Development of Multivariable Dynamic System Response Curve Method for Real‐Time Flood Forecasting Correction

Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an error correction method to improve the performance of hydrological modeling. One of the critical problems is the unstable performance caused...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research Vol. 54; no. 7; pp. 4730 - 4749
Main Authors: Sun, Y., Bao, W., Jiang, P., Ji, X., Gao, S., Xu, Y., Zhang, Q., Si, W.
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01.07.2018
Subjects:
ISSN:0043-1397, 1944-7973
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an error correction method to improve the performance of hydrological modeling. One of the critical problems is the unstable performance caused by the ill‐posed property of the model structure and the inability of estimating multiple variables. To address this problem, the original structure of DSRC was modified to enable the capability of estimating multiple variables. Using the variable forgetting factor recursive least squares algorithm (VFF‐RLS), we proposed an improved version of DSRC (VFF‐RLS‐MDSRC). The proposed method was tested in a synthetic case to examine the ability to correct state variables of a hydrological model. In addition, it was compared with the autoregressive technique in a real case study to evaluate the effects on the improvement of model performance. The results of the synthetic study indicate that the proposed method can significantly improve the performance of both the model output and the state variables. The results of the real case study indicate that the performance obtained by the proposed method tends to have a slower decline trend when increasing the lead time compared with autoregressive technique. Key Points Present a simple method that serves to overcome the difficulties when estimating multiple variables Present a new error correction method using the adaptive filter technique Compare the proposed method with the autoregressive technique in two real basins
AbstractList Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an error correction method to improve the performance of hydrological modeling. One of the critical problems is the unstable performance caused by the ill‐posed property of the model structure and the inability of estimating multiple variables. To address this problem, the original structure of DSRC was modified to enable the capability of estimating multiple variables. Using the variable forgetting factor recursive least squares algorithm (VFF‐RLS), we proposed an improved version of DSRC (VFF‐RLS‐MDSRC). The proposed method was tested in a synthetic case to examine the ability to correct state variables of a hydrological model. In addition, it was compared with the autoregressive technique in a real case study to evaluate the effects on the improvement of model performance. The results of the synthetic study indicate that the proposed method can significantly improve the performance of both the model output and the state variables. The results of the real case study indicate that the performance obtained by the proposed method tends to have a slower decline trend when increasing the lead time compared with autoregressive technique.
Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an error correction method to improve the performance of hydrological modeling. One of the critical problems is the unstable performance caused by the ill‐posed property of the model structure and the inability of estimating multiple variables. To address this problem, the original structure of DSRC was modified to enable the capability of estimating multiple variables. Using the variable forgetting factor recursive least squares algorithm (VFF‐RLS), we proposed an improved version of DSRC (VFF‐RLS‐MDSRC). The proposed method was tested in a synthetic case to examine the ability to correct state variables of a hydrological model. In addition, it was compared with the autoregressive technique in a real case study to evaluate the effects on the improvement of model performance. The results of the synthetic study indicate that the proposed method can significantly improve the performance of both the model output and the state variables. The results of the real case study indicate that the performance obtained by the proposed method tends to have a slower decline trend when increasing the lead time compared with autoregressive technique. Present a simple method that serves to overcome the difficulties when estimating multiple variables Present a new error correction method using the adaptive filter technique Compare the proposed method with the autoregressive technique in two real basins
Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an error correction method to improve the performance of hydrological modeling. One of the critical problems is the unstable performance caused by the ill‐posed property of the model structure and the inability of estimating multiple variables. To address this problem, the original structure of DSRC was modified to enable the capability of estimating multiple variables. Using the variable forgetting factor recursive least squares algorithm (VFF‐RLS), we proposed an improved version of DSRC (VFF‐RLS‐MDSRC). The proposed method was tested in a synthetic case to examine the ability to correct state variables of a hydrological model. In addition, it was compared with the autoregressive technique in a real case study to evaluate the effects on the improvement of model performance. The results of the synthetic study indicate that the proposed method can significantly improve the performance of both the model output and the state variables. The results of the real case study indicate that the performance obtained by the proposed method tends to have a slower decline trend when increasing the lead time compared with autoregressive technique. Key Points Present a simple method that serves to overcome the difficulties when estimating multiple variables Present a new error correction method using the adaptive filter technique Compare the proposed method with the autoregressive technique in two real basins
Author Gao, S.
Zhang, Q.
Bao, W.
Jiang, P.
Xu, Y.
Sun, Y.
Ji, X.
Si, W.
Author_xml – sequence: 1
  givenname: Y.
  surname: Sun
  fullname: Sun, Y.
  organization: Hohai University
– sequence: 2
  givenname: W.
  surname: Bao
  fullname: Bao, W.
  organization: Hohai University
– sequence: 3
  givenname: P.
  orcidid: 0000-0002-8472-1221
  surname: Jiang
  fullname: Jiang, P.
  email: peng.jiang.j@gmail.com
  organization: Desert Research Institute
– sequence: 4
  givenname: X.
  surname: Ji
  fullname: Ji, X.
  organization: Liaoning Administration for Hydrology and Water Resources Investigation
– sequence: 5
  givenname: S.
  surname: Gao
  fullname: Gao, S.
  organization: Liaoning Administration for Hydrology and Water Resources Investigation
– sequence: 6
  givenname: Y.
  surname: Xu
  fullname: Xu, Y.
  organization: Liaoning Administration for Chaihe Reservoir
– sequence: 7
  givenname: Q.
  surname: Zhang
  fullname: Zhang, Q.
  organization: Bei Fang Investigation, Design and Research CO.LTD
– sequence: 8
  givenname: W.
  surname: Si
  fullname: Si, W.
  organization: Hohai University
BookMark eNp9kM1u1DAQxy1UJLYtNx7AEhcOpPgzTo4o7dJKrZCWoh4jx5mAK8debGfR3ngEnrFPUlfLAVWC02hmfvPx_x-jIx88IPSGkjNKWPuBEdrcbQhjUsoXaEVbISrVKn6EVoQIXlHeqlfoOKV7QqiQtVohfw47cGE7g884TPhmcdnudLR6cIDP917P1uAv-5RhxhtI2-AT4G6JO8A3kL-HEU8hlo52D79-39oZ8NqFUl2HCEanbP033IVYkmyDP0UvJ-0SvP4TT9DX9cVtd1ldf_501X28rjSvuaqoppIUFU07QGuEHKQgvFYDVbVQ2rSTBKC6NtCMvMgYhqYZiWHSjKM0ZiT8BL077N3G8GOBlPvZJgPOaQ9hST1TtOF1TTgr6Ntn6H1Yoi_f9Yy0VCjZqKZQ7w-UiSGlCFO_jXbWcd9T0j-Z3_9tfsHZM9zYrJ8cyFFb968hfhj6aR3s_3ugv9t0G8aFUPwRbzuZHg
CitedBy_id crossref_primary_10_1061__ASCE_HE_1943_5584_0002168
crossref_primary_10_1007_s00477_022_02336_6
crossref_primary_10_2166_hydro_2020_045
crossref_primary_10_1016_j_envres_2024_118533
crossref_primary_10_1016_j_jhydrol_2022_127434
crossref_primary_10_1016_j_jhydrol_2020_125793
crossref_primary_10_1016_j_jhydrol_2025_133910
crossref_primary_10_1016_j_comnet_2020_107744
crossref_primary_10_5194_hess_25_711_2021
crossref_primary_10_1088_1755_1315_1108_1_012074
crossref_primary_10_1029_2019WR025520
crossref_primary_10_1007_s11269_019_02351_3
crossref_primary_10_3390_w15224016
crossref_primary_10_3390_w15244205
crossref_primary_10_1016_j_jhydrol_2022_127518
crossref_primary_10_1109_ACCESS_2019_2941234
crossref_primary_10_1016_j_jhydrol_2022_128969
crossref_primary_10_2166_nh_2018_038
crossref_primary_10_3390_w13243483
crossref_primary_10_1007_s00477_025_03048_3
crossref_primary_10_1007_s11269_022_03305_y
crossref_primary_10_1016_j_scs_2020_102686
crossref_primary_10_1016_j_jhydrol_2025_132918
crossref_primary_10_1016_j_jhydrol_2022_128213
crossref_primary_10_1016_j_scs_2020_102562
crossref_primary_10_1029_2020WR027468
crossref_primary_10_1016_j_jhydrol_2020_125908
Cites_doi 10.1049/el:19911331
10.1016/j.jhydrol.2012.12.011
10.1109/TSP.2005.851110
10.1029/2011WR011044
10.1029/2007WR006505
10.1109/TVT.2002.1002509
10.1029/1999WR900099
10.1029/WR012i003p00487
10.1029/2002WR001642
10.1029/2005WR004368
10.1061/(ASCE)HE.1943-5584.0000848
10.1029/2005WR004093
10.1137/S1064827594263837
10.1029/2005GL025604
10.1002/2015WR017234
10.2166/nh.1997.0005
10.1155/2013/827980
10.1029/WR008i004p00956
10.1007/BF01933214
10.1016/j.jhydrol.2009.03.003
10.1175/1525-7541(2003)4<473:SAOESD>2.0.CO;2
10.1016/j.jhydrol.2006.05.010
10.1016/j.neucom.2008.12.032
10.1016/S0951-8320(03)00058-9
10.1016/j.jhydrol.2012.03.031
10.1049/el:20000727
10.1029/2004WR003604
10.1061/(ASCE)HE.1943-5584.0000415
10.1002/hyp.6825
10.1137/S0895479897326432
10.1016/S1474-6670(17)65102-4
10.1029/91WR01305
10.1080/00423110412331290446
10.1002/1099-1085(20000815/30)14:11/12<2157::AID-HYP57>3.0.CO;2-S
10.1109/TSP.2010.2040671
10.1029/2009WR008328
10.1109/LSP.2008.2001559
10.1137/1034115
10.1080/00401706.2000.10485983
10.1137/S0036144597321909
10.1016/0005-1098(81)90070-4
10.5194/hessd-3-3691-2006
10.1007/978-0-387-30164-8_630
10.1016/j.jhydrol.2007.11.011
10.1016/j.jhydrol.2005.04.022
10.1109/78.923296
10.5194/hess-16-2783-2012
10.1016/j.jhydrol.2012.11.017
10.1016/S0022-1694(01)00420-6
10.1007/978-94-009-1740-8
10.1061/JYCEAJ.0001020
10.1016/S0022-1694(99)00173-0
10.1016/j.ress.2005.11.017
10.1016/0022-1694(70)90255-6
10.1061/(ASCE)HE.1943-5584.0000719
ContentType Journal Article
Copyright 2018. American Geophysical Union. All Rights Reserved.
2018. American Geophysical Union. All rights reserved.
Copyright_xml – notice: 2018. American Geophysical Union. All Rights Reserved.
– notice: 2018. American Geophysical Union. All rights reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2018WR022555
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
CrossRef

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage 4749
ExternalDocumentID 10_1029_2018WR022555
WRCR23447
Genre article
GrantInformation_xml – fundername: National Postdoctoral Foundation of China
  funderid: 2017M611679
– fundername: Fundamental Research Funds for Central Universities
  funderid: 2017B684X14
– fundername: Yellow River sediment Key Laboratory of Ministry of water resources
  funderid: 201804
– fundername: National Key R&D Program of China
  funderid: 2016YFC0402703
– fundername: Postdoctoral Foundation of Jiangsu Province
  funderid: 1701019A
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  funderid: KYCX17_0423
– fundername: National Natural Science Foundation of China
  funderid: 51709077; 41371048; 51479062; 51709076
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFFHD
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIQQE
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WIN
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a3637-1a15025589be9c45b540367b17647ac9f5ee1a6ce8d3567bb88d0c25cdd5ccd03
IEDL.DBID DRFUL
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442502100031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:26:36 EDT 2025
Wed Aug 13 03:33:28 EDT 2025
Sat Nov 29 01:36:41 EST 2025
Tue Nov 18 21:29:37 EST 2025
Tue Nov 11 03:11:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3637-1a15025589be9c45b540367b17647ac9f5ee1a6ce8d3567bb88d0c25cdd5ccd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8472-1221
PQID 2091475878
PQPubID 105507
PageCount 20
ParticipantIDs proquest_miscellaneous_2718366032
proquest_journals_2091475878
crossref_primary_10_1029_2018WR022555
crossref_citationtrail_10_1029_2018WR022555
wiley_primary_10_1029_2018WR022555_WRCR23447
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 58
2017; 48
2006; 33
2002; 51
2000; 42
2008; 349
2012; 17
2001; 49
2012; 16
1998; 40
2013; 480
2006; 331
2013; 18
2010; 21
2000; 14
2013; 2013
1997; 18
2003; 4
2013; 476
2014; 19
2012; 442‐443
2007; 21
1990; 30
2006; 91
1972; 8
2003; 81
2011
2015; 51
2008
2005; 41
2008; 15
1996
1970; 10
1997; 28
2005; 43
2006; 3
2005
1994
2009; 370
2003; 39
2006; 316
1992; 34
2001; 249
1991; 27
2006; 42
1976; 12
2010; 46
2000; 36
2009; 72
1980; 13
2000; 227
1992; 135
1999; 35
2005; 53
1981; 17
2008; 44
2012; 48
2013
1964; 90
1966
Tikhonov A. N. (e_1_2_7_58_1) 2013
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_41_1
Haykin S. (e_1_2_7_24_1) 2008
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
Zhao R. J. (e_1_2_7_64_1) 1992; 135
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
Kennedy J. (e_1_2_7_32_1) 2011
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
Dorf R. C. (e_1_2_7_15_1) 2011
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Singh K. P. (e_1_2_7_53_1) 1964; 90
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Bao W. (e_1_2_7_6_1) 2017; 48
References_xml – year: 2011
– volume: 15
  start-page: 597
  year: 2008
  end-page: 600
  article-title: A robust variable forgetting factor recursive least‐squares algorithm for system identification
  publication-title: IEEE Signal Processing Letters
– volume: 49
  start-page: 1138
  issue: 6
  year: 2001
  end-page: 1145
  article-title: A recursive least squares implementation for LCMP beam forming under quadratic constraint
  publication-title: IEEE Transactions on Signal Processing
– year: 2005
– year: 1966
– start-page: 760
  year: 2011
  end-page: 766
– volume: 41
  year: 2005
  article-title: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter
  publication-title: Water Resources Research
– volume: 249
  start-page: 2
  issue: 1‐4
  year: 2001
  end-page: 9
  article-title: The case for probabilistic forecasting in hydrology
  publication-title: Journal of Hydrology
– volume: 16
  start-page: 2783
  issue: 8
  year: 2012
  end-page: 2799
  article-title: Adaptive correction of deterministic models to produce probabilistic forecasts
  publication-title: Hydrology and Earth System Sciences
– volume: 39
  issue: 8
  year: 2003
  article-title: A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
  publication-title: Water Resources Research
– volume: 48
  start-page: 560
  issue: 5
  year: 2017
  end-page: 567
  article-title: A new version of system response method for error correction based on total least squares (in Chinese)
  publication-title: Journal of Hydraulic Engineering
– volume: 370
  start-page: 155
  issue: 1–4
  year: 2009
  end-page: 162
  article-title: Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index
  publication-title: Journal of Hydrology
– volume: 51
  start-page: 613
  issue: 3
  year: 2002
  end-page: 616
  article-title: Variable forgetting factor linear least squares algorithm for frequency selective fading channel estimation
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 2013
  start-page: 10
  year: 2013
  article-title: Testing a conceptual lumped model in karst area, southwest China
  publication-title: Journal of Applied Mathematics
– volume: 72
  start-page: 2873
  issue: 13‐15
  year: 2009
  end-page: 2883
  article-title: Division‐based rainfall‐runoff simulations with BP neural networks and Xinanjiang model
  publication-title: Neurocomputing
– volume: 17
  start-page: 118
  issue: 1
  year: 2012
  end-page: 128
  article-title: Estimating selected parameters for the XAJ model under multicollinearity among watershed characteristics
  publication-title: Journal of Hydrologic Engineering
– year: 1994
– volume: 4
  start-page: 473
  issue: 2
  year: 2003
  end-page: 487
  article-title: Sequential assimilation of ERS‐1 SAR data into a coupled land surface–hydrological model using an extended Kalman filter
  publication-title: Journal of Hydrometeorology
– volume: 34
  start-page: 561
  issue: 4
  year: 1992
  end-page: 580
  article-title: Analysis of discrete ill‐posed problems by means of the L‐curve
  publication-title: SIAM Review
– volume: 476
  start-page: 433
  year: 2013
  end-page: 441
  article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
  publication-title: Journal of Hydrology
– volume: 40
  start-page: 636
  issue: 3
  year: 1998
  end-page: 666
  article-title: Solving ill‐conditioned and singular linear systems: A tutorial on regularization
  publication-title: SIAM Review
– volume: 51
  start-page: 5128
  year: 2015
  end-page: 5144
  article-title: Updating real‐time flood forecasts via the dynamic system response curve method
  publication-title: Water Resources Research
– volume: 27
  start-page: 2467
  year: 1991
  end-page: 2471
  article-title: The genetic algorithm and its application to calibrating conceptual rainfall‐runoff models
  publication-title: Water Resources Research
– volume: 21
  start-page: 185
  issue: 1
  year: 2010
  end-page: 194
  article-title: Tikhonov regularization and total least squares
  publication-title: Siam Journal on Matrix Analysis & Applications
– volume: 53
  start-page: 3141
  issue: 8
  year: 2005
  end-page: 3150
  article-title: Gradient‐based variable forgetting factor RLS algorithm in time‐varying environments
  publication-title: IEEE Transactions on Signal Processing
– volume: 135
  start-page: 371
  issue: 1
  year: 1992
  end-page: 381
  article-title: The Xinanjiang model applied in China
  publication-title: Journal of Hydrology
– year: 2008
– volume: 44
  year: 2008
  article-title: Real‐time groundwater flow modeling with the ensemble Kalman filter: Joint estimation of states and parameters and the filter inbreeding problem
  publication-title: Water Resources Research
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models. Part I—A discussion of principles
  publication-title: Journal of Hydrology
– volume: 331
  start-page: 161
  issue: 1‐2
  year: 2006
  end-page: 177
  article-title: Towards a Bayesian total error analysis of conceptual rainfall‐runoff models: Characterising model error using storm‐dependent parameters
  publication-title: Journal of Hydrology
– volume: 42
  start-page: 80
  issue: 1
  year: 2000
  end-page: 86
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
– volume: 81
  start-page: 23
  issue: 1
  year: 2003
  end-page: 69
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliability Engineering & System Safety
– volume: 3
  start-page: 3691
  issue: 6
  year: 2006
  end-page: 3726
  article-title: Influence of rainfall observation network on model calibration and application
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 28
  start-page: 65
  issue: 2
  year: 1997
  end-page: 84
  article-title: Validation and intercomparison of different updating procedures for real‐time forecasting
  publication-title: Hydrology Research
– volume: 42
  year: 2006
  article-title: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall‐runoff models
  publication-title: Water Resources Research
– volume: 36
  start-page: 988
  issue: 11
  year: 2000
  end-page: 990
  article-title: Gauss Newton variable forgetting factor recursive least squares for time varying parameter tracking
  publication-title: Electronics Letters
– volume: 442‐443
  start-page: 23
  year: 2012
  end-page: 35
  article-title: Hydrological time series modeling: A comparison between adaptive neuro‐fuzzy, neural network and autoregressive techniques
  publication-title: Journal of Hydrology
– volume: 90
  start-page: 313
  issue: 2
  year: 1964
  end-page: 350
  article-title: Nonlinear instantaneous unit‐hydrograph theory
  publication-title: Journal of the Hydraulics Division
– volume: 35
  start-page: 2739
  year: 1999
  end-page: 2750
  article-title: Bayesian theory of probabilistic forecasting via deterministic hydrologic model
  publication-title: Water Resources Research
– volume: 12
  start-page: 487
  year: 1976
  end-page: 496
  article-title: Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed
  publication-title: Water Resources Research
– volume: 33
  year: 2006
  article-title: Unraveling uncertainties in hydrologic model calibration: Addressing the problem of compensatory parameters
  publication-title: Geophysical Research Letters
– volume: 46
  year: 2010
  article-title: Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors
  publication-title: Water Resources Research
– year: 1996
– volume: 27
  start-page: 2150
  issue: 23
  year: 1991
  end-page: 2151
  article-title: Fast tracking RLS algorithm using novel variable forgetting factor with unity zone
  publication-title: Electronics Letters
– volume: 18
  start-page: 1140
  issue: 9
  year: 2013
  end-page: 1147
  article-title: Efficient calibration technique under irregular response surface
  publication-title: Journal of Hydrologic Engineering
– volume: 316
  start-page: 129
  issue: 1‐4
  year: 2006
  end-page: 140
  article-title: Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure
  publication-title: Journal of Hydrology
– volume: 30
  start-page: 658
  issue: 4
  year: 1990
  end-page: 672
  article-title: The discrete Picard condition for discrete ill‐posed problems
  publication-title: BIT Numerical Mathematics
– volume: 18
  start-page: 1223
  issue: 4
  year: 1997
  end-page: 1241
  article-title: Regularization by truncated total least squares
  publication-title: SIAM Journal on Scientific Computing
– volume: 43
  start-page: 31
  issue: 1
  year: 2005
  end-page: 55
  article-title: Recursive least squares with forgetting for online estimation of vehicle mass and road grade: Theory and experiments
  publication-title: Vehicle System Dynamics
– volume: 58
  start-page: 2121
  issue: 4
  year: 2010
  end-page: 2130
  article-title: Recursive least squares dictionary learning algorithm
  publication-title: IEEE Transactions on Signal Processing
– volume: 8
  start-page: 956
  year: 1972
  end-page: 965
  article-title: Identification of parameters in unsteady open channel flows
  publication-title: Water Resources Research
– volume: 14
  start-page: 2157
  issue: 11–12
  year: 2000
  end-page: 2172
  article-title: Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
  publication-title: Hydrological Processes
– volume: 48
  year: 2012
  article-title: Towards a comprehensive assessment of model structural adequacy
  publication-title: Water Resources Research
– volume: 480
  start-page: 102
  issue: 4
  year: 2013
  end-page: 114
  article-title: The streamflow estimation using the Xinanjiang rainfall runoff model and dual state‐parameter estimation method
  publication-title: Journal of Hydrology
– volume: 21
  start-page: 2075
  issue: 15
  year: 2007
  end-page: 2080
  article-title: Do Nash values have value?
  publication-title: Hydrological Processes
– volume: 13
  start-page: 457
  issue: 3
  year: 1980
  end-page: 466
  article-title: Calibration procedures use with the National Weather Service River Forecast System
  publication-title: IFAC Proceedings Volumes
– volume: 91
  start-page: 1175
  issue: 10‐11
  year: 2006
  end-page: 1209
  article-title: Survey of sampling‐based methods for uncertainty and sensitivity analysis
  publication-title: Reliability Engineering & System Safety
– volume: 19
  start-page: 747
  issue: 4
  year: 2014
  end-page: 756
  article-title: Flow updating in real‐time flood forecasting based on runoff correction by a dynamic system response curve
  publication-title: Journal of Hydrologic Engineering
– volume: 349
  start-page: 376
  issue: 3‐4
  year: 2008
  end-page: 382
  article-title: Robust recursive estimation of auto‐regressive updating model parameters for real‐time flood forecasting
  publication-title: Journal of Hydrology
– volume: 42
  year: 2006
  article-title: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application
  publication-title: Water Resources Research
– volume: 17
  start-page: 831
  issue: 6
  year: 1981
  end-page: 835
  article-title: Implementation of self‐tuning regulators with variable forgetting factors
  publication-title: Automatica
– volume: 227
  start-page: 93
  issue: 1–4
  year: 2000
  end-page: 113
  article-title: A modified spatial soil moisture storage capacity distribution curve for the Xinanjiang model
  publication-title: Journal of Hydrology
– year: 2013
– volume-title: Numerical methods for the solution of ill‐posed problems
  year: 2013
  ident: e_1_2_7_58_1
– ident: e_1_2_7_44_1
  doi: 10.1049/el:19911331
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jhydrol.2012.12.011
– ident: e_1_2_7_51_1
  doi: 10.1109/TSP.2005.851110
– ident: e_1_2_7_21_1
  doi: 10.1029/2011WR011044
– ident: e_1_2_7_27_1
  doi: 10.1029/2007WR006505
– ident: e_1_2_7_56_1
  doi: 10.1109/TVT.2002.1002509
– ident: e_1_2_7_33_1
  doi: 10.1029/1999WR900099
– ident: e_1_2_7_45_1
  doi: 10.1029/WR012i003p00487
– ident: e_1_2_7_61_1
  doi: 10.1029/2002WR001642
– ident: e_1_2_7_31_1
  doi: 10.1029/2005WR004368
– ident: e_1_2_7_5_1
  doi: 10.1061/(ASCE)HE.1943-5584.0000848
– ident: e_1_2_7_63_1
  doi: 10.1029/2005WR004093
– ident: e_1_2_7_17_1
  doi: 10.1137/S1064827594263837
– ident: e_1_2_7_10_1
– ident: e_1_2_7_13_1
  doi: 10.1029/2005GL025604
– ident: e_1_2_7_52_1
  doi: 10.1002/2015WR017234
– volume-title: Modern control systems, 12th Ed.
  year: 2011
  ident: e_1_2_7_15_1
– ident: e_1_2_7_46_1
  doi: 10.2166/nh.1997.0005
– ident: e_1_2_7_50_1
  doi: 10.1155/2013/827980
– ident: e_1_2_7_8_1
  doi: 10.1029/WR008i004p00956
– ident: e_1_2_7_22_1
  doi: 10.1007/BF01933214
– ident: e_1_2_7_37_1
  doi: 10.1016/j.jhydrol.2009.03.003
– ident: e_1_2_7_19_1
  doi: 10.1175/1525-7541(2003)4<473:SAOESD>2.0.CO;2
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jhydrol.2006.05.010
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neucom.2008.12.032
– ident: e_1_2_7_25_1
  doi: 10.1016/S0951-8320(03)00058-9
– ident: e_1_2_7_38_1
  doi: 10.1016/j.jhydrol.2012.03.031
– volume: 48
  start-page: 560
  issue: 5
  year: 2017
  ident: e_1_2_7_6_1
  article-title: A new version of system response method for error correction based on total least squares (in Chinese)
  publication-title: Journal of Hydraulic Engineering
– ident: e_1_2_7_49_1
  doi: 10.1049/el:20000727
– ident: e_1_2_7_40_1
  doi: 10.1029/2004WR003604
– ident: e_1_2_7_3_1
  doi: 10.1061/(ASCE)HE.1943-5584.0000415
– ident: e_1_2_7_48_1
  doi: 10.1002/hyp.6825
– ident: e_1_2_7_14_1
– ident: e_1_2_7_20_1
  doi: 10.1137/S0895479897326432
– ident: e_1_2_7_9_1
  doi: 10.1016/S1474-6670(17)65102-4
– volume-title: Adaptive filter theory
  year: 2008
  ident: e_1_2_7_24_1
– ident: e_1_2_7_62_1
  doi: 10.1029/91WR01305
– ident: e_1_2_7_59_1
  doi: 10.1080/00423110412331290446
– ident: e_1_2_7_2_1
  doi: 10.1002/1099-1085(20000815/30)14:11/12<2157::AID-HYP57>3.0.CO;2-S
– ident: e_1_2_7_54_1
  doi: 10.1109/TSP.2010.2040671
– ident: e_1_2_7_47_1
  doi: 10.1029/2009WR008328
– ident: e_1_2_7_43_1
  doi: 10.1109/LSP.2008.2001559
– ident: e_1_2_7_23_1
  doi: 10.1137/1034115
– ident: e_1_2_7_36_1
– ident: e_1_2_7_28_1
  doi: 10.1080/00401706.2000.10485983
– ident: e_1_2_7_42_1
  doi: 10.1137/S0036144597321909
– ident: e_1_2_7_18_1
  doi: 10.1016/0005-1098(81)90070-4
– ident: e_1_2_7_7_1
  doi: 10.5194/hessd-3-3691-2006
– start-page: 760
  volume-title: Encyclopedia of machine Learning
  year: 2011
  ident: e_1_2_7_32_1
  doi: 10.1007/978-0-387-30164-8_630
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jhydrol.2007.11.011
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jhydrol.2005.04.022
– ident: e_1_2_7_57_1
  doi: 10.1109/78.923296
– ident: e_1_2_7_55_1
  doi: 10.5194/hess-16-2783-2012
– ident: e_1_2_7_60_1
  doi: 10.1016/j.jhydrol.2012.11.017
– ident: e_1_2_7_34_1
  doi: 10.1016/S0022-1694(01)00420-6
– ident: e_1_2_7_16_1
  doi: 10.1007/978-94-009-1740-8
– volume: 90
  start-page: 313
  issue: 2
  year: 1964
  ident: e_1_2_7_53_1
  article-title: Nonlinear instantaneous unit‐hydrograph theory
  publication-title: Journal of the Hydraulics Division
  doi: 10.1061/JYCEAJ.0001020
– volume: 135
  start-page: 371
  issue: 1
  year: 1992
  ident: e_1_2_7_64_1
  article-title: The Xinanjiang model applied in China
  publication-title: Journal of Hydrology
– ident: e_1_2_7_29_1
  doi: 10.1016/S0022-1694(99)00173-0
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ress.2005.11.017
– ident: e_1_2_7_41_1
  doi: 10.1016/0022-1694(70)90255-6
– ident: e_1_2_7_4_1
  doi: 10.1061/(ASCE)HE.1943-5584.0000719
SSID ssj0014567
Score 2.4182074
Snippet Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4730
SubjectTerms algorithms
Case studies
Dynamical systems
Economic models
Error correction
Error correction & detection
Estimation
Flood forecasting
Floods
Hydrologic models
Hydrology
Lead time
Methods
model validation
Modelling
Performance enhancement
River discharge
Variables
water
Title Development of Multivariable Dynamic System Response Curve Method for Real‐Time Flood Forecasting Correction
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018WR022555
https://www.proquest.com/docview/2091475878
https://www.proquest.com/docview/2718366032
Volume 54
WOSCitedRecordID wos000442502100031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231214
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6apNBc0kcasnmhQntqTda2Xj6WTZYW2qWYhs3NSPKYBII3rLMLueUn5Dfml2RkazfbQwuhNxuNbSFpPN9IM_MBfFSC_vsmqSI03JCDgqRSFcoIHVm7im6FLFuyCTUa6fPz7FfYcPO5MF19iOWGm9eM9n_tFdzYJhQb8DUyyXLpcU4mSAixBhs-r4qcr42TfHj2Y3mOQPBALc6YPdYJoe_0huPV5_80Sk9IcxWvtgZn-Pp_u_oGtgLUZF-7tfEWXmD9Dl4tMpEbug4M6Be321CvRA-xScXaxNw5OdI-tYqddLz1rKtvzvIusBbZYDadI_vZslAzgr_UYq4e7u59Ygkb-ph45rk_nWl8dDUbeCqQNpHiPZwNT38PvkWBiyEyqUxVFBtCjtR_nVnMHBeWkF4qlY2V5Mq4rBKIsZEOdZnSmFurddl3iXBlKZwr--kOrNeTGneBac4dt-R3Ycm5spWR2NdWVajSzPK46sHnxWQULhQq93wZV0V7YJ5kxep49uDTUvq6K9DxF7mDxbwWQU0bEshiTh6T0j34sGwmBfOnJqbGyYxkyHqnUvbTpAdf2ln-53eKcT7IE19Hce954vuw6Ru6UOADWL-ZzvAQXrr5zWUzPQoL-wjWxt9Hj1Ec-eo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEB5aJ5Be-peWuk2aLSSnRMSS9k_H4tSkxDFBJCQ3sbsa0YKRix0beusj5BnzJJ2V1o57SKH0JqGRtOzu7HyzOzMfwL4StO6bpIrQcEMOCpJKVSgjdGTtKroVsmzIJtRopG9usovAc-pzYdr6EKsNN68ZzXrtFdxvSIdqA75IJpkufZ2TDRJCPIUNLlOlO7Bxkg-uhquDBMIHannI7MFOiH2nLxyvv_-nVXqAmuuAtbE4gxf_3daX8DyATfa5nR2v4AnWr2FrmYs8o-vAgf7t5zbUa_FDbFKxJjV3Qa60T65iJy1zPWsrnLO8Da1F1p9PF8jOGx5qRgCYnpjx_a87n1rCBj4qnnn2T2dmPr6a9T0ZSJNK8QauBl8u-6dRYGOITEpdG8WGsCO1X2cWM8eFJayXSmVjJbkyLqsEYmykQ12m1OnWal32XCJcWQrnyl76Fjr1pMZ3wDTnjlvyvLDkXNnKSOxpqypUaWZ5XHXhcDkahQulyj1jxrhojsyTrFjvzy4crKR_tCU6HpHbWQ5sERR1RgJZzMlnUroLn1aPScX8uYmpcTInGbLfqZS9NOnCUTPMf_1PcZ3388RXUnz_b-J7sHV6eT4shl9HZx_gmRdqA4N3oHM7neMubLrF7ffZ9GOY5b8BaFv8yw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB7SJDS99B3qJE1VSE_pUu-uXnssTkxDEhNMgnNbJO2IFsI62LGht_6E_sb-ko60a9c5pFB620UjVkgazaedxwdwoASd-ybzCRpu6IKCpFIeZYKOrJ2nVyGrSDahBgN9fV1ctDynIRemqQ-x_OEWNCOe10HB8bbybbWBUCSTTJceDckGCSEewQYnKB5iukYng6UbgdCBWriYA9RpI9-p_6fV3vdt0h-guQpXo73pP_vvkT6Hpy3UZJ-bvfEC1rB-CVuLTOQpPbcM6F-_v4J6JXqIjT2LiblzukiH1Cp21PDWs6a-ORs2gbXIerPJHNl5ZKFmBH-pxdz8-vEzJJawfoiJZ4H705lpiK5mvUAFEhMpXsNV__iy9yVpuRgSk8tcJakh5Ejj14XFwnFhCenlUtlUSa6MK7xATI10qKucJt1arauuy4SrKuFc1c23Yb0e1_gGmObccUv3Lqw4V9YbiV1tlUeVF5anvgOHi9UoXVuoPPBl3JTRYZ4V5ep8duDDUvq2KdDxgNzeYmHLVk2nJFCknG5MSnfg_bKZFCx4TUyN4xnJkPXOpezmWQc-xmX-63fK0bA3zEIdxZ1_E38Hjy-O-uXZyeB0F54EmSYqeA_W7yYzfAubbn73bTrZj1v8Nwvj-yE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Multivariable+Dynamic+System+Response+Curve+Method+for+Real%E2%80%90Time+Flood+Forecasting+Correction&rft.jtitle=Water+resources+research&rft.au=Sun%2C+Y.&rft.au=Bao%2C+W.&rft.au=Jiang%2C+P.&rft.au=Ji%2C+X.&rft.date=2018-07-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=54&rft.issue=7&rft.spage=4730&rft.epage=4749&rft_id=info:doi/10.1029%2F2018WR022555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2018WR022555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon