Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Process‐Based Hydrological Models
Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model...
Uložené v:
| Vydané v: | Water resources research Ročník 57; číslo 9 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
John Wiley & Sons, Inc
01.09.2021
|
| Predmet: | |
| ISSN: | 0043-1397, 1944-7973 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model based on deep learning to give full scope to their respective advantages. In classical residual error models, Bayesian inference via Markov chain Monte Carlo (MCMC) is commonly used to provide an estimation of the uncertainty. However, deep neural networks tend to have excessively large numbers of parameters, making MCMC an unsuitable approach. Here, we introduce an alternative to Bayesian MCMC sampling called stochastic variational inference (SVI) which has recently been developed for Bayesian deep learning in Natural Language Processing. We implement SVI in a Long Short‐Term Memory (LSTM) network and construct residual error models in process‐based hydrological models. This approach is examined in the contrasting geographical and climatic characteristics of two catchments from China, the Tangnaihai catchment and the Shiquan catchment. Compared with the Bayesian linear regression model, the Bayesian LSTM provides better uncertainty estimates. Specifically, the proposed method improves the Continuous Ranked Probability Score (CRPS) by over 10% in both two catchments. In the Tangnaihai catchment, it provides more than 10% narrower uncertainty intervals in terms of Sharpness with slightly superior Reliability. In the Shiquan catchment, it provides comparable uncertainty intervals with better Reliability. Further, our study highlights the scalability of SVI to high‐dimensional parameter spaces in hydrological applications (e.g., distributed hydrological models, groundwater models).
Key Points
Residual error models are constructed to take advantages of process‐based hydrological models and Bayesian deep learning
Bayesian Long Short‐Term Memory provides better streamflow uncertainty estimates than a Bayesian linear regression model
Stochastic variational inference as an alternative to Markov chain Monte Carlo is viable to estimate tens of thousands of parameters |
|---|---|
| AbstractList | Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model based on deep learning to give full scope to their respective advantages. In classical residual error models, Bayesian inference via Markov chain Monte Carlo (MCMC) is commonly used to provide an estimation of the uncertainty. However, deep neural networks tend to have excessively large numbers of parameters, making MCMC an unsuitable approach. Here, we introduce an alternative to Bayesian MCMC sampling called stochastic variational inference (SVI) which has recently been developed for Bayesian deep learning in Natural Language Processing. We implement SVI in a Long Short‐Term Memory (LSTM) network and construct residual error models in process‐based hydrological models. This approach is examined in the contrasting geographical and climatic characteristics of two catchments from China, the Tangnaihai catchment and the Shiquan catchment. Compared with the Bayesian linear regression model, the Bayesian LSTM provides better uncertainty estimates. Specifically, the proposed method improves the Continuous Ranked Probability Score (CRPS) by over 10% in both two catchments. In the Tangnaihai catchment, it provides more than 10% narrower uncertainty intervals in terms of Sharpness with slightly superior Reliability. In the Shiquan catchment, it provides comparable uncertainty intervals with better Reliability. Further, our study highlights the scalability of SVI to high‐dimensional parameter spaces in hydrological applications (e.g., distributed hydrological models, groundwater models). Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model based on deep learning to give full scope to their respective advantages. In classical residual error models, Bayesian inference via Markov chain Monte Carlo (MCMC) is commonly used to provide an estimation of the uncertainty. However, deep neural networks tend to have excessively large numbers of parameters, making MCMC an unsuitable approach. Here, we introduce an alternative to Bayesian MCMC sampling called stochastic variational inference (SVI) which has recently been developed for Bayesian deep learning in Natural Language Processing. We implement SVI in a Long Short‐Term Memory (LSTM) network and construct residual error models in process‐based hydrological models. This approach is examined in the contrasting geographical and climatic characteristics of two catchments from China, the Tangnaihai catchment and the Shiquan catchment. Compared with the Bayesian linear regression model, the Bayesian LSTM provides better uncertainty estimates. Specifically, the proposed method improves the Continuous Ranked Probability Score (CRPS) by over 10% in both two catchments. In the Tangnaihai catchment, it provides more than 10% narrower uncertainty intervals in terms of Sharpness with slightly superior Reliability. In the Shiquan catchment, it provides comparable uncertainty intervals with better Reliability. Further, our study highlights the scalability of SVI to high‐dimensional parameter spaces in hydrological applications (e.g., distributed hydrological models, groundwater models). Key Points Residual error models are constructed to take advantages of process‐based hydrological models and Bayesian deep learning Bayesian Long Short‐Term Memory provides better streamflow uncertainty estimates than a Bayesian linear regression model Stochastic variational inference as an alternative to Markov chain Monte Carlo is viable to estimate tens of thousands of parameters Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model based on deep learning to give full scope to their respective advantages. In classical residual error models, Bayesian inference via Markov chain Monte Carlo (MCMC) is commonly used to provide an estimation of the uncertainty. However, deep neural networks tend to have excessively large numbers of parameters, making MCMC an unsuitable approach. Here, we introduce an alternative to Bayesian MCMC sampling called stochastic variational inference (SVI) which has recently been developed for Bayesian deep learning in Natural Language Processing. We implement SVI in a Long Short‐Term Memory (LSTM) network and construct residual error models in process‐based hydrological models. This approach is examined in the contrasting geographical and climatic characteristics of two catchments from China, the Tangnaihai catchment and the Shiquan catchment. Compared with the Bayesian linear regression model, the Bayesian LSTM provides better uncertainty estimates. Specifically, the proposed method improves the Continuous Ranked Probability Score (CRPS) by over 10% in both two catchments. In the Tangnaihai catchment, it provides more than 10% narrower uncertainty intervals in terms of Sharpness with slightly superior Reliability. In the Shiquan catchment, it provides comparable uncertainty intervals with better Reliability. Further, our study highlights the scalability of SVI to high‐dimensional parameter spaces in hydrological applications (e.g., distributed hydrological models, groundwater models). Residual error models are constructed to take advantages of process‐based hydrological models and Bayesian deep learning Bayesian Long Short‐Term Memory provides better streamflow uncertainty estimates than a Bayesian linear regression model Stochastic variational inference as an alternative to Markov chain Monte Carlo is viable to estimate tens of thousands of parameters |
| Author | Liang, Zhongmin Zhou, Yan Marshall, Lucy Li, Dayang Sharma, Ashish |
| Author_xml | – sequence: 1 givenname: Dayang orcidid: 0000-0003-1420-1551 surname: Li fullname: Li, Dayang organization: University of New South Wales – sequence: 2 givenname: Lucy orcidid: 0000-0003-0450-4292 surname: Marshall fullname: Marshall, Lucy email: lucy.marshall@unsw.edu.au organization: University of New South Wales – sequence: 3 givenname: Zhongmin orcidid: 0000-0002-1079-1075 surname: Liang fullname: Liang, Zhongmin organization: Hohai University – sequence: 4 givenname: Ashish orcidid: 0000-0002-6758-0519 surname: Sharma fullname: Sharma, Ashish organization: University of New South Wales – sequence: 5 givenname: Yan surname: Zhou fullname: Zhou, Yan organization: University of New South Wales |
| BookMark | eNp9kc1KXTEUhUOx0KvtrA8Q6KQDj81_Tob14h9cqVy1d3jISXI0ckw0yUUOnfQRfEafxNTbQRHsaG9Y39qw19oGWyEGB8BnjPYwIuobQQSvlnWTkrwDM6wYa6SSdAvMEGK0wVTJD2A75xuEMONCzsCvfT257HWAi_OLU7jy5Rqel2iudS7ewJ86eV18DHqEJ2FwyQXj4BATPKj6bZXCFTyN1o3wsiqpaB_KBH2AZykal_PT78d9nZ2Fx5NNcYxX3tRTL478Ebwf9Jjdp79zB1weHlzMj5vFj6OT-fdFo6mgqmlRz1qtFO6FHUiPbT9oPGDJDGOcK4SIs5LYvh1aKiwxLTZEUMsUYdwKZekO-Lq5e5fi_drl0t36bNw46uDiOndESM6lRAxV9Msr9CauU_2-UlwKIRRtZaXIhjIp5pzc0BlfXmIqSfuxw6j700f3bx_VtPvKdJdqgml6C6cb_MGPbvov262W8yXhHCv6DBUVnWk |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_131737 crossref_primary_10_1016_j_eswa_2024_126004 crossref_primary_10_1016_j_jhydrol_2022_128122 crossref_primary_10_1016_j_jhydrol_2024_130608 crossref_primary_10_1016_j_ejrh_2025_102668 crossref_primary_10_1016_j_jhydrol_2023_129450 crossref_primary_10_1080_02626667_2025_2513478 crossref_primary_10_1038_s43017_023_00450_9 crossref_primary_10_3390_rs17071225 crossref_primary_10_1016_j_jhydrol_2025_134285 crossref_primary_10_1016_j_jhydrol_2024_131494 crossref_primary_10_1016_j_jhydrol_2025_134004 crossref_primary_10_1016_j_jhydrol_2024_132189 crossref_primary_10_1016_j_rse_2022_113388 crossref_primary_10_1016_j_jhydrol_2021_127221 crossref_primary_10_1016_j_jhydrol_2023_129688 crossref_primary_10_1007_s00477_025_02954_w crossref_primary_10_1016_j_jhydrol_2024_131706 crossref_primary_10_2166_hydro_2025_011 crossref_primary_10_5194_hess_28_2809_2024 crossref_primary_10_1016_j_jhydrol_2022_127764 crossref_primary_10_7554_eLife_73870 crossref_primary_10_1029_2022WR033644 crossref_primary_10_1080_02626667_2022_2145201 crossref_primary_10_1016_j_envsoft_2022_105474 crossref_primary_10_3390_w17152352 crossref_primary_10_2166_nh_2023_221 crossref_primary_10_1016_j_asr_2024_05_023 crossref_primary_10_1016_j_rines_2024_100040 crossref_primary_10_1016_j_jhydrol_2024_130862 crossref_primary_10_1016_j_envsoft_2025_106699 crossref_primary_10_3390_w17071095 crossref_primary_10_3390_rs17111826 crossref_primary_10_1016_j_agwat_2025_109713 crossref_primary_10_5194_hess_27_4529_2023 crossref_primary_10_3390_w17182722 crossref_primary_10_1016_j_scitotenv_2023_164494 crossref_primary_10_3390_w13233420 crossref_primary_10_1016_j_jclepro_2023_140035 crossref_primary_10_1016_j_jhydrol_2023_129347 crossref_primary_10_1016_j_jhydrol_2025_133928 crossref_primary_10_1016_j_jhydrol_2023_129669 crossref_primary_10_3390_electronics12173593 crossref_primary_10_1016_j_jhydrol_2023_130498 crossref_primary_10_1016_j_jhydrol_2023_129269 crossref_primary_10_1016_j_jhydrol_2025_132918 crossref_primary_10_1109_ACCESS_2024_3412948 crossref_primary_10_1016_j_envsoft_2022_105326 crossref_primary_10_1016_j_jhydrol_2025_132879 crossref_primary_10_1016_j_apm_2024_115806 crossref_primary_10_1016_j_envsoft_2023_105831 crossref_primary_10_1016_j_jhydrol_2025_133086 crossref_primary_10_3390_s24134305 crossref_primary_10_1109_ACCESS_2025_3567640 crossref_primary_10_1080_02626667_2025_2462686 |
| Cites_doi | 10.1029/2004GL020864 10.1029/2005WR004745 10.1007/978-3-642-33335-4_260514 10.1016/j.jhydrol.2009.08.003 10.1016/j.jhydrol.2005.05.023 10.1016/j.jhydrol.2018.05.024 10.1109/tkde.2016.2606428 10.1016/j.jhydrol.2017.06.004 10.1007/BF00992696 10.1007/s11222-008-9104-9 10.1016/0022-1694(70)90255-6 10.1016/j.jhydrol.2017.11.018 10.1080/01621459.2017.1285773 10.1029/2019WR026962 10.1029/2011WR010608 10.1029/2019WR025326 10.1007/978-3-642-39925-1 10.1002/2013WR014185 10.1007/978-0-387-45528-0 10.1029/2009WR008933 10.1029/2003WR002378 10.1016/j.ejrh.2016.03.003 10.1029/2018WR022643 10.1093/biomet/57.1.97 10.1002/hyp.8069 10.2166/nh.2018.110 10.1002/wrcr.20226 10.1016/j.envsoft.2019.104493 10.1029/2005WR004368 10.5194/hess-15-255-2011 10.1063/1.1699114 10.5194/hess-21-4021-2017 10.1029/2009WR008584 10.1016/j.inffus.2021.05.008 10.1002/2017GL075619 10.1029/2019WR026979 10.1002/2014WR016395 10.1016/j.jhydrol.2012.01.021 10.2166/nh.2010.009 10.1029/2019WR026128 10.1002/2016WR019168 10.1038/s41586-019-0912-1 10.1162/neco.1997.9.8.1735 10.5555/3322706.3322734 10.1029/2019WR025477 10.1029/2001WR001118 10.1029/2010WR010217 10.1016/j.jhydrol.2018.04.065 10.5194/hess-19-3181-2015 10.1061/(ASCE)HE.1943-5584.0000926 10.1002/bimj.201700129 10.1080/01431161.2018.1519287 10.1016/j.jhydrol.2015.05.051 10.1126/science.357.6346.22 10.1029/2001WR000795 10.1029/2005WR004613 10.1007/s00477-021-01980-8 10.1016/j.jhydrol.2021.126202 10.1109/CVPR.2017.632 10.1111/j.2517-6161.1964.tb00553.x 10.1029/95WR01955 10.1016/j.advwatres.2019.103470 10.1093/biomet/83.1.81 10.1029/95WR02966 10.1002/2017WR021560 10.2307/3318737 10.1029/2019WR025055 10.1029/2000WR900068 10.1016/j.jhydrol.2018.02.026 10.1029/2011WR010973 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2 10.1023/A:1007665907178 10.1214/aoms/1177729694 10.1029/2011WR011412 10.1061/(ASCE)0887-3801(2001)15:3(208) 10.1080/15715124.2008.9635341 10.1029/2018WR024463 10.1080/02626668509490989 10.1029/2018WR024148 10.1029/2020WR028095 10.5194/hess-22-6005-2018 10.1515/IJNSNS.2009.10.3.273 10.1029/2001WR000478 10.1029/1999WR900099 10.1029/91WR02985 10.1029/2000WR900363 10.5194/hess-22-5639-2018 10.1029/2019WR024908 10.1016/j.asoc.2018.03.021 10.1029/2006WR005205 |
| ContentType | Journal Article |
| Copyright | 2021. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2021. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| DOI | 10.1029/2021WR029772 |
| DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2021WR029772 WRCR25519 |
| Genre | article |
| GrantInformation_xml | – fundername: MOST, National Key Research and Development Program of China (973 Program) funderid: 2018YFC0407206 – fundername: China Scholarship Council funderid: 201906710032 – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province funderid: KYCX20_0462 – fundername: Fundamental Research Funds for the Central Universities funderid: B200203047 – fundername: Australian Research Council / Discovery Project funderid: DP170103959 – fundername: Major Program of the National Natural Science Foundation of China funderid: 41730750 – fundername: Research Technology Services |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a3639-80b48a991b6df2b1dbfa1f174c44559002ed72db8f836d2c81c263d49245d69d3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703704400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri Sep 05 17:33:40 EDT 2025 Fri Aug 29 07:20:13 EDT 2025 Sat Nov 29 01:36:48 EST 2025 Tue Nov 18 21:20:34 EST 2025 Wed Jan 22 16:27:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3639-80b48a991b6df2b1dbfa1f174c44559002ed72db8f836d2c81c263d49245d69d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1079-1075 0000-0003-0450-4292 0000-0002-6758-0519 0000-0003-1420-1551 |
| PQID | 2576669387 |
| PQPubID | 105507 |
| PageCount | 25 |
| ParticipantIDs | proquest_miscellaneous_2675577040 proquest_journals_2576669387 crossref_citationtrail_10_1029_2021WR029772 crossref_primary_10_1029_2021WR029772 wiley_primary_10_1029_2021WR029772_WRCR25519 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 20210901 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 1995; 31 2018; 562 2018; 561 2019; 50 2019; 55 2017; 44 2019; 566 1951; 22 2020; 56 2008; 6 2011; 15 2017; 551 2017; 112 1997; 9 1996; 32 2017; 357 2019; 121 2021; 35 1992; 8 2004; 31 2017; 30 2021; 76 2013; 14 2009; 10 2019; 20 2000 2000; 15 2021; 598 2014; 15 2001; 15 2011; 25 2020; 136 2014; 50 1953; 21 2002; 38 2004; 40 2006; 317 2017; 60 2015; 19 2013; 49 2012 2015; 51 2010 2008; 18 2017; 21 1997 2008 1970; 10 2006 2009; 377 2015; 528 1964; 26 2018; 22 2012; 426 2010; 41 2018; 68 1970; 57 2017; 53 2016; 6 2006; 42 2019; 40 2010; 46 2001; 7 2000; 36 2018; 556 2018; 559 2020 2015; 20 1999; 37 1996; 83 1992; 28 1999; 35 2019 2018 2017 2001; 37 2016 2017; 18 1985; 30 2015 2008; 44 2014 2011; 47 2013 2012; 48 2007; 43 2016; 28 2018; 54 e_1_2_14_114_1 e_1_2_14_73_1 e_1_2_14_110_1 e_1_2_14_31_1 e_1_2_14_92_1 Kingma D. P. (e_1_2_14_50_1) 2014 e_1_2_14_35_1 Shi X. (e_1_2_14_85_1) 2015 e_1_2_14_39_1 e_1_2_14_16_1 e_1_2_14_58_1 Hinton G. E. (e_1_2_14_33_1) 2012 Ritchie D. (e_1_2_14_80_1) 2016 Kucukelbir A. (e_1_2_14_54_1) 2017; 18 e_1_2_14_6_1 e_1_2_14_107_1 e_1_2_14_103_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_62_1 e_1_2_14_81_1 Burkardt J. (e_1_2_14_13_1) 2014 e_1_2_14_66_1 e_1_2_14_28_1 e_1_2_14_89_1 e_1_2_14_47_1 Hron J. (e_1_2_14_36_1) 2017 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_111_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_91_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 Paszke A. (e_1_2_14_76_1) 2019 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_99_1 Gal Y. (e_1_2_14_27_1) 2016 Fabius O. (e_1_2_14_24_1) 2014 Kingma D. P. (e_1_2_14_51_1) 2013 e_1_2_14_7_1 e_1_2_14_108_1 Vaswani A. (e_1_2_14_96_1) 2017; 30 e_1_2_14_104_1 e_1_2_14_84_1 e_1_2_14_100_1 e_1_2_14_42_1 Hron J. (e_1_2_14_37_1) 2018 Srivastava N. (e_1_2_14_90_1) 2014; 15 e_1_2_14_3_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_65_1 Boyle D. P. (e_1_2_14_12_1) 2000 e_1_2_14_88_1 e_1_2_14_69_1 e_1_2_14_94_1 e_1_2_14_75_1 e_1_2_14_52_1 e_1_2_14_10_1 e_1_2_14_56_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_79_1 Hsu K. L. (e_1_2_14_40_1) 1997 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_105_1 e_1_2_14_60_1 e_1_2_14_83_1 Nachtergaele F. (e_1_2_14_71_1) 2010 e_1_2_14_101_1 Osband I. (e_1_2_14_74_1) 2016 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_87_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_19_1 Blei D. M. (e_1_2_14_9_1) 2016 Dhaka A. K. (e_1_2_14_17_1) 2020 e_1_2_14_113_1 e_1_2_14_97_1 Jarvis A. (e_1_2_14_43_1) 2008 e_1_2_14_70_1 Ranganath R. (e_1_2_14_77_1) 2014 e_1_2_14_93_1 e_1_2_14_32_1 e_1_2_14_55_1 e_1_2_14_59_1 e_1_2_14_78_1 e_1_2_14_29_1 e_1_2_14_5_1 e_1_2_14_106_1 e_1_2_14_102_1 Yao Y. (e_1_2_14_112_1) 2018 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_18_1 |
| References_xml | – volume: 48 issue: 1 year: 2012 article-title: High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM (ZS) and high‐performance computing publication-title: Water Resources Research – volume: 556 start-page: 409 year: 2018 end-page: 418 article-title: Use Long Short‐Term Memory to enhance Internet of Things for combined sewer overflow monitoring publication-title: Journal of Hydrology – volume: 76 start-page: 243 year: 2021 end-page: 297 article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges publication-title: Information Fusion – volume: 30 start-page: 273 issue: 2 year: 1985 end-page: 297 article-title: The probability‐distributed principle and runoff production at point and basin scales publication-title: Hydrological Sciences Journal – volume: 56 year: 2020 article-title: Evaluating the potential and challenges of an uncertainty quantification method for long short‐term memory models for soil moisture predictions publication-title: Water Resources Research – volume: 57 start-page: 97 issue: 1 year: 1970 end-page: 109 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika – volume: 31 start-page: 2517 issue: 10 year: 1995 end-page: 2530 article-title: Artificial neural network modeling of the rainfall‐runoff process publication-title: Water Resources Research – volume: 56 year: 2020 article-title: The utility of information flow in formulating discharge forecast models: A case study from an arid snow‐dominated catchment publication-title: Water Resources Research – volume: 42 issue: 11 year: 2006 article-title: Modeling the catchment via mixtures: Issues of model specification and validation publication-title: Water Resources Research – volume: 15 start-page: 1929 year: 2014 end-page: 1958 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – volume: 83 start-page: 81 issue: 1 year: 1996 end-page: 94 article-title: Rao‐Blackwellisation of sampling schemes publication-title: Biometrika – year: 2014 – volume: 55 start-page: 4533 issue: 1 year: 2019 end-page: 4549 article-title: Ecohydrologic error models for improved Bayesian inference in remotely sensed catchments publication-title: Water Resources Research – volume: 50 start-page: 2350 issue: 3 year: 2014 end-page: 2375 article-title: Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity publication-title: Water Resources Research – volume: 18 start-page: 430 issue: 1 year: 2017 end-page: 474 article-title: Automatic differentiation variational inference publication-title: Journal of Machine Learning Research – volume: 112 start-page: 859 issue: 518 year: 2017 end-page: 877 article-title: Variational inference: A review for statisticians publication-title: Journal of the American Statistical Association – volume: 36 start-page: 1865 issue: 7 year: 2000 end-page: 1872 article-title: Analyzing latent heat fluxes of coniferous forests with fuzzy logic publication-title: Water Resources Research – volume: 6 start-page: 66 year: 2016 end-page: 81 article-title: Impacts of recent climate change on the hydrology in the source region of the Yellow River basin publication-title: Journal of Hydrology: Regional Studies – volume: 55 start-page: 9519 issue: 11 year: 2019 end-page: 9543 article-title: Toward improved probabilistic predictions for flood forecasts generated using deterministic models publication-title: Water Resources Research – year: 2019 – volume: 8 start-page: 229 issue: 3–4 year: 1992 end-page: 256 article-title: Simple statistical gradient‐following algorithms for connectionist reinforcement learning publication-title: Machine Learning – volume: 377 start-page: 80 issue: 1–2 year: 2009 end-page: 91 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: Journal of Hydrology – volume: 40 issue: 2 year: 2004 article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling publication-title: Water Resources Research – volume: 28 start-page: 1015 issue: 4 year: 1992 end-page: 1031 article-title: Effective and efficient global optimization for conceptual rainfall‐runoff models publication-title: Water Resources Research – volume: 6 start-page: 109 issue: 2 year: 2008 end-page: 122 article-title: Data‐driven approaches for estimating uncertainty in rainfall‐runoff modelling publication-title: International Journal of River Basin Management – volume: 25 start-page: 3399 year: 2011 end-page: 3411 article-title: Streamflow trends and climate linkages in the source region of the Yellow River, China publication-title: Hydrological Processes – volume: 49 start-page: 2664 issue: 5 year: 2013 end-page: 2682 article-title: Efficient posterior exploration of a high‐dimensional groundwater model from two‐stage Markov chain Monte Carlo simulation and polynomial chaos expansion publication-title: Water Resources Research – volume: 56 issue: 1 year: 2020 article-title: A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning publication-title: Water Resources Research – volume: 44 start-page: 11030 year: 2017 end-page: 110309 article-title: Prolongation of SMAP to spatiotemporally seamless coverage of continental US using a deep learning neural network publication-title: Geophysical Research Letters – volume: 317 start-page: 307 issue: 3–4 year: 2006 end-page: 324 article-title: Distributed hydrological modelling in California semi‐arid shrublands: MIKE SHE model calibration and uncertainty estimation publication-title: Journal of Hydrology – year: 2016 – volume: 55 start-page: 6850 issue: 8 year: 2019 end-page: 6868 article-title: Prediction and inference of flow duration curves using multioutput neural networks publication-title: Water Resources Research – year: 2010 – volume: 357 start-page: 22 issue: 6346 year: 2017 end-page: 27 article-title: The AI detectives publication-title: Science – volume: 41 start-page: 355 issue: 5 year: 2010 end-page: 377 article-title: Système Hydrologique Europeén (SHE): Review and perspectives after 30 years development in distributed physically‐based hydrological modelling publication-title: Hydrology Research – volume: 10 start-page: 273 issue: 3 year: 2009 end-page: 290 article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self‐adaptive randomized subspace sampling publication-title: International Journal of Nonlinear Sciences and Numerical Simulation – volume: 21 start-page: 4021 issue: 8 year: 2017 end-page: 4036 article-title: Residual uncertainty estimation using instance‐based learning with applications to hydrologic forecasting publication-title: Hydrology and Earth System Sciences – volume: 562 start-page: 411 year: 2018 end-page: 422 article-title: High‐resolution modelling of the grass swale response to runoff inflows with Mike SHE publication-title: Journal of Hydrology – volume: 20 issue: 1 year: 2015 article-title: Estimating the uncertainty of hydrological predictions through data‐driven resampling techniques publication-title: Journal of Hydrologic Engineering – volume: 35 start-page: 1051 issue: 5 year: 2021 end-page: 1067 article-title: Uncertainty quantification for hydrological models based on neural networks: The dropout ensemble publication-title: Stochastic Environmental Research and Risk Assessment – year: 2013 – volume: 22 start-page: 79 issue: 1 year: 1951 end-page: 86 article-title: On information and sufficiency publication-title: The Annals of Mathematical Statistics – volume: 121 year: 2019 article-title: The influence of data transformations in simulating Total Suspended Solids using Bayesian inference publication-title: Environmental Modelling & Software – volume: 20 start-page: 973 issue: 1 year: 2019 end-page: 978 article-title: Pyro: Deep universal probabilistic programming publication-title: Journal of Machine Learning Research – volume: 551 start-page: 340 year: 2017 end-page: 351 article-title: Bayesian flood forecasting methods: A review publication-title: Journal of Hydrology – volume: 54 start-page: 8558 issue: 11 year: 2018 end-page: 8593 article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists publication-title: Water Resources Research – volume: 22 start-page: 5639 issue: 11 year: 2018 end-page: 5656 article-title: HESS Opinions: Incubating deep‐learning‐powered hydrologic science advances as a community publication-title: Hydrology and Earth System Sciences – volume: 50 start-page: 644 issue: 2 year: 2019 end-page: 654 article-title: Multi‐objective calibration of MIKE SHE with SMAP soil moisture datasets publication-title: Hydrology Research – volume: 48 issue: 5 year: 2012 article-title: A log‐sinh transformation for data normalization and variance stabilization publication-title: Water Resources Research – volume: 566 start-page: 195 issue: 7743 year: 2019 end-page: 204 article-title: Deep learning and process understanding for data‐driven Earth system science publication-title: Nature – volume: 56 issue: 11 year: 2020 article-title: Multi‐temporal hydrological residual error modeling for seamless subseasonal streamflow forecasting publication-title: Water Resources Research – volume: 31 issue: 18 year: 2004 article-title: Delineation of geologic facies with statistical learning theory publication-title: Geophysical Research Letters – volume: 60 start-page: 216 issue: 1 year: 2017 end-page: 218 article-title: On the necessity and design of studies comparing statistical methods publication-title: Biometrical Journal – volume: 18 start-page: 435 issue: 4 year: 2008 end-page: 446 article-title: Differential evolution Markov chain with snooker updater and fewer chains publication-title: Statistics and Computing – volume: 38 start-page: 8‐1 issue: 9 year: 2002 end-page: 8‐15 article-title: Use of sensitivity and uncertainty measures in distributed hydrological modeling with an application to the MIKE SHE model publication-title: Water Resources Research – year: 2018 – volume: 42 issue: 3 year: 2006 article-title: Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory publication-title: Water Resources Research – start-page: 68 year: 1997 end-page: 73 – volume: 32 start-page: 679 issue: 3 year: 1996 end-page: 693 article-title: A nearest neighbor bootstrap for resampling hydrologic time series publication-title: Water Resources Research – volume: 10 start-page: 282 issue: 3 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models part I—A discussion of principles publication-title: Journal of Hydrology – volume: 15 start-page: 559 issue: 5 year: 2000 end-page: 570 article-title: Decomposition of the continuous ranked probability score for ensemble prediction systems publication-title: Weather and Forecasting – volume: 21 start-page: 1087 issue: 6 year: 1953 end-page: 1092 article-title: Equation of state calculations by fast computing machines publication-title: The Journal of Chemical Physics – volume: 561 start-page: 918 year: 2018 end-page: 929 article-title: Developing a Long Short‐Term Memory (LSTM) based model for predicting water table depth in agricultural areas publication-title: Journal of Hydrology – volume: 7 start-page: 223 issue: 2 year: 2001 end-page: 242 article-title: An adaptive Metropolis algorithm publication-title: Bernoulli – volume: 51 start-page: 4224 issue: 6 year: 2015 end-page: 4243 article-title: Probabilistic inference of multi‐Gaussian fields from indirect hydrological data using circulant embedding and dimensionality reduction publication-title: Water Resources Research – volume: 22 start-page: 6005 issue: 11 year: 2018 end-page: 6022 article-title: Rainfall‐runoff modelling using Long Short‐Term Memory (LSTM) networks publication-title: Hydrology and Earth System Sciences – volume: 26 start-page: 211 issue: 2 year: 1964 end-page: 243 article-title: An analysis of transformations publication-title: Journal of the Royal Statistical Society: Series B – volume: 15 start-page: 208 issue: 3 year: 2001 end-page: 216 article-title: Model induction with support vector machines: Introduction and applications publication-title: Journal of Computing in Civil Engineering – start-page: 1 year: 2014 end-page: 35 – volume: 528 start-page: 29 year: 2015 end-page: 37 article-title: Modeling residual hydrologic errors with Bayesian inference publication-title: Journal of Hydrology – volume: 40 start-page: 2120 issue: 5–6 year: 2019 end-page: 2137 article-title: A comparison of two methods for estimating surface soil moisture based on the triangle model using optical/thermal infrared remote sensing over the source area of the Yellow River publication-title: International Journal of Remote Sensing – year: 2015 – volume: 35 start-page: 2739 issue: 9 year: 1999 end-page: 2750 article-title: Bayesian theory of probabilistic forecasting via deterministic hydrologic model publication-title: Water Resources Research – volume: 136 year: 2020 article-title: Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large‐sample experiment at monthly time scale publication-title: Advances in Water Resources – volume: 14 start-page: 1303 issue: 1 year: 2013 end-page: 1303 article-title: Stochastic variational inference publication-title: Journal of Machine Learning Research – volume: 426 start-page: 112 issue: 427 year: 2012 end-page: 123 article-title: Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She)—Identification of relevant parameters influencing spring discharge publication-title: Journal of Hydrology – volume: 48 issue: 9 year: 2012 article-title: A blueprint for process‐based modeling of uncertain hydrological systems publication-title: Water Resources Research – volume: 37 start-page: 183 issue: 2 year: 1999 end-page: 233 article-title: An introduction to variational methods for graphical models publication-title: Machine Learning – volume: 37 start-page: 937 issue: 4 year: 2001 end-page: 947 article-title: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling publication-title: Water Resources Research – volume: 28 start-page: 3395 issue: 12 year: 2016 end-page: 3408 article-title: Towards Bayesian deep learning: A framework and some existing methods publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 56 year: 2020 article-title: A data censoring approach for predictive error modeling of flow in ephemeral rivers publication-title: Water Resources Research – year: 2000 – volume: 38 start-page: 1312 issue: 12 year: 2002 end-page: 1321 article-title: Toward improved identifiability of hydrologic model parameters: The information content of experimental data publication-title: Water Resources Research – volume: 47 issue: 7 year: 2011 article-title: Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers publication-title: Water Resources Research – year: 2012 – volume: 53 start-page: 2199 issue: 3 year: 2017 end-page: 2239 article-title: Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors publication-title: Water Resources Research – volume: 46 issue: 10 year: 2010 article-title: A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors publication-title: Water Resources Research – volume: 56 issue: 3 year: 2020 article-title: Refining predictor spectral representation using wavelet theory for improved natural system modeling publication-title: Water Resources Research – volume: 19 start-page: 3181 issue: 7 year: 2015 end-page: 3201 article-title: Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments publication-title: Hydrology and Earth System Sciences – volume: 598 year: 2021 article-title: Quantifying input error in hydrologic modeling using the Bayesian error analysis with reordering (BEAR) approach publication-title: Journal of Hydrology – year: 2008 article-title: Hole‐filled seamless SRTM data V4 – volume: 55 start-page: 11035 issue: 12 year: 2019 end-page: 11060 article-title: Benefits of explicit treatment of zero flows in probabilistic hydrological modeling of ephemeral catchments publication-title: Water Resources Research – year: 2006 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long Short‐Term Memory publication-title: Neural Computation – volume: 15 start-page: 255 issue: 1 year: 2011 end-page: 265 article-title: Estimation of predictive hydrological uncertainty using quantile regression: Examples from the National Flood Forecasting System (England and Wales) publication-title: Hydrology and Earth System Sciences – year: 2020 – volume: 46 issue: 10 year: 2010 article-title: Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality publication-title: Water Resources Research – volume: 38 start-page: 1302 issue: 12 year: 2002 end-page: 1311 article-title: Self‐organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis publication-title: Water Resources Research – volume: 30 start-page: 5998 year: 2017 end-page: 6008 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – volume: 54 start-page: 2494 issue: 3 year: 2018 end-page: 2506 article-title: Extending the applicability of the generalized likelihood function for zero‐inflated data series publication-title: Water Resources Research – volume: 44 issue: 1 year: 2008 article-title: Detection of structural inadequacy in process‐based hydrological models: A particle‐filtering approach publication-title: Water Resources Research – volume: 68 start-page: 69 year: 2018 end-page: 82 article-title: Physics‐aware Gaussian processes in remote sensing publication-title: Applied Soft Computing – volume: 43 issue: 1 year: 2007 article-title: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction publication-title: Water Resources Research – year: 2017 – volume: 559 start-page: 954 year: 2018 end-page: 971 article-title: Embracing equifinality with efficiency: Limits of Acceptability sampling using the DREAM (LOA) algorithm publication-title: Journal of Hydrology – ident: e_1_2_14_92_1 doi: 10.1029/2004GL020864 – ident: e_1_2_14_3_1 doi: 10.1029/2005WR004745 – ident: e_1_2_14_35_1 doi: 10.1007/978-3-642-33335-4_260514 – ident: e_1_2_14_28_1 doi: 10.1016/j.jhydrol.2009.08.003 – volume-title: Technical report year: 2008 ident: e_1_2_14_43_1 – volume-title: Paper presented at 28th International Conference on Neural Information Processing Systems, Montreal, Quebec, Canada year: 2015 ident: e_1_2_14_85_1 – ident: e_1_2_14_66_1 doi: 10.1016/j.jhydrol.2005.05.023 – ident: e_1_2_14_81_1 doi: 10.1016/j.jhydrol.2018.05.024 – ident: e_1_2_14_101_1 doi: 10.1109/tkde.2016.2606428 – ident: e_1_2_14_30_1 doi: 10.1016/j.jhydrol.2017.06.004 – ident: e_1_2_14_106_1 doi: 10.1007/BF00992696 – volume-title: Variational inference: Foundations and modern methods year: 2016 ident: e_1_2_14_9_1 – ident: e_1_2_14_94_1 doi: 10.1007/s11222-008-9104-9 – ident: e_1_2_14_72_1 doi: 10.1016/0022-1694(70)90255-6 – ident: e_1_2_14_113_1 doi: 10.1016/j.jhydrol.2017.11.018 – ident: e_1_2_14_8_1 doi: 10.1080/01621459.2017.1285773 – volume-title: Paper presented at 32nd International Conference on Neural Information Processing Systems, Vancouver, Canada year: 2019 ident: e_1_2_14_76_1 – ident: e_1_2_14_46_1 doi: 10.1029/2019WR026962 – ident: e_1_2_14_59_1 doi: 10.1029/2011WR010608 – ident: e_1_2_14_111_1 doi: 10.1029/2019WR025326 – ident: e_1_2_14_21_1 doi: 10.1007/978-3-642-39925-1 – ident: e_1_2_14_23_1 doi: 10.1002/2013WR014185 – ident: e_1_2_14_7_1 doi: 10.1007/978-0-387-45528-0 – ident: e_1_2_14_82_1 doi: 10.1029/2009WR008933 – ident: e_1_2_14_61_1 doi: 10.1029/2003WR002378 – ident: e_1_2_14_67_1 doi: 10.1016/j.ejrh.2016.03.003 – ident: e_1_2_14_83_1 doi: 10.1029/2018WR022643 – ident: e_1_2_14_31_1 doi: 10.1093/biomet/57.1.97 – ident: e_1_2_14_41_1 doi: 10.1002/hyp.8069 – ident: e_1_2_14_60_1 doi: 10.2166/nh.2018.110 – ident: e_1_2_14_58_1 doi: 10.1002/wrcr.20226 – ident: e_1_2_14_108_1 doi: 10.1016/j.envsoft.2019.104493 – ident: e_1_2_14_48_1 doi: 10.1029/2005WR004368 – ident: e_1_2_14_105_1 doi: 10.5194/hess-15-255-2011 – ident: e_1_2_14_68_1 doi: 10.1063/1.1699114 – volume-title: Variational Gaussian dropout is not Bayesian year: 2017 ident: e_1_2_14_36_1 – ident: e_1_2_14_104_1 doi: 10.5194/hess-21-4021-2017 – ident: e_1_2_14_49_1 doi: 10.1029/2009WR008584 – ident: e_1_2_14_2_1 doi: 10.1016/j.inffus.2021.05.008 – ident: e_1_2_14_26_1 doi: 10.1002/2017GL075619 – ident: e_1_2_14_64_1 doi: 10.1029/2019WR026979 – start-page: 1 volume-title: The truncated normal distribution year: 2014 ident: e_1_2_14_13_1 – ident: e_1_2_14_57_1 doi: 10.1002/2014WR016395 – ident: e_1_2_14_20_1 doi: 10.1016/j.jhydrol.2012.01.021 – ident: e_1_2_14_78_1 doi: 10.2166/nh.2010.009 – ident: e_1_2_14_102_1 doi: 10.1029/2019WR026128 – ident: e_1_2_14_65_1 doi: 10.1002/2016WR019168 – ident: e_1_2_14_79_1 doi: 10.1038/s41586-019-0912-1 – ident: e_1_2_14_34_1 doi: 10.1162/neco.1997.9.8.1735 – volume-title: The harmonized world soil database year: 2010 ident: e_1_2_14_71_1 – ident: e_1_2_14_6_1 doi: 10.5555/3322706.3322734 – ident: e_1_2_14_45_1 doi: 10.1029/2019WR025477 – ident: e_1_2_14_99_1 doi: 10.1029/2001WR001118 – volume-title: Auto‐encoding variational Bayes year: 2013 ident: e_1_2_14_51_1 – ident: e_1_2_14_44_1 doi: 10.1029/2010WR010217 – ident: e_1_2_14_114_1 doi: 10.1016/j.jhydrol.2018.04.065 – ident: e_1_2_14_19_1 doi: 10.5194/hess-19-3181-2015 – ident: e_1_2_14_87_1 doi: 10.1061/(ASCE)HE.1943-5584.0000926 – ident: e_1_2_14_10_1 doi: 10.1002/bimj.201700129 – ident: e_1_2_14_110_1 doi: 10.1080/01431161.2018.1519287 – ident: e_1_2_14_89_1 doi: 10.1016/j.jhydrol.2015.05.051 – ident: e_1_2_14_97_1 doi: 10.1126/science.357.6346.22 – ident: e_1_2_14_38_1 doi: 10.1029/2001WR000795 – ident: e_1_2_14_62_1 doi: 10.1029/2005WR004613 – ident: e_1_2_14_4_1 doi: 10.1007/s00477-021-01980-8 – ident: e_1_2_14_109_1 doi: 10.1016/j.jhydrol.2021.126202 – ident: e_1_2_14_42_1 doi: 10.1109/CVPR.2017.632 – ident: e_1_2_14_11_1 doi: 10.1111/j.2517-6161.1964.tb00553.x – ident: e_1_2_14_39_1 doi: 10.1029/95WR01955 – volume-title: Improving neural networks by preventing co‐adaptation of feature detectors year: 2012 ident: e_1_2_14_33_1 – volume: 18 start-page: 430 issue: 1 year: 2017 ident: e_1_2_14_54_1 article-title: Automatic differentiation variational inference publication-title: Journal of Machine Learning Research – volume-title: Paper presented at 17th PMLR Conference on Artificial Intelligence and Statistics, Reykjavik, Iceland year: 2014 ident: e_1_2_14_77_1 – volume-title: Multicriteria calibration of hydrological models year: 2000 ident: e_1_2_14_12_1 – ident: e_1_2_14_75_1 doi: 10.1016/j.advwatres.2019.103470 – ident: e_1_2_14_15_1 doi: 10.1093/biomet/83.1.81 – ident: e_1_2_14_56_1 doi: 10.1029/95WR02966 – ident: e_1_2_14_73_1 doi: 10.1002/2017WR021560 – ident: e_1_2_14_29_1 doi: 10.2307/3318737 – ident: e_1_2_14_91_1 doi: 10.1029/2019WR025055 – volume: 15 start-page: 1929 year: 2014 ident: e_1_2_14_90_1 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – ident: e_1_2_14_95_1 doi: 10.1029/2000WR900068 – start-page: 68 volume-title: Paper presented at Proceedings of the 1997 24th Annual Water Resources Planning and Management Conference year: 1997 ident: e_1_2_14_40_1 – ident: e_1_2_14_98_1 doi: 10.1016/j.jhydrol.2018.02.026 – volume-title: Variational recurrent Auto‐encoders year: 2014 ident: e_1_2_14_24_1 – ident: e_1_2_14_103_1 doi: 10.1029/2011WR010973 – ident: e_1_2_14_32_1 doi: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2 – ident: e_1_2_14_47_1 doi: 10.1023/A:1007665907178 – ident: e_1_2_14_55_1 doi: 10.1214/aoms/1177729694 – ident: e_1_2_14_69_1 doi: 10.1029/2011WR011412 – ident: e_1_2_14_18_1 doi: 10.1061/(ASCE)0887-3801(2001)15:3(208) – volume-title: Paper presented at 29th NIPS workshop on Bayesian Deep Learning, Barcelona, Spain year: 2016 ident: e_1_2_14_74_1 – ident: e_1_2_14_86_1 doi: 10.1080/15715124.2008.9635341 – ident: e_1_2_14_107_1 doi: 10.1029/2018WR024463 – ident: e_1_2_14_70_1 doi: 10.1080/02626668509490989 – ident: e_1_2_14_63_1 doi: 10.1029/2018WR024148 – volume-title: Paper presented at 35th PMLR Conference on Machine Learning, Stockholm, Sweden year: 2018 ident: e_1_2_14_37_1 – ident: e_1_2_14_25_1 doi: 10.1029/2020WR028095 – ident: e_1_2_14_52_1 doi: 10.5194/hess-22-6005-2018 – ident: e_1_2_14_100_1 doi: 10.1515/IJNSNS.2009.10.3.273 – volume-title: Paper presented at 35th PMLR Conference on Machine Learning, Stockholm, Sweden year: 2018 ident: e_1_2_14_112_1 – ident: e_1_2_14_16_1 doi: 10.1029/2001WR000478 – ident: e_1_2_14_53_1 doi: 10.1029/1999WR900099 – ident: e_1_2_14_22_1 doi: 10.1029/91WR02985 – volume-title: Paper presented at 33rd ICML Conference on Machine Learning, New York, NY year: 2016 ident: e_1_2_14_27_1 – ident: e_1_2_14_5_1 doi: 10.1029/2000WR900363 – volume-title: Adam: A method for stochastic optimization year: 2014 ident: e_1_2_14_50_1 – ident: e_1_2_14_84_1 doi: 10.5194/hess-22-5639-2018 – volume: 30 start-page: 5998 year: 2017 ident: e_1_2_14_96_1 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_14_93_1 doi: 10.1029/2019WR024908 – volume-title: Deep amortized inference for probabilistic programs year: 2016 ident: e_1_2_14_80_1 – ident: e_1_2_14_14_1 doi: 10.1016/j.asoc.2018.03.021 – ident: e_1_2_14_88_1 doi: 10.1029/2006WR005205 – volume-title: Paper presented at 34th International Conference on Neural Information Processing Systems, Vancouver, Canada year: 2020 ident: e_1_2_14_17_1 |
| SSID | ssj0014567 |
| Score | 2.5676339 |
| Snippet | Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Artificial neural networks Bayesian analysis Bayesian inference Bayesian theory Catchment models Catchments Deep learning Errors Groundwater Groundwater models Hydrologic models Hydrologic processes hydrological model Hydrology Intervals LSTM Machine learning Markov chain Markov chains Mathematical models MIKE SHE model uncertainty Modelling Natural language processing Neural networks Parameters probabilistic prediction Probability theory regression analysis Regression models Reliability Sharpness Statistical analysis Statistical inference Statistical methods stochastic variational inference Uncertainty Watersheds |
| Title | Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Process‐Based Hydrological Models |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021WR029772 https://www.proquest.com/docview/2576669387 https://www.proquest.com/docview/2675577040 |
| Volume | 57 |
| WOSCitedRecordID | wos000703704400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1944-7973 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NahRBEG5CFPQSNVFcE0ML5hQH6e756TkmMUsC6yKbrJvb0L_uQpgNOxNhycVH8BnzJFbN9KzrQUFyG6huZpjuqvqqq6s-Qt4zowRLNIuc13EUi8xFKk1tpLjQXnKvlG9YSwbZcCivrvIv4cANa2Ha_hCrAzfUjMZeo4IrXYVmA9gjE6J2Nhkh91KGJpjFDAkMJufDVRIBsEHWJZgR6IR77zDl4_rkPz3Sb5i5DlYbb9N_9tDvfE62As6kR-3GeEE2XLlNnnRlyBU8B_rz6XKH3B2rpcNqSjq4uPxMJ7N6Si_quZkq7OJMv0I8Hc4M6XlXIEgB7dJTkCPkLb9RJFW7pmOQNHcM6iWdlTSUIdz_-HkM3tLSs6VddNa2nVG9JOP-6eXJWRRYGSIlAM6AS9OxVAArdWo918xqr5iHwMbEcYIcpNzZjFstvRSp5UYyw1NhYwj0EpvmVrwim-W8dK8J9SbhRqWx1xrb3Oe5VRLghvfCJj51skcOu5UpTGhZjswZ10WTOud5sf5ze-RgNfqmbdXxl3F73SIXQWGrAuMu-AIhsx55txKDqmH-RJVufgtjILhKsgzMXo98aJb8n-8pJqOTEURsLH_zf8N3yVMUtDfZ9shmvbh1b8lj872eVYt98ujTqD8e7Dd7_RcgOP4d |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hglQu5S0CLSwSnMBC3vVjfaRVq0SkEUpT0pu1TxKpcqrERYq48BP4jfySztjrEA4gIW6Wdla2vDsz3-zszAfwOjZKxKmOI-d1EiUid5HKMhspLrSX3CvlG9aSYT4ayYuL4lPgOaVamLY_xObAjTSjsdek4HQgHboNUJNMDNvj6ZjIl3K0wbcTxBrE3TAdjDZpBEQHeZdiJqgTbr7jnPfbs3_3Sb-A5jZcbfzNyb3__tL7sBegJvvQ7o0HcMtVD2G3q0Re4XNgQJ-tH8G3Q7V2VFDJhmeTUzad1zN2Vi_MTFEjZ_YZQ-pwbMgGXY0gQ8DLjnGcUG_1hRGv2iU7x5HmmkG9ZvOKhUqEn99_HKLDtKy_tsvO4LYzVo_h_OR4ctSPAjFDpAQiGvRqOpEKkaXOrOc6ttqr2GNsY5IkJRpS7mzOrZZeisxyI2PDM2ETjPVSmxVWPIGdalG5p8C8SblRWeK1pk73RWGVRMThvbCpz5zswdtuaUoTupYTecZl2WTPeVFu_9wevNlIX7XdOv4gt9-tchl0dlVS6IVfIGTeg1ebYdQ2SqGoyi2uUQbjqzTP0fL14F2z5n99TzkdH40xaIuLZ_8m_hJ2-5PTYTkcjD4-h7sk1F5s24edenntDuCO-VrPV8sXzYa_AQYuAKo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixNBEC4kK-rFtxhdtQU96SDTPY-eo_sIuxjDkt2YvQ39NIFlsiSzQvDiT_A3-kusmumJ8aAg3ga6mmmmu6q-muqqD-BVbJSIUx1HzuskSkTuIpVlNlJcaC-5V8o3rCXDfDSS5-fFSeA5pVqYtj_E5ocbaUZjr0nB3aX1odsANcnEsD2ejol8KUcbvJMQj0wPdg7Gg8lwk0hAfJB3SWYCO-HuO856tz3_d6_0C2puA9bG4wzu_Pda78LtADbZ-_Z03INrrroPN7ta5BU-Bw702foBfN1Ta0cllWx4evaRTef1jJ3WCzNT1MqZfcKgOvw4ZMddlSBDyMsOcZxwb_WZEbPaBZvgSHPRoF6zecVCLcKPb9_30GVadrS2y87ktjNWD2EyODzbP4oCNUOkBGIa9Gs6kQqxpc6s5zq22qvYY3RjkiQlIlLubM6tll6KzHIjY8MzYROM9lKbFVY8gl61qNxjYN6k3Kgs8VpTr_uisEoi5vBe2NRnTvbhTbc1pQl9y4k-46Js8ue8KLc_bh9eb6Qv234df5Db7Xa5DFq7Kin4whUImffh5WYY9Y2SKKpyiyuUwQgrzXO0fX142-z5X99TTsf7Ywzb4uLJv4m_gBsnB4NyeDz68BRukUx7s20XevXyyj2D6-ZLPV8tn4cT_xOmvAFT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+LSTM+With+Stochastic+Variational+Inference+for+Estimating+Model+Uncertainty+in+Process%E2%80%90Based+Hydrological+Models&rft.jtitle=Water+resources+research&rft.au=Li%2C+Dayang&rft.au=Marshall%2C+Lucy&rft.au=Liang%2C+Zhongmin&rft.au=Sharma%2C+Ashish&rft.date=2021-09-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=57&rft.issue=9&rft_id=info:doi/10.1029%2F2021WR029772&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2021WR029772 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |