Development of Multivariable Dynamic System Response Curve Method for Real‐Time Flood Forecasting Correction
Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an error correction method to improve the performance of hydrological modeling. One of the critical problems is the unstable performance caused...
Uloženo v:
| Vydáno v: | Water resources research Ročník 54; číslo 7; s. 4730 - 4749 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
01.07.2018
|
| Témata: | |
| ISSN: | 0043-1397, 1944-7973 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an error correction method to improve the performance of hydrological modeling. One of the critical problems is the unstable performance caused by the ill‐posed property of the model structure and the inability of estimating multiple variables. To address this problem, the original structure of DSRC was modified to enable the capability of estimating multiple variables. Using the variable forgetting factor recursive least squares algorithm (VFF‐RLS), we proposed an improved version of DSRC (VFF‐RLS‐MDSRC). The proposed method was tested in a synthetic case to examine the ability to correct state variables of a hydrological model. In addition, it was compared with the autoregressive technique in a real case study to evaluate the effects on the improvement of model performance. The results of the synthetic study indicate that the proposed method can significantly improve the performance of both the model output and the state variables. The results of the real case study indicate that the performance obtained by the proposed method tends to have a slower decline trend when increasing the lead time compared with autoregressive technique.
Key Points
Present a simple method that serves to overcome the difficulties when estimating multiple variables
Present a new error correction method using the adaptive filter technique
Compare the proposed method with the autoregressive technique in two real basins |
|---|---|
| AbstractList | Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an error correction method to improve the performance of hydrological modeling. One of the critical problems is the unstable performance caused by the ill‐posed property of the model structure and the inability of estimating multiple variables. To address this problem, the original structure of DSRC was modified to enable the capability of estimating multiple variables. Using the variable forgetting factor recursive least squares algorithm (VFF‐RLS), we proposed an improved version of DSRC (VFF‐RLS‐MDSRC). The proposed method was tested in a synthetic case to examine the ability to correct state variables of a hydrological model. In addition, it was compared with the autoregressive technique in a real case study to evaluate the effects on the improvement of model performance. The results of the synthetic study indicate that the proposed method can significantly improve the performance of both the model output and the state variables. The results of the real case study indicate that the performance obtained by the proposed method tends to have a slower decline trend when increasing the lead time compared with autoregressive technique. Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an error correction method to improve the performance of hydrological modeling. One of the critical problems is the unstable performance caused by the ill‐posed property of the model structure and the inability of estimating multiple variables. To address this problem, the original structure of DSRC was modified to enable the capability of estimating multiple variables. Using the variable forgetting factor recursive least squares algorithm (VFF‐RLS), we proposed an improved version of DSRC (VFF‐RLS‐MDSRC). The proposed method was tested in a synthetic case to examine the ability to correct state variables of a hydrological model. In addition, it was compared with the autoregressive technique in a real case study to evaluate the effects on the improvement of model