Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Process‐Based Hydrological Models

Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water resources research Ročník 57; číslo 9
Hlavní autori: Li, Dayang, Marshall, Lucy, Liang, Zhongmin, Sharma, Ashish, Zhou, Yan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.09.2021
Predmet:
ISSN:0043-1397, 1944-7973
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model based on deep learning to give full scope to their respective advantages. In classical residual error models, Bayesian inference via Markov chain Monte Carlo (MCMC) is commonly used to provide an estimation of the uncertainty. However, deep neural networks tend to have excessively large numbers of parameters, making MCMC an unsuitable approach. Here, we introduce an alternative to Bayesian MCMC sampling called stochastic variational inference (SVI) which has recently been developed for Bayesian deep learning in Natural Language Processing. We implement SVI in a Long Short‐Term Memory (LSTM) network and construct residual error models in process‐based hydrological models. This approach is examined in the contrasting geographical and climatic characteristics of two catchments from China, the Tangnaihai catchment and the Shiquan catchment. Compared with the Bayesian linear regression model, the Bayesian LSTM provides better uncertainty estimates. Specifically, the proposed method improves the Continuous Ranked Probability Score (CRPS) by over 10% in both two catchments. In the Tangnaihai catchment, it provides more than 10% narrower uncertainty intervals in terms of Sharpness with slightly superior Reliability. In the Shiquan catchment, it provides comparable uncertainty intervals with better Reliability. Further, our study highlights the scalability of SVI to high‐dimensional parameter spaces in hydrological applications (e.g., distributed hydrological models, groundwater models). Key Points Residual error models are constructed to take advantages of process‐based hydrological models and Bayesian deep learning Bayesian Long Short‐Term Memory provides better streamflow uncertainty estimates than a Bayesian linear regression model Stochastic variational inference as an alternative to Markov chain Monte Carlo is viable to estimate tens of thousands of parameters
AbstractList Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model based on deep learning to give full scope to their respective advantages. In classical residual error models, Bayesian inference via Markov chain Monte Carlo (MCMC) is commonly used to provide an estimation of the uncertainty. However, deep neural networks tend to have excessively large numbers of parameters, making MCMC an unsuitable approach. Here, we introduce an alternative to Bayesian MCMC sampling called stochastic variational inference (SVI) which has recently been developed for Bayesian deep learning in Natural Language Processing. We implement SVI in a Long Short‐Term Memory (LSTM) network and construct residual error models in process‐based hydrological models. This approach is examined in the contrasting geographical and climatic characteristics of two catchments from China, the Tangnaihai catchment and the Shiquan catchment. Compared with the Bayesian linear regression model, the Bayesian LSTM provides better uncertainty estimates. Specifically, the proposed method improves the Continuous Ranked Probability Score (CRPS) by over 10% in both two catchments. In the Tangnaihai catchment, it provides more than 10% narrower uncertainty intervals in terms of Sharpness with slightly superior Reliability. In the Shiquan catchment, it provides comparable uncertainty intervals with better Reliability. Further, our study highlights the scalability of SVI to high‐dimensional parameter spaces in hydrological applications (e.g., distributed hydrological models, groundwater models).
Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model based on deep learning to give full scope to their respective advantages. In classical residual error models, Bayesian inference via Markov chain Monte Carlo (MCMC) is commonly used to provide an estimation of the uncertainty. However, deep neural networks tend to have excessively large numbers of parameters, making MCMC an unsuitable approach. Here, we introduce an alternative to Bayesian MCMC sampling called stochastic variational inference (SVI) which has recently been developed for Bayesian deep learning in Natural Language Processing. We implement SVI in a Long Short‐Term Memory (LSTM) network and construct residual error models in process‐based hydrological models. This approach is examined in the contrasting geographical and climatic characteristics of two catchments from China, the Tangnaihai catchment and the Shiquan catchment. Compared with the Bayesian linear regression model, the Bayesian LSTM provides better uncertainty estimates. Specifically, the proposed method improves the Continuous Ranked Probability Score (CRPS) by over 10% in both two catchments. In the Tangnaihai catchment, it provides more than 10% narrower uncertainty intervals in terms of Sharpness with slightly superior Reliability. In the Shiquan catchment, it provides comparable uncertainty intervals with better Reliability. Further, our study highlights the scalability of SVI to high‐dimensional parameter spaces in hydrological applications (e.g., distributed hydrological models, groundwater models). Key Points Residual error models are constructed to take advantages of process‐based hydrological models and Bayesian deep learning Bayesian Long Short‐Term Memory provides better streamflow uncertainty estimates than a Bayesian linear regression model Stochastic variational inference as an alternative to Markov chain Monte Carlo is viable to estimate tens of thousands of parameters
Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is often criticized for its lack of interpretability. One solution is to combine a process‐based hydrological model with a residual error model based on deep learning to give full scope to their respective advantages. In classical residual error models, Bayesian inference via Markov chain Monte Carlo (MCMC) is commonly used to provide an estimation of the uncertainty. However, deep neural networks tend to have excessively large numbers of parameters, making MCMC an unsuitable approach. Here, we introduce an alternative to Bayesian MCMC sampling called stochastic variational inference (SVI) which has recently been developed for Bayesian deep learning in Natural Language Processing. We implement SVI in a Long Short‐Term Memory (LSTM) network and construct residual error models in process‐based hydrological models. This approach is examined in the contrasting geographical and climatic characteristics of two catchments from China, the Tangnaihai catchment and the Shiquan catchment. Compared with the Bayesian linear regression model, the Bayesian LSTM provides better uncertainty estimates. Specifically, the proposed method improves the Continuous Ranked Probability Score (CRPS) by over 10% in both two catchments. In the Tangnaihai catchment, it provides more than 10% narrower uncertainty intervals in terms of Sharpness with slightly superior Reliability. In the Shiquan catchment, it provides comparable uncertainty intervals with better Reliability. Further, our study highlights the scalability of SVI to high‐dimensional parameter spaces in hydrological applications (e.g., distributed hydrological models, groundwater models). Residual error models are constructed to take advantages of process‐based hydrological models and Bayesian deep learning Bayesian Long Short‐Term Memory provides better streamflow uncertainty estimates than a Bayesian linear regression model Stochastic variational inference as an alternative to Markov chain Monte Carlo is viable to estimate tens of thousands of parameters
Author Liang, Zhongmin
Zhou, Yan
Marshall, Lucy
Li, Dayang
Sharma, Ashish
Author_xml – sequence: 1
  givenname: Dayang
  orcidid: 0000-0003-1420-1551
  surname: Li
  fullname: Li, Dayang
  organization: University of New South Wales
– sequence: 2
  givenname: Lucy
  orcidid: 0000-0003-0450-4292
  surname: Marshall
  fullname: Marshall, Lucy
  email: lucy.marshall@unsw.edu.au
  organization: University of New South Wales
– sequence: 3
  givenname: Zhongmin
  orcidid: 0000-0002-1079-1075
  surname: Liang
  fullname: Liang, Zhongmin
  organization: Hohai University
– sequence: 4
  givenname: Ashish
  orcidid: 0000-0002-6758-0519
  surname: Sharma
  fullname: Sharma, Ashish
  organization: University of New South Wales
– sequence: 5
  givenname: Yan
  surname: Zhou
  fullname: Zhou, Yan
  organization: University of New South Wales
BookMark eNp9kc1KXTEUhUOx0KvtrA8Q6KQDj81_Tob14h9cqVy1d3jISXI0ckw0yUUOnfQRfEafxNTbQRHsaG9Y39qw19oGWyEGB8BnjPYwIuobQQSvlnWTkrwDM6wYa6SSdAvMEGK0wVTJD2A75xuEMONCzsCvfT257HWAi_OLU7jy5Rqel2iudS7ewJ86eV18DHqEJ2FwyQXj4BATPKj6bZXCFTyN1o3wsiqpaB_KBH2AZykal_PT78d9nZ2Fx5NNcYxX3tRTL478Ebwf9Jjdp79zB1weHlzMj5vFj6OT-fdFo6mgqmlRz1qtFO6FHUiPbT9oPGDJDGOcK4SIs5LYvh1aKiwxLTZEUMsUYdwKZekO-Lq5e5fi_drl0t36bNw46uDiOndESM6lRAxV9Msr9CauU_2-UlwKIRRtZaXIhjIp5pzc0BlfXmIqSfuxw6j700f3bx_VtPvKdJdqgml6C6cb_MGPbvov262W8yXhHCv6DBUVnWk
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_131737
crossref_primary_10_1016_j_eswa_2024_126004
crossref_primary_10_1016_j_jhydrol_2022_128122
crossref_primary_10_1016_j_jhydrol_2024_130608
crossref_primary_10_1016_j_ejrh_2025_102668
crossref_primary_10_1016_j_jhydrol_2023_129450
crossref_primary_10_1080_02626667_2025_2513478
crossref_primary_10_1038_s43017_023_00450_9
crossref_primary_10_3390_rs17071225
crossref_primary_10_1016_j_jhydrol_2025_134285
crossref_primary_10_1016_j_jhydrol_2024_131494
crossref_primary_10_1016_j_jhydrol_2025_134004
crossref_primary_10_1016_j_jhydrol_2024_132189
crossref_primary_10_1016_j_rse_2022_113388
crossref_primary_10_1016_j_jhydrol_2021_127221
crossref_primary_10_1016_j_jhydrol_2023_129688
crossref_primary_10_1007_s00477_025_02954_w
crossref_primary_10_1016_j_jhydrol_2024_131706
crossref_primary_10_2166_hydro_2025_011
crossref_primary_10_5194_hess_28_2809_2024
crossref_primary_10_1016_j_jhydrol_2022_127764
crossref_primary_10_7554_eLife_73870
crossref_primary_10_1029_2022WR033644
crossref_primary_10_1080_02626667_2022_2145201
crossref_primary_10_1016_j_envsoft_2022_105474
crossref_primary_10_3390_w17152352
crossref_primary_10_2166_nh_2023_221
crossref_primary_10_1016_j_asr_2024_05_023
crossref_primary_10_1016_j_rines_2024_100040
crossref_primary_10_1016_j_jhydrol_2024_130862
crossref_primary_10_1016_j_envsoft_2025_106699
crossref_primary_10_3390_w17071095
crossref_primary_10_3390_rs17111826
crossref_primary_10_1016_j_agwat_2025_109713
crossref_primary_10_5194_hess_27_4529_2023
crossref_primary_10_3390_w17182722
crossref_primary_10_1016_j_scitotenv_2023_164494
crossref_primary_10_3390_w13233420
crossref_primary_10_1016_j_jclepro_2023_140035
crossref_primary_10_1016_j_jhydrol_2023_129347
crossref_primary_10_1016_j_jhydrol_2025_133928
crossref_primary_10_1016_j_jhydrol_2023_129669
crossref_primary_10_3390_electronics12173593
crossref_primary_10_1016_j_jhydrol_2023_130498
crossref_primary_10_1016_j_jhydrol_2023_129269
crossref_primary_10_1016_j_jhydrol_2025_132918
crossref_primary_10_1109_ACCESS_2024_3412948
crossref_primary_10_1016_j_envsoft_2022_105326
crossref_primary_10_1016_j_jhydrol_2025_132879
crossref_primary_10_1016_j_apm_2024_115806
crossref_primary_10_1016_j_envsoft_2023_105831
crossref_primary_10_1016_j_jhydrol_2025_133086
crossref_primary_10_3390_s24134305
crossref_primary_10_1109_ACCESS_2025_3567640
crossref_primary_10_1080_02626667_2025_2462686
Cites_doi 10.1029/2004GL020864
10.1029/2005WR004745
10.1007/978-3-642-33335-4_260514
10.1016/j.jhydrol.2009.08.003
10.1016/j.jhydrol.2005.05.023
10.1016/j.jhydrol.2018.05.024
10.1109/tkde.2016.2606428
10.1016/j.jhydrol.2017.06.004
10.1007/BF00992696
10.1007/s11222-008-9104-9
10.1016/0022-1694(70)90255-6
10.1016/j.jhydrol.2017.11.018
10.1080/01621459.2017.1285773
10.1029/2019WR026962
10.1029/2011WR010608
10.1029/2019WR025326
10.1007/978-3-642-39925-1
10.1002/2013WR014185
10.1007/978-0-387-45528-0
10.1029/2009WR008933
10.1029/2003WR002378
10.1016/j.ejrh.2016.03.003
10.1029/2018WR022643
10.1093/biomet/57.1.97
10.1002/hyp.8069
10.2166/nh.2018.110
10.1002/wrcr.20226
10.1016/j.envsoft.2019.104493
10.1029/2005WR004368
10.5194/hess-15-255-2011
10.1063/1.1699114
10.5194/hess-21-4021-2017
10.1029/2009WR008584
10.1016/j.inffus.2021.05.008
10.1002/2017GL075619
10.1029/2019WR026979
10.1002/2014WR016395
10.1016/j.jhydrol.2012.01.021
10.2166/nh.2010.009
10.1029/2019WR026128
10.1002/2016WR019168
10.1038/s41586-019-0912-1
10.1162/neco.1997.9.8.1735
10.5555/3322706.3322734
10.1029/2019WR025477
10.1029/2001WR001118
10.1029/2010WR010217
10.1016/j.jhydrol.2018.04.065
10.5194/hess-19-3181-2015
10.1061/(ASCE)HE.1943-5584.0000926
10.1002/bimj.201700129
10.1080/01431161.2018.1519287
10.1016/j.jhydrol.2015.05.051
10.1126/science.357.6346.22
10.1029/2001WR000795
10.1029/2005WR004613
10.1007/s00477-021-01980-8
10.1016/j.jhydrol.2021.126202
10.1109/CVPR.2017.632
10.1111/j.2517-6161.1964.tb00553.x
10.1029/95WR01955
10.1016/j.advwatres.2019.103470
10.1093/biomet/83.1.81
10.1029/95WR02966
10.1002/2017WR021560
10.2307/3318737
10.1029/2019WR025055
10.1029/2000WR900068
10.1016/j.jhydrol.2018.02.026
10.1029/2011WR010973
10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
10.1023/A:1007665907178
10.1214/aoms/1177729694
10.1029/2011WR011412
10.1061/(ASCE)0887-3801(2001)15:3(208)
10.1080/15715124.2008.9635341
10.1029/2018WR024463
10.1080/02626668509490989
10.1029/2018WR024148
10.1029/2020WR028095
10.5194/hess-22-6005-2018
10.1515/IJNSNS.2009.10.3.273
10.1029/2001WR000478
10.1029/1999WR900099
10.1029/91WR02985
10.1029/2000WR900363
10.5194/hess-22-5639-2018
10.1029/2019WR024908
10.1016/j.asoc.2018.03.021
10.1029/2006WR005205
ContentType Journal Article
Copyright 2021. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2021. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2021WR029772
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2021WR029772
WRCR25519
Genre article
GrantInformation_xml – fundername: MOST, National Key Research and Development Program of China (973 Program)
  funderid: 2018YFC0407206
– fundername: China Scholarship Council
  funderid: 201906710032
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  funderid: KYCX20_0462
– fundername: Fundamental Research Funds for the Central Universities
  funderid: B200203047
– fundername: Australian Research Council / Discovery Project
  funderid: DP170103959
– fundername: Major Program of the National Natural Science Foundation of China
  funderid: 41730750
– fundername: Research Technology Services
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a3639-80b48a991b6df2b1dbfa1f174c44559002ed72db8f836d2c81c263d49245d69d3
IEDL.DBID WIN
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703704400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:33:40 EDT 2025
Fri Aug 29 07:20:13 EDT 2025
Sat Nov 29 01:36:48 EST 2025
Tue Nov 18 21:20:34 EST 2025
Wed Jan 22 16:27:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3639-80b48a991b6df2b1dbfa1f174c44559002ed72db8f836d2c81c263d49245d69d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1079-1075
0000-0003-0450-4292
0000-0002-6758-0519
0000-0003-1420-1551
PQID 2576669387
PQPubID 105507
PageCount 25
ParticipantIDs proquest_miscellaneous_2675577040
proquest_journals_2576669387
crossref_citationtrail_10_1029_2021WR029772
crossref_primary_10_1029_2021WR029772
wiley_primary_10_1029_2021WR029772_WRCR25519
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1995; 31
2018; 562
2018; 561
2019; 50
2019; 55
2017; 44
2019; 566
1951; 22
2020; 56
2008; 6
2011; 15
2017; 551
2017; 112
1997; 9
1996; 32
2017; 357
2019; 121
2021; 35
1992; 8
2004; 31
2017; 30
2021; 76
2013; 14
2009; 10
2019; 20
2000
2000; 15
2021; 598
2014; 15
2001; 15
2011; 25
2020; 136
2014; 50
1953; 21
2002; 38
2004; 40
2006; 317
2017; 60
2015; 19
2013; 49
2012
2015; 51
2010
2008; 18
2017; 21
1997
2008
1970; 10
2006
2009; 377
2015; 528
1964; 26
2018; 22
2012; 426
2010; 41
2018; 68
1970; 57
2017; 53
2016; 6
2006; 42
2019; 40
2010; 46
2001; 7
2000; 36
2018; 556
2018; 559
2020
2015; 20
1999; 37
1996; 83
1992; 28
1999; 35
2019
2018
2017
2001; 37
2016
2017; 18
1985; 30
2015
2008; 44
2014
2011; 47
2013
2012; 48
2007; 43
2016; 28
2018; 54
e_1_2_14_114_1
e_1_2_14_73_1
e_1_2_14_110_1
e_1_2_14_31_1
e_1_2_14_92_1
Kingma D. P. (e_1_2_14_50_1) 2014
e_1_2_14_35_1
Shi X. (e_1_2_14_85_1) 2015
e_1_2_14_39_1
e_1_2_14_16_1
e_1_2_14_58_1
Hinton G. E. (e_1_2_14_33_1) 2012
Ritchie D. (e_1_2_14_80_1) 2016
Kucukelbir A. (e_1_2_14_54_1) 2017; 18
e_1_2_14_6_1
e_1_2_14_107_1
e_1_2_14_103_1
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_62_1
e_1_2_14_81_1
Burkardt J. (e_1_2_14_13_1) 2014
e_1_2_14_66_1
e_1_2_14_28_1
e_1_2_14_89_1
e_1_2_14_47_1
Hron J. (e_1_2_14_36_1) 2017
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_111_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_91_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
Paszke A. (e_1_2_14_76_1) 2019
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_99_1
Gal Y. (e_1_2_14_27_1) 2016
Fabius O. (e_1_2_14_24_1) 2014
Kingma D. P. (e_1_2_14_51_1) 2013
e_1_2_14_7_1
e_1_2_14_108_1
Vaswani A. (e_1_2_14_96_1) 2017; 30
e_1_2_14_104_1
e_1_2_14_84_1
e_1_2_14_100_1
e_1_2_14_42_1
Hron J. (e_1_2_14_37_1) 2018
Srivastava N. (e_1_2_14_90_1) 2014; 15
e_1_2_14_3_1
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_65_1
Boyle D. P. (e_1_2_14_12_1) 2000
e_1_2_14_88_1
e_1_2_14_69_1
e_1_2_14_94_1
e_1_2_14_75_1
e_1_2_14_52_1
e_1_2_14_10_1
e_1_2_14_56_1
e_1_2_14_14_1
e_1_2_14_98_1
e_1_2_14_79_1
Hsu K. L. (e_1_2_14_40_1) 1997
e_1_2_14_8_1
e_1_2_14_109_1
e_1_2_14_105_1
e_1_2_14_60_1
e_1_2_14_83_1
Nachtergaele F. (e_1_2_14_71_1) 2010
e_1_2_14_101_1
Osband I. (e_1_2_14_74_1) 2016
e_1_2_14_41_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_22_1
e_1_2_14_87_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_19_1
Blei D. M. (e_1_2_14_9_1) 2016
Dhaka A. K. (e_1_2_14_17_1) 2020
e_1_2_14_113_1
e_1_2_14_97_1
Jarvis A. (e_1_2_14_43_1) 2008
e_1_2_14_70_1
Ranganath R. (e_1_2_14_77_1) 2014
e_1_2_14_93_1
e_1_2_14_32_1
e_1_2_14_55_1
e_1_2_14_59_1
e_1_2_14_78_1
e_1_2_14_29_1
e_1_2_14_5_1
e_1_2_14_106_1
e_1_2_14_102_1
Yao Y. (e_1_2_14_112_1) 2018
e_1_2_14_86_1
e_1_2_14_63_1
e_1_2_14_82_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_18_1
References_xml – volume: 48
  issue: 1
  year: 2012
  article-title: High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM (ZS) and high‐performance computing
  publication-title: Water Resources Research
– volume: 556
  start-page: 409
  year: 2018
  end-page: 418
  article-title: Use Long Short‐Term Memory to enhance Internet of Things for combined sewer overflow monitoring
  publication-title: Journal of Hydrology
– volume: 76
  start-page: 243
  year: 2021
  end-page: 297
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Information Fusion
– volume: 30
  start-page: 273
  issue: 2
  year: 1985
  end-page: 297
  article-title: The probability‐distributed principle and runoff production at point and basin scales
  publication-title: Hydrological Sciences Journal
– volume: 56
  year: 2020
  article-title: Evaluating the potential and challenges of an uncertainty quantification method for long short‐term memory models for soil moisture predictions
  publication-title: Water Resources Research
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  end-page: 109
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
– volume: 31
  start-page: 2517
  issue: 10
  year: 1995
  end-page: 2530
  article-title: Artificial neural network modeling of the rainfall‐runoff process
  publication-title: Water Resources Research
– volume: 56
  year: 2020
  article-title: The utility of information flow in formulating discharge forecast models: A case study from an arid snow‐dominated catchment
  publication-title: Water Resources Research
– volume: 42
  issue: 11
  year: 2006
  article-title: Modeling the catchment via mixtures: Issues of model specification and validation
  publication-title: Water Resources Research
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 83
  start-page: 81
  issue: 1
  year: 1996
  end-page: 94
  article-title: Rao‐Blackwellisation of sampling schemes
  publication-title: Biometrika
– year: 2014
– volume: 55
  start-page: 4533
  issue: 1
  year: 2019
  end-page: 4549
  article-title: Ecohydrologic error models for improved Bayesian inference in remotely sensed catchments
  publication-title: Water Resources Research
– volume: 50
  start-page: 2350
  issue: 3
  year: 2014
  end-page: 2375
  article-title: Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity
  publication-title: Water Resources Research
– volume: 18
  start-page: 430
  issue: 1
  year: 2017
  end-page: 474
  article-title: Automatic differentiation variational inference
  publication-title: Journal of Machine Learning Research
– volume: 112
  start-page: 859
  issue: 518
  year: 2017
  end-page: 877
  article-title: Variational inference: A review for statisticians
  publication-title: Journal of the American Statistical Association
– volume: 36
  start-page: 1865
  issue: 7
  year: 2000
  end-page: 1872
  article-title: Analyzing latent heat fluxes of coniferous forests with fuzzy logic
  publication-title: Water Resources Research
– volume: 6
  start-page: 66
  year: 2016
  end-page: 81
  article-title: Impacts of recent climate change on the hydrology in the source region of the Yellow River basin
  publication-title: Journal of Hydrology: Regional Studies
– volume: 55
  start-page: 9519
  issue: 11
  year: 2019
  end-page: 9543
  article-title: Toward improved probabilistic predictions for flood forecasts generated using deterministic models
  publication-title: Water Resources Research
– year: 2019
– volume: 8
  start-page: 229
  issue: 3–4
  year: 1992
  end-page: 256
  article-title: Simple statistical gradient‐following algorithms for connectionist reinforcement learning
  publication-title: Machine Learning
– volume: 377
  start-page: 80
  issue: 1–2
  year: 2009
  end-page: 91
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: Journal of Hydrology
– volume: 40
  issue: 2
  year: 2004
  article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling
  publication-title: Water Resources Research
– volume: 28
  start-page: 1015
  issue: 4
  year: 1992
  end-page: 1031
  article-title: Effective and efficient global optimization for conceptual rainfall‐runoff models
  publication-title: Water Resources Research
– volume: 6
  start-page: 109
  issue: 2
  year: 2008
  end-page: 122
  article-title: Data‐driven approaches for estimating uncertainty in rainfall‐runoff modelling
  publication-title: International Journal of River Basin Management
– volume: 25
  start-page: 3399
  year: 2011
  end-page: 3411
  article-title: Streamflow trends and climate linkages in the source region of the Yellow River, China
  publication-title: Hydrological Processes
– volume: 49
  start-page: 2664
  issue: 5
  year: 2013
  end-page: 2682
  article-title: Efficient posterior exploration of a high‐dimensional groundwater model from two‐stage Markov chain Monte Carlo simulation and polynomial chaos expansion
  publication-title: Water Resources Research
– volume: 56
  issue: 1
  year: 2020
  article-title: A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning
  publication-title: Water Resources Research
– volume: 44
  start-page: 11030
  year: 2017
  end-page: 110309
  article-title: Prolongation of SMAP to spatiotemporally seamless coverage of continental US using a deep learning neural network
  publication-title: Geophysical Research Letters
– volume: 317
  start-page: 307
  issue: 3–4
  year: 2006
  end-page: 324
  article-title: Distributed hydrological modelling in California semi‐arid shrublands: MIKE SHE model calibration and uncertainty estimation
  publication-title: Journal of Hydrology
– year: 2016
– volume: 55
  start-page: 6850
  issue: 8
  year: 2019
  end-page: 6868
  article-title: Prediction and inference of flow duration curves using multioutput neural networks
  publication-title: Water Resources Research
– year: 2010
– volume: 357
  start-page: 22
  issue: 6346
  year: 2017
  end-page: 27
  article-title: The AI detectives
  publication-title: Science
– volume: 41
  start-page: 355
  issue: 5
  year: 2010
  end-page: 377
  article-title: Système Hydrologique Europeén (SHE): Review and perspectives after 30 years development in distributed physically‐based hydrological modelling
  publication-title: Hydrology Research
– volume: 10
  start-page: 273
  issue: 3
  year: 2009
  end-page: 290
  article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self‐adaptive randomized subspace sampling
  publication-title: International Journal of Nonlinear Sciences and Numerical Simulation
– volume: 21
  start-page: 4021
  issue: 8
  year: 2017
  end-page: 4036
  article-title: Residual uncertainty estimation using instance‐based learning with applications to hydrologic forecasting
  publication-title: Hydrology and Earth System Sciences
– volume: 562
  start-page: 411
  year: 2018
  end-page: 422
  article-title: High‐resolution modelling of the grass swale response to runoff inflows with Mike SHE
  publication-title: Journal of Hydrology
– volume: 20
  issue: 1
  year: 2015
  article-title: Estimating the uncertainty of hydrological predictions through data‐driven resampling techniques
  publication-title: Journal of Hydrologic Engineering
– volume: 35
  start-page: 1051
  issue: 5
  year: 2021
  end-page: 1067
  article-title: Uncertainty quantification for hydrological models based on neural networks: The dropout ensemble
  publication-title: Stochastic Environmental Research and Risk Assessment
– year: 2013
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  end-page: 86
  article-title: On information and sufficiency
  publication-title: The Annals of Mathematical Statistics
– volume: 121
  year: 2019
  article-title: The influence of data transformations in simulating Total Suspended Solids using Bayesian inference
  publication-title: Environmental Modelling & Software
– volume: 20
  start-page: 973
  issue: 1
  year: 2019
  end-page: 978
  article-title: Pyro: Deep universal probabilistic programming
  publication-title: Journal of Machine Learning Research
– volume: 551
  start-page: 340
  year: 2017
  end-page: 351
  article-title: Bayesian flood forecasting methods: A review
  publication-title: Journal of Hydrology
– volume: 54
  start-page: 8558
  issue: 11
  year: 2018
  end-page: 8593
  article-title: A transdisciplinary review of deep learning research and its relevance for water resources scientists
  publication-title: Water Resources Research
– volume: 22
  start-page: 5639
  issue: 11
  year: 2018
  end-page: 5656
  article-title: HESS Opinions: Incubating deep‐learning‐powered hydrologic science advances as a community
  publication-title: Hydrology and Earth System Sciences
– volume: 50
  start-page: 644
  issue: 2
  year: 2019
  end-page: 654
  article-title: Multi‐objective calibration of MIKE SHE with SMAP soil moisture datasets
  publication-title: Hydrology Research
– volume: 48
  issue: 5
  year: 2012
  article-title: A log‐sinh transformation for data normalization and variance stabilization
  publication-title: Water Resources Research
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  end-page: 204
  article-title: Deep learning and process understanding for data‐driven Earth system science
  publication-title: Nature
– volume: 56
  issue: 11
  year: 2020
  article-title: Multi‐temporal hydrological residual error modeling for seamless subseasonal streamflow forecasting
  publication-title: Water Resources Research
– volume: 31
  issue: 18
  year: 2004
  article-title: Delineation of geologic facies with statistical learning theory
  publication-title: Geophysical Research Letters
– volume: 60
  start-page: 216
  issue: 1
  year: 2017
  end-page: 218
  article-title: On the necessity and design of studies comparing statistical methods
  publication-title: Biometrical Journal
– volume: 18
  start-page: 435
  issue: 4
  year: 2008
  end-page: 446
  article-title: Differential evolution Markov chain with snooker updater and fewer chains
  publication-title: Statistics and Computing
– volume: 38
  start-page: 8‐1
  issue: 9
  year: 2002
  end-page: 8‐15
  article-title: Use of sensitivity and uncertainty measures in distributed hydrological modeling with an application to the MIKE SHE model
  publication-title: Water Resources Research
– year: 2018
– volume: 42
  issue: 3
  year: 2006
  article-title: Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory
  publication-title: Water Resources Research
– start-page: 68
  year: 1997
  end-page: 73
– volume: 32
  start-page: 679
  issue: 3
  year: 1996
  end-page: 693
  article-title: A nearest neighbor bootstrap for resampling hydrologic time series
  publication-title: Water Resources Research
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models part I—A discussion of principles
  publication-title: Journal of Hydrology
– volume: 15
  start-page: 559
  issue: 5
  year: 2000
  end-page: 570
  article-title: Decomposition of the continuous ranked probability score for ensemble prediction systems
  publication-title: Weather and Forecasting
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  end-page: 1092
  article-title: Equation of state calculations by fast computing machines
  publication-title: The Journal of Chemical Physics
– volume: 561
  start-page: 918
  year: 2018
  end-page: 929
  article-title: Developing a Long Short‐Term Memory (LSTM) based model for predicting water table depth in agricultural areas
  publication-title: Journal of Hydrology
– volume: 7
  start-page: 223
  issue: 2
  year: 2001
  end-page: 242
  article-title: An adaptive Metropolis algorithm
  publication-title: Bernoulli
– volume: 51
  start-page: 4224
  issue: 6
  year: 2015
  end-page: 4243
  article-title: Probabilistic inference of multi‐Gaussian fields from indirect hydrological data using circulant embedding and dimensionality reduction
  publication-title: Water Resources Research
– volume: 22
  start-page: 6005
  issue: 11
  year: 2018
  end-page: 6022
  article-title: Rainfall‐runoff modelling using Long Short‐Term Memory (LSTM) networks
  publication-title: Hydrology and Earth System Sciences
– volume: 26
  start-page: 211
  issue: 2
  year: 1964
  end-page: 243
  article-title: An analysis of transformations
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 15
  start-page: 208
  issue: 3
  year: 2001
  end-page: 216
  article-title: Model induction with support vector machines: Introduction and applications
  publication-title: Journal of Computing in Civil Engineering
– start-page: 1
  year: 2014
  end-page: 35
– volume: 528
  start-page: 29
  year: 2015
  end-page: 37
  article-title: Modeling residual hydrologic errors with Bayesian inference
  publication-title: Journal of Hydrology
– volume: 40
  start-page: 2120
  issue: 5–6
  year: 2019
  end-page: 2137
  article-title: A comparison of two methods for estimating surface soil moisture based on the triangle model using optical/thermal infrared remote sensing over the source area of the Yellow River
  publication-title: International Journal of Remote Sensing
– year: 2015
– volume: 35
  start-page: 2739
  issue: 9
  year: 1999
  end-page: 2750
  article-title: Bayesian theory of probabilistic forecasting via deterministic hydrologic model
  publication-title: Water Resources Research
– volume: 136
  year: 2020
  article-title: Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large‐sample experiment at monthly time scale
  publication-title: Advances in Water Resources
– volume: 14
  start-page: 1303
  issue: 1
  year: 2013
  end-page: 1303
  article-title: Stochastic variational inference
  publication-title: Journal of Machine Learning Research
– volume: 426
  start-page: 112
  issue: 427
  year: 2012
  end-page: 123
  article-title: Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She)—Identification of relevant parameters influencing spring discharge
  publication-title: Journal of Hydrology
– volume: 48
  issue: 9
  year: 2012
  article-title: A blueprint for process‐based modeling of uncertain hydrological systems
  publication-title: Water Resources Research
– volume: 37
  start-page: 183
  issue: 2
  year: 1999
  end-page: 233
  article-title: An introduction to variational methods for graphical models
  publication-title: Machine Learning
– volume: 37
  start-page: 937
  issue: 4
  year: 2001
  end-page: 947
  article-title: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling
  publication-title: Water Resources Research
– volume: 28
  start-page: 3395
  issue: 12
  year: 2016
  end-page: 3408
  article-title: Towards Bayesian deep learning: A framework and some existing methods
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 56
  year: 2020
  article-title: A data censoring approach for predictive error modeling of flow in ephemeral rivers
  publication-title: Water Resources Research
– year: 2000
– volume: 38
  start-page: 1312
  issue: 12
  year: 2002
  end-page: 1321
  article-title: Toward improved identifiability of hydrologic model parameters: The information content of experimental data
  publication-title: Water Resources Research
– volume: 47
  issue: 7
  year: 2011
  article-title: Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers
  publication-title: Water Resources Research
– year: 2012
– volume: 53
  start-page: 2199
  issue: 3
  year: 2017
  end-page: 2239
  article-title: Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors
  publication-title: Water Resources Research
– volume: 46
  issue: 10
  year: 2010
  article-title: A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors
  publication-title: Water Resources Research
– volume: 56
  issue: 3
  year: 2020
  article-title: Refining predictor spectral representation using wavelet theory for improved natural system modeling
  publication-title: Water Resources Research
– volume: 19
  start-page: 3181
  issue: 7
  year: 2015
  end-page: 3201
  article-title: Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments
  publication-title: Hydrology and Earth System Sciences
– volume: 598
  year: 2021
  article-title: Quantifying input error in hydrologic modeling using the Bayesian error analysis with reordering (BEAR) approach
  publication-title: Journal of Hydrology
– year: 2008
  article-title: Hole‐filled seamless SRTM data V4
– volume: 55
  start-page: 11035
  issue: 12
  year: 2019
  end-page: 11060
  article-title: Benefits of explicit treatment of zero flows in probabilistic hydrological modeling of ephemeral catchments
  publication-title: Water Resources Research
– year: 2006
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long Short‐Term Memory
  publication-title: Neural Computation
– volume: 15
  start-page: 255
  issue: 1
  year: 2011
  end-page: 265
  article-title: Estimation of predictive hydrological uncertainty using quantile regression: Examples from the National Flood Forecasting System (England and Wales)
  publication-title: Hydrology and Earth System Sciences
– year: 2020
– volume: 46
  issue: 10
  year: 2010
  article-title: Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality
  publication-title: Water Resources Research
– volume: 38
  start-page: 1302
  issue: 12
  year: 2002
  end-page: 1311
  article-title: Self‐organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis
  publication-title: Water Resources Research
– volume: 30
  start-page: 5998
  year: 2017
  end-page: 6008
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– volume: 54
  start-page: 2494
  issue: 3
  year: 2018
  end-page: 2506
  article-title: Extending the applicability of the generalized likelihood function for zero‐inflated data series
  publication-title: Water Resources Research
– volume: 44
  issue: 1
  year: 2008
  article-title: Detection of structural inadequacy in process‐based hydrological models: A particle‐filtering approach
  publication-title: Water Resources Research
– volume: 68
  start-page: 69
  year: 2018
  end-page: 82
  article-title: Physics‐aware Gaussian processes in remote sensing
  publication-title: Applied Soft Computing
– volume: 43
  issue: 1
  year: 2007
  article-title: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction
  publication-title: Water Resources Research
– year: 2017
– volume: 559
  start-page: 954
  year: 2018
  end-page: 971
  article-title: Embracing equifinality with efficiency: Limits of Acceptability sampling using the DREAM (LOA) algorithm
  publication-title: Journal of Hydrology
– ident: e_1_2_14_92_1
  doi: 10.1029/2004GL020864
– ident: e_1_2_14_3_1
  doi: 10.1029/2005WR004745
– ident: e_1_2_14_35_1
  doi: 10.1007/978-3-642-33335-4_260514
– ident: e_1_2_14_28_1
  doi: 10.1016/j.jhydrol.2009.08.003
– volume-title: Technical report
  year: 2008
  ident: e_1_2_14_43_1
– volume-title: Paper presented at 28th International Conference on Neural Information Processing Systems, Montreal, Quebec, Canada
  year: 2015
  ident: e_1_2_14_85_1
– ident: e_1_2_14_66_1
  doi: 10.1016/j.jhydrol.2005.05.023
– ident: e_1_2_14_81_1
  doi: 10.1016/j.jhydrol.2018.05.024
– ident: e_1_2_14_101_1
  doi: 10.1109/tkde.2016.2606428
– ident: e_1_2_14_30_1
  doi: 10.1016/j.jhydrol.2017.06.004
– ident: e_1_2_14_106_1
  doi: 10.1007/BF00992696
– volume-title: Variational inference: Foundations and modern methods
  year: 2016
  ident: e_1_2_14_9_1
– ident: e_1_2_14_94_1
  doi: 10.1007/s11222-008-9104-9
– ident: e_1_2_14_72_1
  doi: 10.1016/0022-1694(70)90255-6
– ident: e_1_2_14_113_1
  doi: 10.1016/j.jhydrol.2017.11.018
– ident: e_1_2_14_8_1
  doi: 10.1080/01621459.2017.1285773
– volume-title: Paper presented at 32nd International Conference on Neural Information Processing Systems, Vancouver, Canada
  year: 2019
  ident: e_1_2_14_76_1
– ident: e_1_2_14_46_1
  doi: 10.1029/2019WR026962
– ident: e_1_2_14_59_1
  doi: 10.1029/2011WR010608
– ident: e_1_2_14_111_1
  doi: 10.1029/2019WR025326
– ident: e_1_2_14_21_1
  doi: 10.1007/978-3-642-39925-1
– ident: e_1_2_14_23_1
  doi: 10.1002/2013WR014185
– ident: e_1_2_14_7_1
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_14_82_1
  doi: 10.1029/2009WR008933
– ident: e_1_2_14_61_1
  doi: 10.1029/2003WR002378
– ident: e_1_2_14_67_1
  doi: 10.1016/j.ejrh.2016.03.003
– ident: e_1_2_14_83_1
  doi: 10.1029/2018WR022643
– ident: e_1_2_14_31_1
  doi: 10.1093/biomet/57.1.97
– ident: e_1_2_14_41_1
  doi: 10.1002/hyp.8069
– ident: e_1_2_14_60_1
  doi: 10.2166/nh.2018.110
– ident: e_1_2_14_58_1
  doi: 10.1002/wrcr.20226
– ident: e_1_2_14_108_1
  doi: 10.1016/j.envsoft.2019.104493
– ident: e_1_2_14_48_1
  doi: 10.1029/2005WR004368
– ident: e_1_2_14_105_1
  doi: 10.5194/hess-15-255-2011
– ident: e_1_2_14_68_1
  doi: 10.1063/1.1699114
– volume-title: Variational Gaussian dropout is not Bayesian
  year: 2017
  ident: e_1_2_14_36_1
– ident: e_1_2_14_104_1
  doi: 10.5194/hess-21-4021-2017
– ident: e_1_2_14_49_1
  doi: 10.1029/2009WR008584
– ident: e_1_2_14_2_1
  doi: 10.1016/j.inffus.2021.05.008
– ident: e_1_2_14_26_1
  doi: 10.1002/2017GL075619
– ident: e_1_2_14_64_1
  doi: 10.1029/2019WR026979
– start-page: 1
  volume-title: The truncated normal distribution
  year: 2014
  ident: e_1_2_14_13_1
– ident: e_1_2_14_57_1
  doi: 10.1002/2014WR016395
– ident: e_1_2_14_20_1
  doi: 10.1016/j.jhydrol.2012.01.021
– ident: e_1_2_14_78_1
  doi: 10.2166/nh.2010.009
– ident: e_1_2_14_102_1
  doi: 10.1029/2019WR026128
– ident: e_1_2_14_65_1
  doi: 10.1002/2016WR019168
– ident: e_1_2_14_79_1
  doi: 10.1038/s41586-019-0912-1
– ident: e_1_2_14_34_1
  doi: 10.1162/neco.1997.9.8.1735
– volume-title: The harmonized world soil database
  year: 2010
  ident: e_1_2_14_71_1
– ident: e_1_2_14_6_1
  doi: 10.5555/3322706.3322734
– ident: e_1_2_14_45_1
  doi: 10.1029/2019WR025477
– ident: e_1_2_14_99_1
  doi: 10.1029/2001WR001118
– volume-title: Auto‐encoding variational Bayes
  year: 2013
  ident: e_1_2_14_51_1
– ident: e_1_2_14_44_1
  doi: 10.1029/2010WR010217
– ident: e_1_2_14_114_1
  doi: 10.1016/j.jhydrol.2018.04.065
– ident: e_1_2_14_19_1
  doi: 10.5194/hess-19-3181-2015
– ident: e_1_2_14_87_1
  doi: 10.1061/(ASCE)HE.1943-5584.0000926
– ident: e_1_2_14_10_1
  doi: 10.1002/bimj.201700129
– ident: e_1_2_14_110_1
  doi: 10.1080/01431161.2018.1519287
– ident: e_1_2_14_89_1
  doi: 10.1016/j.jhydrol.2015.05.051
– ident: e_1_2_14_97_1
  doi: 10.1126/science.357.6346.22
– ident: e_1_2_14_38_1
  doi: 10.1029/2001WR000795
– ident: e_1_2_14_62_1
  doi: 10.1029/2005WR004613
– ident: e_1_2_14_4_1
  doi: 10.1007/s00477-021-01980-8
– ident: e_1_2_14_109_1
  doi: 10.1016/j.jhydrol.2021.126202
– ident: e_1_2_14_42_1
  doi: 10.1109/CVPR.2017.632
– ident: e_1_2_14_11_1
  doi: 10.1111/j.2517-6161.1964.tb00553.x
– ident: e_1_2_14_39_1
  doi: 10.1029/95WR01955
– volume-title: Improving neural networks by preventing co‐adaptation of feature detectors
  year: 2012
  ident: e_1_2_14_33_1
– volume: 18
  start-page: 430
  issue: 1
  year: 2017
  ident: e_1_2_14_54_1
  article-title: Automatic differentiation variational inference
  publication-title: Journal of Machine Learning Research
– volume-title: Paper presented at 17th PMLR Conference on Artificial Intelligence and Statistics, Reykjavik, Iceland
  year: 2014
  ident: e_1_2_14_77_1
– volume-title: Multicriteria calibration of hydrological models
  year: 2000
  ident: e_1_2_14_12_1
– ident: e_1_2_14_75_1
  doi: 10.1016/j.advwatres.2019.103470
– ident: e_1_2_14_15_1
  doi: 10.1093/biomet/83.1.81
– ident: e_1_2_14_56_1
  doi: 10.1029/95WR02966
– ident: e_1_2_14_73_1
  doi: 10.1002/2017WR021560
– ident: e_1_2_14_29_1
  doi: 10.2307/3318737
– ident: e_1_2_14_91_1
  doi: 10.1029/2019WR025055
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_2_14_90_1
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_14_95_1
  doi: 10.1029/2000WR900068
– start-page: 68
  volume-title: Paper presented at Proceedings of the 1997 24th Annual Water Resources Planning and Management Conference
  year: 1997
  ident: e_1_2_14_40_1
– ident: e_1_2_14_98_1
  doi: 10.1016/j.jhydrol.2018.02.026
– volume-title: Variational recurrent Auto‐encoders
  year: 2014
  ident: e_1_2_14_24_1
– ident: e_1_2_14_103_1
  doi: 10.1029/2011WR010973
– ident: e_1_2_14_32_1
  doi: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
– ident: e_1_2_14_47_1
  doi: 10.1023/A:1007665907178
– ident: e_1_2_14_55_1
  doi: 10.1214/aoms/1177729694
– ident: e_1_2_14_69_1
  doi: 10.1029/2011WR011412
– ident: e_1_2_14_18_1
  doi: 10.1061/(ASCE)0887-3801(2001)15:3(208)
– volume-title: Paper presented at 29th NIPS workshop on Bayesian Deep Learning, Barcelona, Spain
  year: 2016
  ident: e_1_2_14_74_1
– ident: e_1_2_14_86_1
  doi: 10.1080/15715124.2008.9635341
– ident: e_1_2_14_107_1
  doi: 10.1029/2018WR024463
– ident: e_1_2_14_70_1
  doi: 10.1080/02626668509490989
– ident: e_1_2_14_63_1
  doi: 10.1029/2018WR024148
– volume-title: Paper presented at 35th PMLR Conference on Machine Learning, Stockholm, Sweden
  year: 2018
  ident: e_1_2_14_37_1
– ident: e_1_2_14_25_1
  doi: 10.1029/2020WR028095
– ident: e_1_2_14_52_1
  doi: 10.5194/hess-22-6005-2018
– ident: e_1_2_14_100_1
  doi: 10.1515/IJNSNS.2009.10.3.273
– volume-title: Paper presented at 35th PMLR Conference on Machine Learning, Stockholm, Sweden
  year: 2018
  ident: e_1_2_14_112_1
– ident: e_1_2_14_16_1
  doi: 10.1029/2001WR000478
– ident: e_1_2_14_53_1
  doi: 10.1029/1999WR900099
– ident: e_1_2_14_22_1
  doi: 10.1029/91WR02985
– volume-title: Paper presented at 33rd ICML Conference on Machine Learning, New York, NY
  year: 2016
  ident: e_1_2_14_27_1
– ident: e_1_2_14_5_1
  doi: 10.1029/2000WR900363
– volume-title: Adam: A method for stochastic optimization
  year: 2014
  ident: e_1_2_14_50_1
– ident: e_1_2_14_84_1
  doi: 10.5194/hess-22-5639-2018
– volume: 30
  start-page: 5998
  year: 2017
  ident: e_1_2_14_96_1
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_14_93_1
  doi: 10.1029/2019WR024908
– volume-title: Deep amortized inference for probabilistic programs
  year: 2016
  ident: e_1_2_14_80_1
– ident: e_1_2_14_14_1
  doi: 10.1016/j.asoc.2018.03.021
– ident: e_1_2_14_88_1
  doi: 10.1029/2006WR005205
– volume-title: Paper presented at 34th International Conference on Neural Information Processing Systems, Vancouver, Canada
  year: 2020
  ident: e_1_2_14_17_1
SSID ssj0014567
Score 2.5676339
Snippet Significant attention has recently been paid to deep learning as a method for improved catchment modeling. Compared with process‐based models, deep learning is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial neural networks
Bayesian analysis
Bayesian inference
Bayesian theory
Catchment models
Catchments
Deep learning
Errors
Groundwater
Groundwater models
Hydrologic models
Hydrologic processes
hydrological model
Hydrology
Intervals
LSTM
Machine learning
Markov chain
Markov chains
Mathematical models
MIKE SHE
model uncertainty
Modelling
Natural language processing
Neural networks
Parameters
probabilistic prediction
Probability theory
regression analysis
Regression models
Reliability
Sharpness
Statistical analysis
Statistical inference
Statistical methods
stochastic variational inference
Uncertainty
Watersheds
Title Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Process‐Based Hydrological Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021WR029772
https://www.proquest.com/docview/2576669387
https://www.proquest.com/docview/2675577040
Volume 57
WOSCitedRecordID wos000703704400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NahRBEG5CFPQSNVFcE0ML5hQH6e756TkmMUsC6yKbrJvb0L_uQpgNOxNhycVH8BnzJFbN9KzrQUFyG6huZpjuqvqqq6s-Qt4zowRLNIuc13EUi8xFKk1tpLjQXnKvlG9YSwbZcCivrvIv4cANa2Ha_hCrAzfUjMZeo4IrXYVmA9gjE6J2Nhkh91KGJpjFDAkMJufDVRIBsEHWJZgR6IR77zDl4_rkPz3Sb5i5DlYbb9N_9tDvfE62As6kR-3GeEE2XLlNnnRlyBU8B_rz6XKH3B2rpcNqSjq4uPxMJ7N6Si_quZkq7OJMv0I8Hc4M6XlXIEgB7dJTkCPkLb9RJFW7pmOQNHcM6iWdlTSUIdz_-HkM3tLSs6VddNa2nVG9JOP-6eXJWRRYGSIlAM6AS9OxVAArdWo918xqr5iHwMbEcYIcpNzZjFstvRSp5UYyw1NhYwj0EpvmVrwim-W8dK8J9SbhRqWx1xrb3Oe5VRLghvfCJj51skcOu5UpTGhZjswZ10WTOud5sf5ze-RgNfqmbdXxl3F73SIXQWGrAuMu-AIhsx55txKDqmH-RJVufgtjILhKsgzMXo98aJb8n-8pJqOTEURsLH_zf8N3yVMUtDfZ9shmvbh1b8lj872eVYt98ujTqD8e7Dd7_RcgOP4d
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hglQu5S0CLSwSnMBC3vVjfaRVq0SkEUpT0pu1TxKpcqrERYq48BP4jfySztjrEA4gIW6Wdla2vDsz3-zszAfwOjZKxKmOI-d1EiUid5HKMhspLrSX3CvlG9aSYT4ayYuL4lPgOaVamLY_xObAjTSjsdek4HQgHboNUJNMDNvj6ZjIl3K0wbcTxBrE3TAdjDZpBEQHeZdiJqgTbr7jnPfbs3_3Sb-A5jZcbfzNyb3__tL7sBegJvvQ7o0HcMtVD2G3q0Re4XNgQJ-tH8G3Q7V2VFDJhmeTUzad1zN2Vi_MTFEjZ_YZQ-pwbMgGXY0gQ8DLjnGcUG_1hRGv2iU7x5HmmkG9ZvOKhUqEn99_HKLDtKy_tsvO4LYzVo_h_OR4ctSPAjFDpAQiGvRqOpEKkaXOrOc6ttqr2GNsY5IkJRpS7mzOrZZeisxyI2PDM2ETjPVSmxVWPIGdalG5p8C8SblRWeK1pk73RWGVRMThvbCpz5zswdtuaUoTupYTecZl2WTPeVFu_9wevNlIX7XdOv4gt9-tchl0dlVS6IVfIGTeg1ebYdQ2SqGoyi2uUQbjqzTP0fL14F2z5n99TzkdH40xaIuLZ_8m_hJ2-5PTYTkcjD4-h7sk1F5s24edenntDuCO-VrPV8sXzYa_AQYuAKo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixNBEC4kK-rFtxhdtQU96SDTPY-eo_sIuxjDkt2YvQ39NIFlsiSzQvDiT_A3-kusmumJ8aAg3ga6mmmmu6q-muqqD-BVbJSIUx1HzuskSkTuIpVlNlJcaC-5V8o3rCXDfDSS5-fFSeA5pVqYtj_E5ocbaUZjr0nB3aX1odsANcnEsD2ejol8KUcbvJMQj0wPdg7Gg8lwk0hAfJB3SWYCO-HuO856tz3_d6_0C2puA9bG4wzu_Pda78LtADbZ-_Z03INrrroPN7ta5BU-Bw702foBfN1Ta0cllWx4evaRTef1jJ3WCzNT1MqZfcKgOvw4ZMddlSBDyMsOcZxwb_WZEbPaBZvgSHPRoF6zecVCLcKPb9_30GVadrS2y87ktjNWD2EyODzbP4oCNUOkBGIa9Gs6kQqxpc6s5zq22qvYY3RjkiQlIlLubM6tll6KzHIjY8MzYROM9lKbFVY8gl61qNxjYN6k3Kgs8VpTr_uisEoi5vBe2NRnTvbhTbc1pQl9y4k-46Js8ue8KLc_bh9eb6Qv234df5Db7Xa5DFq7Kin4whUImffh5WYY9Y2SKKpyiyuUwQgrzXO0fX142-z5X99TTsf7Ywzb4uLJv4m_gBsnB4NyeDz68BRukUx7s20XevXyyj2D6-ZLPV8tn4cT_xOmvAFT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+LSTM+With+Stochastic+Variational+Inference+for+Estimating+Model+Uncertainty+in+Process%E2%80%90Based+Hydrological+Models&rft.jtitle=Water+resources+research&rft.au=Li%2C+Dayang&rft.au=Marshall%2C+Lucy&rft.au=Liang%2C+Zhongmin&rft.au=Sharma%2C+Ashish&rft.date=2021-09-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=57&rft.issue=9&rft_id=info:doi/10.1029%2F2021WR029772&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2021WR029772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon