Adversarial Threshold Neural Computer for Molecular de Novo Design
In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel small-molecule organic structures. The model is based on generative adversarial network architecture and reinforcement learning. ATNC uses a Di...
Uložené v:
| Vydané v: | Molecular pharmaceutics Ročník 15; číslo 10; s. 4386 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.10.2018
|
| Predmet: | |
| ISSN: | 1543-8392, 1543-8392 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel small-molecule organic structures. The model is based on generative adversarial network architecture and reinforcement learning. ATNC uses a Differentiable Neural Computer as a generator and has a new specific block, called adversarial threshold (AT). AT acts as a filter between the agent (generator) and the environment (discriminator + objective reward functions). Furthermore, to generate more diverse molecules we introduce a new objective reward function named Internal Diversity Clustering (IDC). In this work, ATNC is tested and compared with the ORGANIC model. Both models were trained on the SMILES string representation of the molecules, using four objective functions (internal similarity, Muegge druglikeness filter, presence or absence of sp
-rich fragments, and IDC). The SMILES representations of 15K druglike molecules from the ChemDiv collection were used as a training data set. For the different functions, ATNC outperforms ORGANIC. Combined with the IDC, ATNC generates 72% of valid and 77% of unique SMILES strings, while ORGANIC generates only 7% of valid and 86% of unique SMILES strings. For each set of molecules generated by ATNC and ORGANIC, we analyzed distributions of four molecular descriptors (number of atoms, molecular weight, logP, and tpsa) and calculated five chemical statistical features (internal diversity, number of unique heterocycles, number of clusters, number of singletons, and number of compounds that have not been passed through medicinal chemistry filters). Analysis of key molecular descriptors and chemical statistical features demonstrated that the molecules generated by ATNC elicited better druglikeness properties. We also performed in vitro validation of the molecules generated by ATNC; results indicated that ATNC is an effective method for producing hit compounds. |
|---|---|
| AbstractList | In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel small-molecule organic structures. The model is based on generative adversarial network architecture and reinforcement learning. ATNC uses a Differentiable Neural Computer as a generator and has a new specific block, called adversarial threshold (AT). AT acts as a filter between the agent (generator) and the environment (discriminator + objective reward functions). Furthermore, to generate more diverse molecules we introduce a new objective reward function named Internal Diversity Clustering (IDC). In this work, ATNC is tested and compared with the ORGANIC model. Both models were trained on the SMILES string representation of the molecules, using four objective functions (internal similarity, Muegge druglikeness filter, presence or absence of sp
-rich fragments, and IDC). The SMILES representations of 15K druglike molecules from the ChemDiv collection were used as a training data set. For the different functions, ATNC outperforms ORGANIC. Combined with the IDC, ATNC generates 72% of valid and 77% of unique SMILES strings, while ORGANIC generates only 7% of valid and 86% of unique SMILES strings. For each set of molecules generated by ATNC and ORGANIC, we analyzed distributions of four molecular descriptors (number of atoms, molecular weight, logP, and tpsa) and calculated five chemical statistical features (internal diversity, number of unique heterocycles, number of clusters, number of singletons, and number of compounds that have not been passed through medicinal chemistry filters). Analysis of key molecular descriptors and chemical statistical features demonstrated that the molecules generated by ATNC elicited better druglikeness properties. We also performed in vitro validation of the molecules generated by ATNC; results indicated that ATNC is an effective method for producing hit compounds. In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel small-molecule organic structures. The model is based on generative adversarial network architecture and reinforcement learning. ATNC uses a Differentiable Neural Computer as a generator and has a new specific block, called adversarial threshold (AT). AT acts as a filter between the agent (generator) and the environment (discriminator + objective reward functions). Furthermore, to generate more diverse molecules we introduce a new objective reward function named Internal Diversity Clustering (IDC). In this work, ATNC is tested and compared with the ORGANIC model. Both models were trained on the SMILES string representation of the molecules, using four objective functions (internal similarity, Muegge druglikeness filter, presence or absence of sp3-rich fragments, and IDC). The SMILES representations of 15K druglike molecules from the ChemDiv collection were used as a training data set. For the different functions, ATNC outperforms ORGANIC. Combined with the IDC, ATNC generates 72% of valid and 77% of unique SMILES strings, while ORGANIC generates only 7% of valid and 86% of unique SMILES strings. For each set of molecules generated by ATNC and ORGANIC, we analyzed distributions of four molecular descriptors (number of atoms, molecular weight, logP, and tpsa) and calculated five chemical statistical features (internal diversity, number of unique heterocycles, number of clusters, number of singletons, and number of compounds that have not been passed through medicinal chemistry filters). Analysis of key molecular descriptors and chemical statistical features demonstrated that the molecules generated by ATNC elicited better druglikeness properties. We also performed in vitro validation of the molecules generated by ATNC; results indicated that ATNC is an effective method for producing hit compounds.In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel small-molecule organic structures. The model is based on generative adversarial network architecture and reinforcement learning. ATNC uses a Differentiable Neural Computer as a generator and has a new specific block, called adversarial threshold (AT). AT acts as a filter between the agent (generator) and the environment (discriminator + objective reward functions). Furthermore, to generate more diverse molecules we introduce a new objective reward function named Internal Diversity Clustering (IDC). In this work, ATNC is tested and compared with the ORGANIC model. Both models were trained on the SMILES string representation of the molecules, using four objective functions (internal similarity, Muegge druglikeness filter, presence or absence of sp3-rich fragments, and IDC). The SMILES representations of 15K druglike molecules from the ChemDiv collection were used as a training data set. For the different functions, ATNC outperforms ORGANIC. Combined with the IDC, ATNC generates 72% of valid and 77% of unique SMILES strings, while ORGANIC generates only 7% of valid and 86% of unique SMILES strings. For each set of molecules generated by ATNC and ORGANIC, we analyzed distributions of four molecular descriptors (number of atoms, molecular weight, logP, and tpsa) and calculated five chemical statistical features (internal diversity, number of unique heterocycles, number of clusters, number of singletons, and number of compounds that have not been passed through medicinal chemistry filters). Analysis of key molecular descriptors and chemical statistical features demonstrated that the molecules generated by ATNC elicited better druglikeness properties. We also performed in vitro validation of the molecules generated by ATNC; results indicated that ATNC is an effective method for producing hit compounds. |
| Author | Zhavoronkov, Alex Putin, Evgeny Ivanenkov, Yan Aliper, Alex Asadulaev, Arip Vanhaelen, Quentin Aladinskaya, Anastasia V |
| Author_xml | – sequence: 1 givenname: Evgeny surname: Putin fullname: Putin, Evgeny organization: Computer Technologies Lab , ITMO University , St. Petersburg 197101 , Russia – sequence: 2 givenname: Arip surname: Asadulaev fullname: Asadulaev, Arip organization: Computer Technologies Lab , ITMO University , St. Petersburg 197101 , Russia – sequence: 3 givenname: Quentin orcidid: 0000-0002-4611-2046 surname: Vanhaelen fullname: Vanhaelen, Quentin organization: Pharma.AI Department , Insilico Medicine, Inc. , Baltimore , Maryland 21218 , United States – sequence: 4 givenname: Yan surname: Ivanenkov fullname: Ivanenkov, Yan organization: Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre , Oktyabrya Prospekt 71 , 450054 Ufa , Russian Federation – sequence: 5 givenname: Anastasia V surname: Aladinskaya fullname: Aladinskaya, Anastasia V organization: Moscow Institute of Physics and Technology (State University) , 9 Institutskiy Lane , Dolgoprudny City , Moscow Region 141700 , Russian Federation – sequence: 6 givenname: Alex surname: Aliper fullname: Aliper, Alex organization: Pharma.AI Department , Insilico Medicine, Inc. , Baltimore , Maryland 21218 , United States – sequence: 7 givenname: Alex orcidid: 0000-0001-7067-8966 surname: Zhavoronkov fullname: Zhavoronkov, Alex organization: The Biogerontology Research Foundation , OX1 1RU Oxford , U.K |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29569445$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj8lOwzAYhC0Eogu8AjI3LileEic-lrJKpRzoPbKd3zTIiYMdV-LtqUSROM1o9M1IM0Onve8BoWtKFpQweqtMXHTeDTsVOmUgjYtSE0p5eYKmtMh5VnHJTv_5CZrF-EkIywvGz9GEyULIPC-m6G7Z7CFEFVrl8HYXIO68a_AGUjgEK98NaYSArQ_41TswyamAG8Abv_f4HmL70V-gM6tchMujztH748N29Zyt355eVst1prjgY1aABZILxhoiqCXGSC4JEcQ2pS6BAdWaKmNKbZUWh4qRklCrK1tVWpRsjm5-V4fgvxLEse7aaMA51YNPsWaEVoRKzuQBvTqiSXfQ1ENoOxW-67_X7Ac9GmBZ |
| CitedBy_id | crossref_primary_10_1016_j_ymeth_2025_03_001 crossref_primary_10_1038_s42004_022_00733_0 crossref_primary_10_1016_j_compchemeng_2020_107005 crossref_primary_10_1002_jcc_26494 crossref_primary_10_1016_j_bioorg_2024_107285 crossref_primary_10_1111_cbdd_13674 crossref_primary_10_1186_s13321_025_00976_8 crossref_primary_10_1186_s13321_024_00887_0 crossref_primary_10_1016_j_medidd_2025_100213 crossref_primary_10_1002_advs_202101864 crossref_primary_10_1038_s41563_019_0338_z crossref_primary_10_1039_D2SC05709C crossref_primary_10_1002_cpt_1795 crossref_primary_10_1016_j_commatsci_2024_113258 crossref_primary_10_1002_minf_201900087 crossref_primary_10_1007_s12257_020_0049_y crossref_primary_10_1080_17460441_2023_2134340 crossref_primary_10_1016_j_ailsci_2022_100031 crossref_primary_10_1080_14737140_2025_2557602 crossref_primary_10_1021_acs_jmedchem_4c01616 crossref_primary_10_1016_j_compbiolchem_2023_107911 crossref_primary_10_1186_s13321_022_00599_3 crossref_primary_10_1007_s00894_023_05492_w crossref_primary_10_1021_acs_jcim_5c01020 crossref_primary_10_2174_1381612829666230428110542 crossref_primary_10_1016_j_drudis_2024_104133 crossref_primary_10_1016_j_ejphar_2025_177608 crossref_primary_10_1038_s41467_025_59870_4 crossref_primary_10_1002_slct_202502448 crossref_primary_10_1038_s42003_021_02586_0 crossref_primary_10_1073_pnas_1912707116 crossref_primary_10_1016_j_jmgm_2021_108045 crossref_primary_10_1002_wcms_1723 crossref_primary_10_1016_j_drudis_2023_103675 crossref_primary_10_1016_j_ces_2022_118119 crossref_primary_10_4155_fmc_2018_0358 crossref_primary_10_26599_BDMA_2023_9020009 crossref_primary_10_1016_j_ailsci_2022_100045 crossref_primary_10_1002_anie_201909987 crossref_primary_10_1007_s12039_023_02196_9 crossref_primary_10_1038_s41467_024_54456_y crossref_primary_10_1016_j_ces_2025_122048 crossref_primary_10_1109_TNNLS_2021_3106392 crossref_primary_10_1038_s42256_024_00843_5 crossref_primary_10_1109_ACCESS_2023_3285811 crossref_primary_10_1146_annurev_biodatasci_092820_033938 crossref_primary_10_1186_s13321_019_0364_5 crossref_primary_10_1002_agt2_70089 crossref_primary_10_1002_jcc_27354 crossref_primary_10_1002_jcc_70100 crossref_primary_10_1039_D4SC00966E crossref_primary_10_1039_D1RA03086H crossref_primary_10_1080_17460441_2022_2019704 crossref_primary_10_1002_wcms_1395 crossref_primary_10_1109_TCBB_2024_3349990 crossref_primary_10_1021_acschemneuro_4c00405 crossref_primary_10_1016_j_ailsci_2023_100064 crossref_primary_10_1080_17460441_2024_2367014 crossref_primary_10_1002_ange_201909987 crossref_primary_10_3390_ijms22041676 crossref_primary_10_1021_acs_chemrev_4c00678 crossref_primary_10_1021_jacs_2c13467 crossref_primary_10_1039_D3SC04091G crossref_primary_10_1016_j_ejmech_2024_117164 crossref_primary_10_1016_j_sbi_2021_10_001 crossref_primary_10_1021_acsomega_5c01443 crossref_primary_10_3390_ijms24076573 crossref_primary_10_1186_s13321_019_0397_9 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_1039_C9SC01928F crossref_primary_10_1039_C9SC04026A crossref_primary_10_1016_j_drudis_2024_103992 crossref_primary_10_4155_fmc_2021_0243 crossref_primary_10_1038_s42256_022_00463_x crossref_primary_10_1038_s41598_019_47148_x crossref_primary_10_1016_j_fmre_2024_11_027 crossref_primary_10_1002_wcms_1450 crossref_primary_10_3389_fphar_2020_565644 crossref_primary_10_1186_s13321_019_0328_9 crossref_primary_10_1038_s41587_019_0224_x crossref_primary_10_1093_bib_bbab592 crossref_primary_10_1016_j_compbiomed_2022_105403 crossref_primary_10_1186_s13321_021_00497_0 crossref_primary_10_1038_s41467_021_23720_w crossref_primary_10_1002_minf_202300183 crossref_primary_10_1038_s41598_020_79682_4 crossref_primary_10_3389_fmolb_2020_00136 crossref_primary_10_1146_annurev_chembioeng_101220_102232 crossref_primary_10_1039_D1SC01206A crossref_primary_10_1016_j_neurot_2025_e00624 crossref_primary_10_1021_acs_jcim_5c01737 crossref_primary_10_1186_s13321_020_00473_0 crossref_primary_10_3390_ijms23052797 crossref_primary_10_1016_j_compbiolchem_2023_107927 crossref_primary_10_1038_s42256_021_00403_1 crossref_primary_10_3389_fgene_2024_1450529 crossref_primary_10_1016_j_compbiomed_2024_108810 crossref_primary_10_3390_molecules25143250 crossref_primary_10_1088_2632_2153_ad360e crossref_primary_10_1002_jcc_27315 crossref_primary_10_1038_s42256_020_0209_y crossref_primary_10_3389_fphar_2020_00269 crossref_primary_10_1038_s41587_020_0418_2 crossref_primary_10_6028_jres_126_008 crossref_primary_10_1039_C9ME00039A crossref_primary_10_1186_s13321_021_00550_y crossref_primary_10_1016_j_jbvi_2019_e00126 crossref_primary_10_3389_frhem_2024_1305741 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.molpharmaceut.7b01137 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1543-8392 |
| ExternalDocumentID | 29569445 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 123 4.4 53G 55A 5VS 7~N AABXI ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CGR CS3 CUPRZ CUY CVF DU5 EBS ECM ED~ EIF EJD F5P GGK GNL H~9 IH9 JG~ NPM P2P RNS ROL UI2 VF5 VG9 W1F 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a363t-5efe04622d061f0cc9390060fd7b7e2e1bb1acc7bfab6a36c9901fb8f88b672 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 157 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446413400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1543-8392 |
| IngestDate | Fri Jul 11 09:41:07 EDT 2025 Thu Apr 03 06:56:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | generative adversarial network deep neural network molecular de novo design reinforcement learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a363t-5efe04622d061f0cc9390060fd7b7e2e1bb1acc7bfab6a36c9901fb8f88b672 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4611-2046 0000-0001-7067-8966 |
| PMID | 29569445 |
| PQID | 2018019329 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2018019329 pubmed_primary_29569445 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 20181001 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Molecular pharmaceutics |
| PublicationTitleAlternate | Mol Pharm |
| PublicationYear | 2018 |
| SSID | ssj0024523 |
| Score | 2.6140523 |
| Snippet | In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4386 |
| SubjectTerms | Machine Learning Neural Networks (Computer) |
| Title | Adversarial Threshold Neural Computer for Molecular de Novo Design |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29569445 https://www.proquest.com/docview/2018019329 |
| Volume | 15 |
| WOSCitedRecordID | wos000446413400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05a8MwFBZtU0qX3kd6oUDJFKU-JWsqvUKXGEMzZDOSLEGH2mmdBvLv--QDT4VCF4ONBUI8vfe980PoNsx8asDsEUdyTQJKHSIc4ZEgNIGRIWUZMxXZBIvjaD7nSRNwK5uyylYnVoo6K5SNkYOT7oIyBbTB7xefxLJG2exqQ6GxiXo-QBlb0sXmUTdrL6zo3QAl-MQCgR00qIcVuHdCleOPwrazNoHjMZMg6j77HWlWFmey_9-9HqC9Bmvih1o4DtGGzo_QMKk3sx7hWdd7VY7wECfdGOv1MXqsuJpLYSUUfgW33GaqsJ3mAR9aNggMoBdPW45dnGkcF6sCP1eFISfobfIye3olDeMCET71lyTURttuVS8DM28cpbjP7cQWkzHJtKddKV2hFJNGSApLlM2qGRmZKJKUeadoKy9yfY6wMoDrOKAXX5sgYCYyRqrIpSrkVHMR9NGgPbkU5NkmKUSui-8y7c6uj87q408X9eCN1ANnjgdBePGH1Zdo177UdXdXqGfgNutrtK1Wy_fy66YSFHjGyfQHKFzKKw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+Threshold+Neural+Computer+for+Molecular+de+Novo+Design&rft.jtitle=Molecular+pharmaceutics&rft.au=Putin%2C+Evgeny&rft.au=Asadulaev%2C+Arip&rft.au=Vanhaelen%2C+Quentin&rft.au=Ivanenkov%2C+Yan&rft.date=2018-10-01&rft.eissn=1543-8392&rft.volume=15&rft.issue=10&rft.spage=4386&rft_id=info:doi/10.1021%2Facs.molpharmaceut.7b01137&rft_id=info%3Apmid%2F29569445&rft_id=info%3Apmid%2F29569445&rft.externalDocID=29569445 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8392&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8392&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8392&client=summon |