1829006X_2025_21_6_361
crossref_primary_10_1016_j_drudis_2021_09_006
crossref_primary_10_1016_j_asoc_2024_111268
crossref_primary_10_1371_journal_pcbi_1009135
crossref_primary_10_3389_fphar_2021_660313
crossref_primary_10_2174_1381612827666210129123231
crossref_primary_10_3389_fmolb_2020_00136
crossref_primary_10_1016_j_ejmech_2025_117825
crossref_primary_10_1186_s13040_024_00414_9
crossref_primary_10_1002_minf_202300064
crossref_primary_10_1007_s44395_025_00008_2
crossref_primary_10_1080_23744235_2024_2425712
crossref_primary_10_1002_aisy_202100158
crossref_primary_10_1186_s13321_020_00473_0
crossref_primary_10_3389_fgene_2018_00242
crossref_primary_10_1016_j_heliyon_2023_e17575
crossref_primary_10_1093_bib_bbac270
crossref_primary_10_1093_bib_bbae693
crossref_primary_10_1111_nyas_14930
crossref_primary_10_1038_s41598_018_35704_w
crossref_primary_10_2174_1381612829666230412084137
crossref_primary_10_3389_fphar_2020_00269
crossref_primary_10_1002_eng2_12274
crossref_primary_10_1038_s41587_020_0418_2
crossref_primary_10_1002_wcms_1637
crossref_primary_10_1557_s43577_022_00414_2
crossref_primary_10_3389_fphar_2022_1046524
crossref_primary_10_1039_C9SC06240H
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.molpharmaceut.7b00346
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1543-8392
ExternalDocumentID 28703000
Genre Journal Article
GroupedDBID ---
-~X
123
4.4
53G
55A
5VS
7~N
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
DU5
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
H~9
IH9
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a363t-c74006fcfdb07d1263a460a7fa6c47b2df1a144eee4abf0988c6e433a3738ecc2
IEDL.DBID 7X8
ISICitedReferencesCount 382
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000410005100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1543-8392
IngestDate Fri Jul 11 11:27:07 EDT 2025
Wed Feb 19 02:42:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords generative adversarial network
deep learning
adversarial autoencoder
drug discovery
variational autoencoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-c74006fcfdb07d1263a460a7fa6c47b2df1a144eee4abf0988c6e433a3738ecc2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7067-8966
PMID 28703000
PQID 1918844796
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1918844796
pubmed_primary_28703000
PublicationCentury 2000
PublicationDate 2017-09-05
PublicationDateYYYYMMDD 2017-09-05
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular pharmaceutics
PublicationTitleAlternate Mol Pharm
PublicationYear 2017
SSID ssj0024523
Score 2.6456904
Snippet Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3098
SubjectTerms Artificial Intelligence
Computer Simulation
Concept Formation
Learning
Models, Theoretical
Neural Networks (Computer)
Title druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico
URI https://www.ncbi.nlm.nih.gov/pubmed/28703000
https://www.proquest.com/docview/1918844796
Volume 14
WOSCitedRecordID wos000410005100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFA7uKosvrpf1srvKEcQnq9M2TTr7shTx8mIpqDBvQ9IkMKCNtjOC_8Kf7Dltx3kSFvalD6Eppfl6rsn3MXYkMI0wGCgHXGCmw2WkAqX1MLDo65VKExxxrdiEzPN0NBoWfcGt6bdVzm1ia6iNL6lGfoZ5RZpyLofi79NzQKpR1F3tJTS-sOUYQxlCtRylC669pJV3wyghDigQ-MYOO7KC8EyVzemjp-OsfeH4VBLAufg80mw9zuX3_33XdbbWx5qQdeDYYEu22mTHRfcyrydwtzh71ZzAMRQLGuvXLfZm6tlVlv-BrIKs3ykAHUs1mUhopZwbRQCGbDb1xIhpbA2krvYAGAuDsZD7F_8xyVfgHaBZxXtaUV7bANWBAZNftLxmPqxqKKhHUBPZK0wquJ08IGB_sPvLi7vz66DXbwhULOJpUEo0EMKVzuiBNGEkYsXFQEmnRMmljowLFeZz1lqutBsM07QUlsexIrYlhFa0zb5WvrK7DEyiywSf4ozF76oVZnU25GGkHR381XKPHc5XYoz_BzU9VGX9rBkv1mKP7XTLOX7qiDzG1OSN0Sf8_IfZv9hqRB6deknJb7bs0DrYfbZSvkwnTX3QAg-veXHzDkya5tA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=druGAN%3A+An+Advanced+Generative+Adversarial+Autoencoder+Model+for+de+Novo+Generation+of+New+Molecules+with+Desired+Molecular+Properties+in+Silico&rft.jtitle=Molecular+pharmaceutics&rft.au=Kadurin%2C+Artur&rft.au=Nikolenko%2C+Sergey&rft.au=Khrabrov%2C+Kuzma&rft.au=Aliper%2C+Alex&rft.date=2017-09-05&rft.eissn=1543-8392&rft.volume=14&rft.issue=9&rft.spage=3098&rft_id=info:doi/10.1021%2Facs.molpharmaceut.7b00346&rft_id=info%3Apmid%2F28703000&rft_id=info%3Apmid%2F28703000&rft.externalDocID=28703000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8392&client=summon