Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Process‐Based Hydrological Models

Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research Jg. 57; H. 9
Hauptverfasser: Li, Dayang, Marshall, Lucy, Liang, Zhongmin, Sharma, Ashish, Zhou, Yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington John Wiley & Sons, Inc 01.09.2021
Schlagworte:
ISSN:0043-1397, 1944-7973
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!