performance. The results of the synthetic study indicate that the proposed method can significantly improve the performance of both the model output and the state variables. The results of the real case study indicate that the performance obtained by the proposed method tends to have a slower decline trend when increasing the lead time compared with autoregressive technique. Present a simple method that serves to overcome the difficulties when estimating multiple variables Present a new error correction method using the adaptive filter technique Compare the proposed method with the autoregressive technique in two real basins Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an error correction method to improve the performance of hydrological modeling. One of the critical problems is the unstable performance caused by the ill‐posed property of the model structure and the inability of estimating multiple variables. To address this problem, the original structure of DSRC was modified to enable the capability of estimating multiple variables. Using the variable forgetting factor recursive least squares algorithm (VFF‐RLS), we proposed an improved version of DSRC (VFF‐RLS‐MDSRC). The proposed method was tested in a synthetic case to examine the ability to correct state variables of a hydrological model. In addition, it was compared with the autoregressive technique in a real case study to evaluate the effects on the improvement of model performance. The results of the synthetic study indicate that the proposed method can significantly improve the performance of both the model output and the state variables. The results of the real case study indicate that the performance obtained by the proposed method tends to have a slower decline trend when increasing the lead time compared with autoregressive technique. Key Points Present a simple method that serves to overcome the difficulties when estimating multiple variables Present a new error correction method using the adaptive filter technique Compare the proposed method with the autoregressive technique in two real basins |
| Author | Gao, S. Zhang, Q. Bao, W. Jiang, P. Xu, Y. Sun, Y. Ji, X. Si, W. |
| Author_xml | – sequence: 1 givenname: Y. surname: Sun fullname: Sun, Y. organization: Hohai University – sequence: 2 givenname: W. surname: Bao fullname: Bao, W. organization: Hohai University – sequence: 3 givenname: P. orcidid: 0000-0002-8472-1221 surname: Jiang fullname: Jiang, P. email: peng.jiang.j@gmail.com organization: Desert Research Institute – sequence: 4 givenname: X. surname: Ji fullname: Ji, X. organization: Liaoning Administration for Hydrology and Water Resources Investigation – sequence: 5 givenname: S. surname: Gao fullname: Gao, S. organization: Liaoning Administration for Hydrology and Water Resources Investigation – sequence: 6 givenname: Y. surname: Xu fullname: Xu, Y. organization: Liaoning Administration for Chaihe Reservoir – sequence: 7 givenname: Q. surname: Zhang fullname: Zhang, Q. organization: Bei Fang Investigation, Design and Research CO.LTD – sequence: 8 givenname: W. surname: Si fullname: Si, W. organization: Hohai University |
| BookMark | eNp9kM1u1DAQxy1UJLYtNx7AEhcOpPgzTo4o7dJKrZCWoh4jx5mAK8debGfR3ngEnrFPUlfLAVWC02hmfvPx_x-jIx88IPSGkjNKWPuBEdrcbQhjUsoXaEVbISrVKn6EVoQIXlHeqlfoOKV7QqiQtVohfw47cGE7g884TPhmcdnudLR6cIDP917P1uAv-5RhxhtI2-AT4G6JO8A3kL-HEU8hlo52D79-39oZ8NqFUl2HCEanbP033IVYkmyDP0UvJ-0SvP4TT9DX9cVtd1ldf_501X28rjSvuaqoppIUFU07QGuEHKQgvFYDVbVQ2rSTBKC6NtCMvMgYhqYZiWHSjKM0ZiT8BL077N3G8GOBlPvZJgPOaQ9hST1TtOF1TTgr6Ntn6H1Yoi_f9Yy0VCjZqKZQ7w-UiSGlCFO_jXbWcd9T0j-Z3_9tfsHZM9zYrJ8cyFFb968hfhj6aR3s_3ugv9t0G8aFUPwRbzuZHg |
| CitedBy_id | crossref_primary_10_1061__ASCE_HE_1943_5584_0002168 crossref_primary_10_1007_s00477_022_02336_6 crossref_primary_10_2166_hydro_2020_045 crossref_primary_10_1016_j_envres_2024_118533 crossref_primary_10_1016_j_jhydrol_2022_127434 crossref_primary_10_1016_j_jhydrol_2020_125793 crossref_primary_10_1016_j_jhydrol_2025_133910 crossref_primary_10_1016_j_comnet_2020_107744 crossref_primary_10_5194_hess_25_711_2021 crossref_primary_10_1088_1755_1315_1108_1_012074 crossref_primary_10_1029_2019WR025520 crossref_primary_10_1007_s11269_019_02351_3 crossref_primary_10_3390_w15224016 crossref_primary_10_3390_w15244205 crossref_primary_10_1016_j_jhydrol_2022_127518 crossref_primary_10_1109_ACCESS_2019_2941234 crossref_primary_10_1016_j_jhydrol_2022_128969 crossref_primary_10_2166_nh_2018_038 crossref_primary_10_3390_w13243483 crossref_primary_10_1007_s00477_025_03048_3 crossref_primary_10_1007_s11269_022_03305_y crossref_primary_10_1016_j_scs_2020_102686 crossref_primary_10_1016_j_jhydrol_2025_132918 crossref_primary_10_1016_j_jhydrol_2022_128213 crossref_primary_10_1016_j_scs_2020_102562 crossref_primary_10_1029_2020WR027468 crossref_primary_10_1016_j_jhydrol_2020_125908 |
| Cites_doi | 10.1049/el:19911331 10.1016/j.jhydrol.2012.12.011 10.1109/TSP.2005.851110 10.1029/2011WR011044 10.1029/2007WR006505 10.1109/TVT.2002.1002509 10.1029/1999WR900099 10.1029/WR012i003p00487 10.1029/2002WR001642 10.1029/2005WR004368 10.1061/(ASCE)HE.1943-5584.0000848 10.1029/2005WR004093 10.1137/S1064827594263837 10.1029/2005GL025604 10.1002/2015WR017234 10.2166/nh.1997.0005 10.1155/2013/827980 10.1029/WR008i004p00956 10.1007/BF01933214 10.1016/j.jhydrol.2009.03.003 10.1175/1525-7541(2003)4<473:SAOESD>2.0.CO;2 10.1016/j.jhydrol.2006.05.010 10.1016/j.neucom.2008.12.032 10.1016/S0951-8320(03)00058-9 10.1016/j.jhydrol.2012.03.031 10.1049/el:20000727 10.1029/2004WR003604 10.1061/(ASCE)HE.1943-5584.0000415 10.1002/hyp.6825 10.1137/S0895479897326432 10.1016/S1474-6670(17)65102-4 10.1029/91WR01305 10.1080/00423110412331290446 10.1002/1099-1085(20000815/30)14:11/12<2157::AID-HYP57>3.0.CO;2-S 10.1109/TSP.2010.2040671 10.1029/2009WR008328 10.1109/LSP.2008.2001559 10.1137/1034115 10.1080/00401706.2000.10485983 10.1137/S0036144597321909 10.1016/0005-1098(81)90070-4 10.5194/hessd-3-3691-2006 10.1007/978-0-387-30164-8_630 10.1016/j.jhydrol.2007.11.011 10.1016/j.jhydrol.2005.04.022 10.1109/78.923296 10.5194/hess-16-2783-2012 10.1016/j.jhydrol.2012.11.017 10.1016/S0022-1694(01)00420-6 10.1007/978-94-009-1740-8 10.1061/JYCEAJ.0001020 10.1016/S0022-1694(99)00173-0 10.1016/j.ress.2005.11.017 10.1016/0022-1694(70)90255-6 10.1061/(ASCE)HE.1943-5584.0000719 |
| ContentType | Journal Article |
| Copyright | 2018. American Geophysical Union. All Rights Reserved. 2018. American Geophysical Union. All rights reserved. |
| Copyright_xml | – notice: 2018. American Geophysical Union. All Rights Reserved. – notice: 2018. American Geophysical Union. All rights reserved. |
| DBID | AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| DOI | 10.1029/2018WR022555 |
| DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | 4749 |
| ExternalDocumentID | 10_1029_2018WR022555 WRCR23447 |
| Genre | article |
| GrantInformation_xml | – fundername: National Postdoctoral Foundation of China funderid: 2017M611679 – fundername: Fundamental Research Funds for Central Universities funderid: 2017B684X14 – fundername: Yellow River sediment Key Laboratory of Ministry of water resources funderid: 201804 – fundername: National Key R&D Program of China funderid: 2016YFC0402703 – fundername: Postdoctoral Foundation of Jiangsu Province funderid: 1701019A – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province funderid: KYCX17_0423 – fundername: National Natural Science Foundation of China funderid: 51709077; 41371048; 51479062; 51709076 |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A6W AAESR AAHBH AAIHA AAIKC AAMMB AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAZKR ABCUV ABJCF ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEIGN AENEX AETEA AEUYN AEUYR AFBPY AFFHD AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AIDBO AIDQK AIDYY AIQQE AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WIN WXSBR XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a3637-1a15025589be9c45b540367b17647ac9f5ee1a6ce8d3567bb88d0c25cdd5ccd03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442502100031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri Sep 05 17:26:36 EDT 2025 Wed Aug 13 03:33:28 EDT 2025 Sat Nov 29 01:36:41 EST 2025 Tue Nov 18 21:29:37 EST 2025 Tue Nov 11 03:11:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3637-1a15025589be9c45b540367b17647ac9f5ee1a6ce8d3567bb88d0c25cdd5ccd03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8472-1221 |
| PQID | 2091475878 |
| PQPubID | 105507 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2718366032 proquest_journals_2091475878 crossref_primary_10_1029_2018WR022555 crossref_citationtrail_10_1029_2018WR022555 wiley_primary_10_1029_2018WR022555_WRCR23447 |
| PublicationCentury | 2000 |
| PublicationDate | July 2018 2018-07-00 20180701 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2010; 58 2017; 48 2006; 33 2002; 51 2000; 42 2008; 349 2012; 17 2001; 49 2012; 16 1998; 40 2013; 480 2006; 331 2013; 18 2010; 21 2000; 14 2013; 2013 1997; 18 2003; 4 2013; 476 2014; 19 2012; 442‐443 2007; 21 1990; 30 2006; 91 1972; 8 2003; 81 2011 2015; 51 2008 2005; 41 2008; 15 1996 1970; 10 1997; 28 2005; 43 2006; 3 2005 1994 2009; 370 2003; 39 2006; 316 1992; 34 2001; 249 1991; 27 2006; 42 1976; 12 2010; 46 2000; 36 2009; 72 1980; 13 2000; 227 1992; 135 1999; 35 2005; 53 1981; 17 2008; 44 2012; 48 2013 1964; 90 1966 Tikhonov A. N. (e_1_2_7_58_1) 2013 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_41_1 Haykin S. (e_1_2_7_24_1) 2008 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 Zhao R. J. (e_1_2_7_64_1) 1992; 135 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 Kennedy J. (e_1_2_7_32_1) 2011 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 Dorf R. C. (e_1_2_7_15_1) 2011 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Singh K. P. (e_1_2_7_53_1) 1964; 90 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Bao W. (e_1_2_7_6_1) 2017; 48 |
| References_xml | – year: 2011 – volume: 15 start-page: 597 year: 2008 end-page: 600 article-title: A robust variable forgetting factor recursive least‐squares algorithm for system identification publication-title: IEEE Signal Processing Letters – volume: 49 start-page: 1138 issue: 6 year: 2001 end-page: 1145 article-title: A recursive least squares implementation for LCMP beam forming under quadratic constraint publication-title: IEEE Transactions on Signal Processing – year: 2005 – year: 1966 – start-page: 760 year: 2011 end-page: 766 – volume: 41 year: 2005 article-title: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter publication-title: Water Resources Research – volume: 249 start-page: 2 issue: 1‐4 year: 2001 end-page: 9 article-title: The case for probabilistic forecasting in hydrology publication-title: Journal of Hydrology – volume: 16 start-page: 2783 issue: 8 year: 2012 end-page: 2799 article-title: Adaptive correction of deterministic models to produce probabilistic forecasts publication-title: Hydrology and Earth System Sciences – volume: 39 issue: 8 year: 2003 article-title: A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters publication-title: Water Resources Research – volume: 48 start-page: 560 issue: 5 year: 2017 end-page: 567 article-title: A new version of system response method for error correction based on total least squares (in Chinese) publication-title: Journal of Hydraulic Engineering – volume: 370 start-page: 155 issue: 1–4 year: 2009 end-page: 162 article-title: Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index publication-title: Journal of Hydrology – volume: 51 start-page: 613 issue: 3 year: 2002 end-page: 616 article-title: Variable forgetting factor linear least squares algorithm for frequency selective fading channel estimation publication-title: IEEE Transactions on Vehicular Technology – volume: 2013 start-page: 10 year: 2013 article-title: Testing a conceptual lumped model in karst area, southwest China publication-title: Journal of Applied Mathematics – volume: 72 start-page: 2873 issue: 13‐15 year: 2009 end-page: 2883 article-title: Division‐based rainfall‐runoff simulations with BP neural networks and Xinanjiang model publication-title: Neurocomputing – volume: 17 start-page: 118 issue: 1 year: 2012 end-page: 128 article-title: Estimating selected parameters for the XAJ model under multicollinearity among watershed characteristics publication-title: Journal of Hydrologic Engineering – year: 1994 – volume: 4 start-page: 473 issue: 2 year: 2003 end-page: 487 article-title: Sequential assimilation of ERS‐1 SAR data into a coupled land surface–hydrological model using an extended Kalman filter publication-title: Journal of Hydrometeorology – volume: 34 start-page: 561 issue: 4 year: 1992 end-page: 580 article-title: Analysis of discrete ill‐posed problems by means of the L‐curve publication-title: SIAM Review – volume: 476 start-page: 433 year: 2013 end-page: 441 article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir publication-title: Journal of Hydrology – volume: 40 start-page: 636 issue: 3 year: 1998 end-page: 666 article-title: Solving ill‐conditioned and singular linear systems: A tutorial on regularization publication-title: SIAM Review – volume: 51 start-page: 5128 year: 2015 end-page: 5144 article-title: Updating real‐time flood forecasts via the dynamic system response curve method publication-title: Water Resources Research – volume: 27 start-page: 2467 year: 1991 end-page: 2471 article-title: The genetic algorithm and its application to calibrating conceptual rainfall‐runoff models publication-title: Water Resources Research – volume: 21 start-page: 185 issue: 1 year: 2010 end-page: 194 article-title: Tikhonov regularization and total least squares publication-title: Siam Journal on Matrix Analysis & Applications – volume: 53 start-page: 3141 issue: 8 year: 2005 end-page: 3150 article-title: Gradient‐based variable forgetting factor RLS algorithm in time‐varying environments publication-title: IEEE Transactions on Signal Processing – volume: 135 start-page: 371 issue: 1 year: 1992 end-page: 381 article-title: The Xinanjiang model applied in China publication-title: Journal of Hydrology – year: 2008 – volume: 44 year: 2008 article-title: Real‐time groundwater flow modeling with the ensemble Kalman filter: Joint estimation of states and parameters and the filter inbreeding problem publication-title: Water Resources Research – volume: 10 start-page: 282 issue: 3 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models. Part I—A discussion of principles publication-title: Journal of Hydrology – volume: 331 start-page: 161 issue: 1‐2 year: 2006 end-page: 177 article-title: Towards a Bayesian total error analysis of conceptual rainfall‐runoff models: Characterising model error using storm‐dependent parameters publication-title: Journal of Hydrology – volume: 42 start-page: 80 issue: 1 year: 2000 end-page: 86 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Technometrics – volume: 81 start-page: 23 issue: 1 year: 2003 end-page: 69 article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems publication-title: Reliability Engineering & System Safety – volume: 3 start-page: 3691 issue: 6 year: 2006 end-page: 3726 article-title: Influence of rainfall observation network on model calibration and application publication-title: Hydrology and Earth System Sciences Discussions – volume: 28 start-page: 65 issue: 2 year: 1997 end-page: 84 article-title: Validation and intercomparison of different updating procedures for real‐time forecasting publication-title: Hydrology Research – volume: 42 year: 2006 article-title: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall‐runoff models publication-title: Water Resources Research – volume: 36 start-page: 988 issue: 11 year: 2000 end-page: 990 article-title: Gauss Newton variable forgetting factor recursive least squares for time varying parameter tracking publication-title: Electronics Letters – volume: 442‐443 start-page: 23 year: 2012 end-page: 35 article-title: Hydrological time series modeling: A comparison between adaptive neuro‐fuzzy, neural network and autoregressive techniques publication-title: Journal of Hydrology – volume: 90 start-page: 313 issue: 2 year: 1964 end-page: 350 article-title: Nonlinear instantaneous unit‐hydrograph theory publication-title: Journal of the Hydraulics Division – volume: 35 start-page: 2739 year: 1999 end-page: 2750 article-title: Bayesian theory of probabilistic forecasting via deterministic hydrologic model publication-title: Water Resources Research – volume: 12 start-page: 487 year: 1976 end-page: 496 article-title: Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed publication-title: Water Resources Research – volume: 33 year: 2006 article-title: Unraveling uncertainties in hydrologic model calibration: Addressing the problem of compensatory parameters publication-title: Geophysical Research Letters – volume: 46 year: 2010 article-title: Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors publication-title: Water Resources Research – year: 1996 – volume: 27 start-page: 2150 issue: 23 year: 1991 end-page: 2151 article-title: Fast tracking RLS algorithm using novel variable forgetting factor with unity zone publication-title: Electronics Letters – volume: 18 start-page: 1140 issue: 9 year: 2013 end-page: 1147 article-title: Efficient calibration technique under irregular response surface publication-title: Journal of Hydrologic Engineering – volume: 316 start-page: 129 issue: 1‐4 year: 2006 end-page: 140 article-title: Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure publication-title: Journal of Hydrology – volume: 30 start-page: 658 issue: 4 year: 1990 end-page: 672 article-title: The discrete Picard condition for discrete ill‐posed problems publication-title: BIT Numerical Mathematics – volume: 18 start-page: 1223 issue: 4 year: 1997 end-page: 1241 article-title: Regularization by truncated total least squares publication-title: SIAM Journal on Scientific Computing – volume: 43 start-page: 31 issue: 1 year: 2005 end-page: 55 article-title: Recursive least squares with forgetting for online estimation of vehicle mass and road grade: Theory and experiments publication-title: Vehicle System Dynamics – volume: 58 start-page: 2121 issue: 4 year: 2010 end-page: 2130 article-title: Recursive least squares dictionary learning algorithm publication-title: IEEE Transactions on Signal Processing – volume: 8 start-page: 956 year: 1972 end-page: 965 article-title: Identification of parameters in unsteady open channel flows publication-title: Water Resources Research – volume: 14 start-page: 2157 issue: 11–12 year: 2000 end-page: 2172 article-title: Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments publication-title: Hydrological Processes – volume: 48 year: 2012 article-title: Towards a comprehensive assessment of model structural adequacy publication-title: Water Resources Research – volume: 480 start-page: 102 issue: 4 year: 2013 end-page: 114 article-title: The streamflow estimation using the Xinanjiang rainfall runoff model and dual state‐parameter estimation method publication-title: Journal of Hydrology – volume: 21 start-page: 2075 issue: 15 year: 2007 end-page: 2080 article-title: Do Nash values have value? publication-title: Hydrological Processes – volume: 13 start-page: 457 issue: 3 year: 1980 end-page: 466 article-title: Calibration procedures use with the National Weather Service River Forecast System publication-title: IFAC Proceedings Volumes – volume: 91 start-page: 1175 issue: 10‐11 year: 2006 end-page: 1209 article-title: Survey of sampling‐based methods for uncertainty and sensitivity analysis publication-title: Reliability Engineering & System Safety – volume: 19 start-page: 747 issue: 4 year: 2014 end-page: 756 article-title: Flow updating in real‐time flood forecasting based on runoff correction by a dynamic system response curve publication-title: Journal of Hydrologic Engineering – volume: 349 start-page: 376 issue: 3‐4 year: 2008 end-page: 382 article-title: Robust recursive estimation of auto‐regressive updating model parameters for real‐time flood forecasting publication-title: Journal of Hydrology – volume: 42 year: 2006 article-title: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application publication-title: Water Resources Research – volume: 17 start-page: 831 issue: 6 year: 1981 end-page: 835 article-title: Implementation of self‐tuning regulators with variable forgetting factors publication-title: Automatica – volume: 227 start-page: 93 issue: 1–4 year: 2000 end-page: 113 article-title: A modified spatial soil moisture storage capacity distribution curve for the Xinanjiang model publication-title: Journal of Hydrology – year: 2013 – volume-title: Numerical methods for the solution of ill‐posed problems year: 2013 ident: e_1_2_7_58_1 – ident: e_1_2_7_44_1 doi: 10.1049/el:19911331 – ident: e_1_2_7_39_1 doi: 10.1016/j.jhydrol.2012.12.011 – ident: e_1_2_7_51_1 doi: 10.1109/TSP.2005.851110 – ident: e_1_2_7_21_1 doi: 10.1029/2011WR011044 – ident: e_1_2_7_27_1 doi: 10.1029/2007WR006505 – ident: e_1_2_7_56_1 doi: 10.1109/TVT.2002.1002509 – ident: e_1_2_7_33_1 doi: 10.1029/1999WR900099 – ident: e_1_2_7_45_1 doi: 10.1029/WR012i003p00487 – ident: e_1_2_7_61_1 doi: 10.1029/2002WR001642 – ident: e_1_2_7_31_1 doi: 10.1029/2005WR004368 – ident: e_1_2_7_5_1 doi: 10.1061/(ASCE)HE.1943-5584.0000848 – ident: e_1_2_7_63_1 doi: 10.1029/2005WR004093 – ident: e_1_2_7_17_1 doi: 10.1137/S1064827594263837 – ident: e_1_2_7_10_1 – ident: e_1_2_7_13_1 doi: 10.1029/2005GL025604 – ident: e_1_2_7_52_1 doi: 10.1002/2015WR017234 – volume-title: Modern control systems, 12th Ed. year: 2011 ident: e_1_2_7_15_1 – ident: e_1_2_7_46_1 doi: 10.2166/nh.1997.0005 – ident: e_1_2_7_50_1 doi: 10.1155/2013/827980 – ident: e_1_2_7_8_1 doi: 10.1029/WR008i004p00956 – ident: e_1_2_7_22_1 doi: 10.1007/BF01933214 – ident: e_1_2_7_37_1 doi: 10.1016/j.jhydrol.2009.03.003 – ident: e_1_2_7_19_1 doi: 10.1175/1525-7541(2003)4<473:SAOESD>2.0.CO;2 – ident: e_1_2_7_35_1 doi: 10.1016/j.jhydrol.2006.05.010 – ident: e_1_2_7_30_1 doi: 10.1016/j.neucom.2008.12.032 – ident: e_1_2_7_25_1 doi: 10.1016/S0951-8320(03)00058-9 – ident: e_1_2_7_38_1 doi: 10.1016/j.jhydrol.2012.03.031 – volume: 48 start-page: 560 issue: 5 year: 2017 ident: e_1_2_7_6_1 article-title: A new version of system response method for error correction based on total least squares (in Chinese) publication-title: Journal of Hydraulic Engineering – ident: e_1_2_7_49_1 doi: 10.1049/el:20000727 – ident: e_1_2_7_40_1 doi: 10.1029/2004WR003604 – ident: e_1_2_7_3_1 doi: 10.1061/(ASCE)HE.1943-5584.0000415 – ident: e_1_2_7_48_1 doi: 10.1002/hyp.6825 – ident: e_1_2_7_14_1 – ident: e_1_2_7_20_1 doi: 10.1137/S0895479897326432 – ident: e_1_2_7_9_1 doi: 10.1016/S1474-6670(17)65102-4 – volume-title: Adaptive filter theory year: 2008 ident: e_1_2_7_24_1 – ident: e_1_2_7_62_1 doi: 10.1029/91WR01305 – ident: e_1_2_7_59_1 doi: 10.1080/00423110412331290446 – ident: e_1_2_7_2_1 doi: 10.1002/1099-1085(20000815/30)14:11/12<2157::AID-HYP57>3.0.CO;2-S – ident: e_1_2_7_54_1 doi: 10.1109/TSP.2010.2040671 – ident: e_1_2_7_47_1 doi: 10.1029/2009WR008328 – ident: e_1_2_7_43_1 doi: 10.1109/LSP.2008.2001559 – ident: e_1_2_7_23_1 doi: 10.1137/1034115 – ident: e_1_2_7_36_1 – ident: e_1_2_7_28_1 doi: 10.1080/00401706.2000.10485983 – ident: e_1_2_7_42_1 doi: 10.1137/S0036144597321909 – ident: e_1_2_7_18_1 doi: 10.1016/0005-1098(81)90070-4 – ident: e_1_2_7_7_1 doi: 10.5194/hessd-3-3691-2006 – start-page: 760 volume-title: Encyclopedia of machine Learning year: 2011 ident: e_1_2_7_32_1 doi: 10.1007/978-0-387-30164-8_630 – ident: e_1_2_7_11_1 doi: 10.1016/j.jhydrol.2007.11.011 – ident: e_1_2_7_12_1 doi: 10.1016/j.jhydrol.2005.04.022 – ident: e_1_2_7_57_1 doi: 10.1109/78.923296 – ident: e_1_2_7_55_1 doi: 10.5194/hess-16-2783-2012 – ident: e_1_2_7_60_1 doi: 10.1016/j.jhydrol.2012.11.017 – ident: e_1_2_7_34_1 doi: 10.1016/S0022-1694(01)00420-6 – ident: e_1_2_7_16_1 doi: 10.1007/978-94-009-1740-8 – volume: 90 start-page: 313 issue: 2 year: 1964 ident: e_1_2_7_53_1 article-title: Nonlinear instantaneous unit‐hydrograph theory publication-title: Journal of the Hydraulics Division doi: 10.1061/JYCEAJ.0001020 – volume: 135 start-page: 371 issue: 1 year: 1992 ident: e_1_2_7_64_1 article-title: The Xinanjiang model applied in China publication-title: Journal of Hydrology – ident: e_1_2_7_29_1 doi: 10.1016/S0022-1694(99)00173-0 – ident: e_1_2_7_26_1 doi: 10.1016/j.ress.2005.11.017 – ident: e_1_2_7_41_1 doi: 10.1016/0022-1694(70)90255-6 – ident: e_1_2_7_4_1 doi: 10.1061/(ASCE)HE.1943-5584.0000719 |
| SSID | ssj0014567 |
| Score | 2.4182074 |
| Snippet | Error correction method is widely used to improve the performance of flood forecasting. The Dynamic System Response Curve method (DSRC) has been proposed as an... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4730 |
| SubjectTerms | algorithms Case studies Dynamical systems Economic models Error correction Error correction & detection Estimation Flood forecasting Floods Hydrologic models Hydrology Lead time Methods model validation Modelling Performance enhancement River discharge Variables water |
| Title | Development of Multivariable Dynamic System Response Curve Method for Real‐Time Flood Forecasting Correction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018WR022555 https://www.proquest.com/docview/2091475878 https://www.proquest.com/docview/2718366032 |
| Volume | 54 |
| WOSCitedRecordID | wos000442502100031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231214 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8NmMReYBuglX8y0va0RTR2EtuPqFANCaopGipvkWO7AgmlqKGV9raPwGfkk3CXuKV72CS0t0i-xJbPzv3su_sdwGfv9EhI7yIjnImSkYgjLUoeCR5biYBWubQtNiEHA3V9rX-ECzfKhWn5IRYXbrQzmv81bXBT1oFsgDgy0XKpYY4mKE3TFVijvCo8fK2d5v2ri4UfAeGBnPuYCeuE0Hf8wvHy-38apRekuYxXG4PT3_zfob6HjQA12Um7Nj7AG199hPV5JnKNz6EC-s2vLaiWoofYeMSaxNwZHqQptYqdtnXrWctvzvI2sNaz3nQy8-yyqULNEP5ii7l7-v1IiSWsTzHxjGp_WlNTdDXrUSmQJpFiG676Zz9736NQiwGVmAkZxQaRI45f6dJrm6QlIj2RyTKWWSKN1aPU-9hk1isncM7LErXctTy1zqXWuq7YgdVqXPlPwBBSEEOP15r7xHKntCod8ajp2CiuVQe-zpVR2EBUTvUy7orGYc51sTyfHfiykL5vCTr-Irc_12sRtmmNAjpO8MQksdOjRTNuMPKamMqPpyiD1ltkWVfwDnxrtPzPfoph3ss58Sjuvk58D95RQxsKvA-rD5OpP4C3dvZwW08Ow8I-hJXh-eAZQM34kg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5tBYm9bGMMrRsMI8ETRDR2EtuPU1nFRKlQBIK3yLFdMalKp5ZW2tt-Ar-RX7K7xC3dA5OmvUXyJbZ8ce5zfPd9AAfe6aGQ3kVGOBMlQxFHWpQ8Ejy2EgGtcmkjNiEHA3V7qy-DzinVwjT8EMsfbrQy6u81LXD6IR3YBogkE0OXuskxBqVp-hLWkkxI1YK107x33V8eJCA-kItDZgI7Ifcdn3Cyev-fUekJaq4C1jri9N7891jfwusANtmX5u3YhBe-egcbi1rkKV4HDfS7n1tQreQPsfGQ1aW5c9xKU3EVO22U61nDcM7yJrXWs-5sMvfsotahZgiAscWMHn89UGkJ61FWPCP1T2umlF_NuiQGUpdSvIfr3ter7lkU1BjQjTi1UWwQO-L4lS69tklaItYTmSxjmSXSWD1MvY9NZr1yAie9LNHPHctT61xqreuIbWhV48p_AIaggjh6vNbcJ5Y7pVXpiElNx0ZxrdpwtPBGYQNVOSlmjIr6yJzrYnU-23C4tP7RUHQ8Y7ezcGwRFuoUDXSc4J5JYqf7y2ZcYnRuYio_nqENxm-RZR3B23Bcu_mv_RQ3eTfnxKT48d_M92Dj7OqiX_S_Dc4_wSsyahKDd6B1P5n5XVi38_vv08nn8Jb_Bk98-3M |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFL106Vj7su6rNFu6abA9bWaxZFvS40gWGtaGEDaSNyNLMi0UJ-QL-taf0N-4X9J7bSfLHjYYfTPoCglfyffIuvccgA_e6VxI7wIjnAmiXISBFhkPBA-tRECrXFyJTcjBQE0meljrnFItTMUPsf3hRjuj_F7TBvczl9dsA0SSiaFLjUcYg-I4fgT7EUJxyuka9wfbawREB3JzxUxQp858x_5fdnv_GZN-A81duFrGm97Rg2f6DJ7WUJN9rdbGc9jzxQs42FQiL_C5VkC_vHkJxU72EJvmrCzMXeNBmkqrWLfSrWcVvzkbVYm1nnVW87VnF6UKNUP4iy3m-tftHRWWsB7lxDPS_rRmQdnVrENSIGUhxSv42fv2o3MW1FoM6MREyCA0iBxx_kpnXtsozhDpiURmoUwiaazOY-9Dk1ivnMCXnmXo5bblsXUutta1xTE0imnhT4AhpCCGHq8195HlTmmVOeJR06FRXKsmfNp4I7U1UTnpZVyn5YU51-nu-2zCx631rCLo-Itda-PYtN6mCzTQYYQnJomDvt824wajWxNT-OkKbTB6iyRpC96Ez6Wb_zlOOh51Rpx4FF__n_k7eDLs9tLz_uD7GzgkmyoruAWN5XzlT-GxXS-vFvO35RK_B_d9-ck |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Multivariable+Dynamic+System+Response+Curve+Method+for+Real%E2%80%90Time+Flood+Forecasting+Correction&rft.jtitle=Water+resources+research&rft.au=Sun%2C+Y.&rft.au=Bao%2C+W.&rft.au=Jiang%2C+P.&rft.au=Ji%2C+X.&rft.date=2018-07-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=54&rft.issue=7&rft.spage=4730&rft.epage=4749&rft_id=info:doi/10.1029%2F2018WR022555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2018WR022555 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |