Subannual Streamflow Responses to Rainfall and Snowmelt Inputs in Snow‐Dominated Watersheds of the Western United States
Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experi...
Uloženo v:
| Vydáno v: | Water resources research Ročník 56; číslo 4 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
01.04.2020
|
| Témata: | |
| ISSN: | 0043-1397, 1944-7973 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experience streamflow declines. This research examines whether streamflow generation is different for rainfall versus snowmelt inputs. We compiled a sample of 57 small U.S. Geological Survey watersheds in the western United States containing a Natural Resource Conservation Service Snow Telemetry site and having ratios of mean annual peak snow water equivalent to precipitation ratios >0.25. Daily streamflow was separated into quickflow and baseflow using a digital filter, and quickflow was then divided into quickflow response intervals using thresholds in quickflow slope. Each quickflow response interval was categorized by its fraction of input from snowmelt. Most sites exhibited two streamflow generation peaks each year, with one peak in the winter when runoff efficiency is greatest, and the second in the spring during peak snowmelt input. On average, study watersheds were dominated by snowmelt inputs (70%), and snowmelt and mixed inputs usually generated greater streamflow than rainfall because of higher inputs and longer durations. However, rainfall produced high streamflow generation in winter, when watersheds have their highest runoff efficiency (81%) across all input types. We demonstrate that while snowmelt is important for streamflow generation due to high input over long periods, increases in rain and mixed input during wet winter periods can countervail tendencies for reduced streamflow with declining snowpacks.
Key Points
Quickflow response intervals (QRIs) are subannual hydrograph responses suitable for analyzing both snowmelt and rainfall‐dominated streamflow
Snowmelt contributions to streamflow in western watersheds are lower than previous estimates, with most QRIs originating from mixed rain and snow input
Snowmelt and mixed rain and snow QRIs produce more streamflow than rainfall‐dominated QRIs in most watersheds, except those with high winter rain and snowmelt input |
|---|---|
| AbstractList | Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experience streamflow declines. This research examines whether streamflow generation is different for rainfall versus snowmelt inputs. We compiled a sample of 57 small U.S. Geological Survey watersheds in the western United States containing a Natural Resource Conservation Service Snow Telemetry site and having ratios of mean annual peak snow water equivalent to precipitation ratios >0.25. Daily streamflow was separated into quickflow and baseflow using a digital filter, and quickflow was then divided into quickflow response intervals using thresholds in quickflow slope. Each quickflow response interval was categorized by its fraction of input from snowmelt. Most sites exhibited two streamflow generation peaks each year, with one peak in the winter when runoff efficiency is greatest, and the second in the spring during peak snowmelt input. On average, study watersheds were dominated by snowmelt inputs (70%), and snowmelt and mixed inputs usually generated greater streamflow than rainfall because of higher inputs and longer durations. However, rainfall produced high streamflow generation in winter, when watersheds have their highest runoff efficiency (81%) across all input types. We demonstrate that while snowmelt is important for streamflow generation due to high input over long periods, increases in rain and mixed input during wet winter periods can countervail tendencies for reduced streamflow with declining snowpacks. Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experience streamflow declines. This research examines whether streamflow generation is different for rainfall versus snowmelt inputs. We compiled a sample of 57 small U.S. Geological Survey watersheds in the western United States containing a Natural Resource Conservation Service Snow Telemetry site and having ratios of mean annual peak snow water equivalent to precipitation ratios >0.25. Daily streamflow was separated into quickflow and baseflow using a digital filter, and quickflow was then divided into quickflow response intervals using thresholds in quickflow slope. Each quickflow response interval was categorized by its fraction of input from snowmelt. Most sites exhibited two streamflow generation peaks each year, with one peak in the winter when runoff efficiency is greatest, and the second in the spring during peak snowmelt input. On average, study watersheds were dominated by snowmelt inputs (70%), and snowmelt and mixed inputs usually generated greater streamflow than rainfall because of higher inputs and longer durations. However, rainfall produced high streamflow generation in winter, when watersheds have their highest runoff efficiency (81%) across all input types. We demonstrate that while snowmelt is important for streamflow generation due to high input over long periods, increases in rain and mixed input during wet winter periods can countervail tendencies for reduced streamflow with declining snowpacks. Quickflow response intervals (QRIs) are subannual hydrograph responses suitable for analyzing both snowmelt and rainfall‐dominated streamflow Snowmelt contributions to streamflow in western watersheds are lower than previous estimates, with most QRIs originating from mixed rain and snow input Snowmelt and mixed rain and snow QRIs produce more streamflow than rainfall‐dominated QRIs in most watersheds, except those with high winter rain and snowmelt input Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experience streamflow declines. This research examines whether streamflow generation is different for rainfall versus snowmelt inputs. We compiled a sample of 57 small U.S. Geological Survey watersheds in the western United States containing a Natural Resource Conservation Service Snow Telemetry site and having ratios of mean annual peak snow water equivalent to precipitation ratios >0.25. Daily streamflow was separated into quickflow and baseflow using a digital filter, and quickflow was then divided into quickflow response intervals using thresholds in quickflow slope. Each quickflow response interval was categorized by its fraction of input from snowmelt. Most sites exhibited two streamflow generation peaks each year, with one peak in the winter when runoff efficiency is greatest, and the second in the spring during peak snowmelt input. On average, study watersheds were dominated by snowmelt inputs (70%), and snowmelt and mixed inputs usually generated greater streamflow than rainfall because of higher inputs and longer durations. However, rainfall produced high streamflow generation in winter, when watersheds have their highest runoff efficiency (81%) across all input types. We demonstrate that while snowmelt is important for streamflow generation due to high input over long periods, increases in rain and mixed input during wet winter periods can countervail tendencies for reduced streamflow with declining snowpacks. Key Points Quickflow response intervals (QRIs) are subannual hydrograph responses suitable for analyzing both snowmelt and rainfall‐dominated streamflow Snowmelt contributions to streamflow in western watersheds are lower than previous estimates, with most QRIs originating from mixed rain and snow input Snowmelt and mixed rain and snow QRIs produce more streamflow than rainfall‐dominated QRIs in most watersheds, except those with high winter rain and snowmelt input |
| Author | Kampf, Stephanie K. Hammond, John C. |
| Author_xml | – sequence: 1 givenname: John C. orcidid: 0000-0002-4935-0736 surname: Hammond fullname: Hammond, John C. email: jhammond@usgs.gov organization: U.S. Geological Survey – sequence: 2 givenname: Stephanie K. orcidid: 0000-0001-8991-2679 surname: Kampf fullname: Kampf, Stephanie K. organization: Colorado State University |
| BookMark | eNp9kc-KFDEQxoOs4OzozQcIePFga5JKpydHGf8tLAg9LnNs0p1qNks6GZNuhvXkI-wz7pOYdTzIgl6q4ONXVV_xnZOzEAMS8pKzt5wJ_U4wrvctE4qDeEJWXEtZNbqBM7JiTELFQTfPyHnON4xxWatmRX7slt6EsBhPd3NCM40-HmmL-RBDxkznSFvjwmi8pyZYugvxOKGf6UU4LHOmLvyW7n_efYiTC2ZGS_elpnyNNtM40vka6R5zkQK9Cu4B2M2FyM_J07I244s_fU2uPn38tv1SXX79fLF9f1kZUFBXMA5q0IBc2dHWUhve9JINbNNvBkRsegHWaGGtYrVlCvpRciMaYGqQhiPCmrw-7T2k-H0pTrrJ5QG9NwHjkjvR8I0AxTgU9NUj9CYuKRR3nQAtN1qqcmFNxIkaUsw54dgNrnzkYpiTcb7jrHuIo_s7jjL05tHQIbnJpNt_4XDCj87j7X_Zbt9uWyFrWcMvC0yeIA |
| CitedBy_id | crossref_primary_10_1002_hyp_70151 crossref_primary_10_1029_2024EF005615 crossref_primary_10_1029_2021WR030966 crossref_primary_10_1002_hyp_70092 crossref_primary_10_1093_pnasnexus_pgac295 crossref_primary_10_3390_w14213575 crossref_primary_10_1029_2024WR038215 crossref_primary_10_1016_j_envsoft_2025_106612 crossref_primary_10_1016_j_earscirev_2024_104704 crossref_primary_10_5194_hess_27_1403_2023 crossref_primary_10_1002_hyp_15215 crossref_primary_10_1016_j_ejrh_2024_102085 crossref_primary_10_1016_j_catena_2023_107394 crossref_primary_10_1029_2019WR026699 crossref_primary_10_1002_eco_70111 crossref_primary_10_1002_hyp_15211 crossref_primary_10_1016_j_biocon_2024_110468 crossref_primary_10_1016_j_geomorph_2024_109233 crossref_primary_10_1016_j_jhydrol_2023_129915 crossref_primary_10_1002_hyp_15297 crossref_primary_10_1038_s43017_021_00219_y crossref_primary_10_3390_w14071095 crossref_primary_10_5194_hess_29_27_2025 crossref_primary_10_5194_hess_28_2895_2024 crossref_primary_10_1002_ldr_3825 crossref_primary_10_1073_pnas_2200333119 crossref_primary_10_1029_2021GL094985 crossref_primary_10_1016_j_jhydrol_2025_133747 crossref_primary_10_1029_2023WR035303 crossref_primary_10_1080_02626667_2024_2390919 crossref_primary_10_1029_2024WR038636 crossref_primary_10_1016_j_jhydrol_2025_133465 crossref_primary_10_1002_rra_4122 crossref_primary_10_3390_w16121665 crossref_primary_10_1088_1748_9326_ac64b4 crossref_primary_10_3390_cli13090177 crossref_primary_10_1029_2021WR031575 crossref_primary_10_3390_w13010003 |
| Cites_doi | 10.1111/j.1752‐1688.2012.00641.x 10.1175/JCLI3850.1 10.1002/2016GL069690 10.1111/j.1752‐1688.2005.tb03808.x 10.1175/JCLI‐D‐12‐00528.1 10.1029/2007GL032630 10.1175/EI‐D‐17‐0007.1 10.1002/2017WR021899 10.1111/1752‐1688.12640 10.3389/fpls.2016.00914 10.1038/nclimate3225 10.1002/joc.3413 10.1029/2006WR005653 10.1002/2016GL068070 10.1175/BAMS‐86‐1‐39 10.1175/2010JCLI3729.1 10.1029/2011GL048346 10.1002/hyp.9751 10.5194/tc‐12‐1027‐2018 10.1175/JHM‐D‐11‐037.1 10.1175/BAMS‐88‐3‐319 10.1007/s00382‐007‐0289‐y 10.1175/2011JHM1360.1 10.5194/tc‐7‐67‐2013 10.1007/s11269‐009‐9523‐1 10.1002/jgrg.20073 10.1002/2013WR014939 10.1002/2015GL067613 10.1002/hyp.1423 10.1038/nature04141 10.5066/P9AB3KL9 10.1175/JCLI3321.1 10.1029/2005JD006473 10.1007/s10584-010-9889-3 10.1029/WR026i012p03021 10.5194/hess‐23‐3553‐2019 10.5194/hess‐11‐1417‐2007 10.1002/2014WR016267 10.1038/s41612‐018‐0012‐1 10.1002/hyp.6130 10.5194/essd‐7‐137‐2015 10.1002/eco.48 10.1002/2017JD027704 10.1029/RG028i001p00001 10.1007/s00704‐012‐0584‐3 10.1088/1748‐9326/10/8/084004 10.1029/WR006i005p01296 10.1023/B:CLIM.0000013684.13621.1f 10.1002/2014GL060500 10.1016/j.jhydrol.2014.12.014 10.1016/j.jhydrol.2012.11.021 10.5194/tc‐5‐219‐2011 10.1175/2008JCLI2665.1 10.1016/j.coldregions.2010.08.008 10.1002/hyp.7128 10.1002/(SICI)1099‐1085(19990415)13:5<701::AID‐HYP774>3.0.CO;2‐2 10.1002/hyp.9385 10.1016/j.ejrh.2018.04.005 10.1175/JCLI‐3272.1 10.1002/joc.5674 10.1016/j.rse.2017.01.023 10.1016/j.jhydrol.2017.01.051 10.1029/2010GL046477 10.1029/WR026i007p01465 10.1007/s11707‐016‐0630‐z 10.1002/2014JD022753 10.3133/sir20175034 10.1371/journal.pone.0071297 10.1002/2015GL065855 10.1002/hyp.9355 10.1175/JHM‐D‐17‐0227.1 10.1023/B:CLIM.0000013702.22656.e8 10.1038/nclimate2246 10.1175/JHM543.1 10.1007/s40641‐016‐0036‐8 10.1002/2017GL073551 10.1175/JCLI‐D‐12‐00563.1 10.1002/2015WR017784 10.1029/2019GL084401 10.1175/2009JCLI2951.1 |
| ContentType | Journal Article |
| Copyright | 2020. American Geophysical Union. All Rights Reserved. This article has been contributed to by US Government employees and their work is in the public domain in the USA. 2020. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2020. American Geophysical Union. All Rights Reserved. This article has been contributed to by US Government employees and their work is in the public domain in the USA. – notice: 2020. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| DOI | 10.1029/2019WR026132 |
| DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2019WR026132 WRCR24545 |
| Genre | article |
| GeographicLocations | Western states United States--US |
| GeographicLocations_xml | – name: Western states – name: United States--US |
| GrantInformation_xml | – fundername: United States National Science Foundation funderid: EAR 1446870 – fundername: NSF | GEO | Division of Earth Sciences (EAR) funderid: 1446870 |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a3635-3fc6c93e16dfd549a17b40c08b8ceee7b23da92dd605d063bf41a27306c4a1ee3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538987800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri Sep 05 17:17:00 EDT 2025 Wed Aug 13 07:34:28 EDT 2025 Sat Nov 29 01:36:44 EST 2025 Tue Nov 18 21:21:04 EST 2025 Wed Jan 22 16:35:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3635-3fc6c93e16dfd549a17b40c08b8ceee7b23da92dd605d063bf41a27306c4a1ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4935-0736 0000-0001-8991-2679 |
| PQID | 2394894606 |
| PQPubID | 105507 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2718236013 proquest_journals_2394894606 crossref_citationtrail_10_1029_2019WR026132 crossref_primary_10_1029_2019WR026132 wiley_primary_10_1029_2019WR026132_WRCR24545 |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 2020-04-00 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2017; 7 1970; 6 2013; 26 2004; 62 2013; 27 2017; 44 2017; 191 2008; 35 2011; 12 2008; 30 2014; 28 2013; 7 2013; 8 2012; 13 1979 2010; 23 2010; 64 2014; 4 2006; 20 2010; 24 2018; 1 2015; 42 2013; 479 2019; 23 2013; 118 2016; 43 1999; 13 2018b; 38 2011; 24 2012; 26 2017; 122 2014; 50 2009; 23 2009; 22 2015; 51 2015; 521 2010 2017; 21 2015; 120 2015; 10 2006; 7 2005; 438 2005; 41 2016; 52 2005; 86 1996 2006; 19 2004 2014; 41 2011; 38 2007; 11 2012; 34 2011; 5 2015; 7 2006; 111 2011; 105 2018; 19 2016; 7 2018; 17 2012; 110 2016; 2 2013; 33 2004; 18 1990; 26 2018a; 54 1990; 28 2020 2019; 46 2017; 11 2019 2018 2017 2013 2012; 48 2018; 12 2009; 2 2007; 43 2018; 54 2007; 88 2005; 18 2017; 547 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Daly C. (e_1_2_7_18_1) 2013 Ma L. J. (e_1_2_7_54_1) 2012; 34 e_1_2_7_90_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 Broxton P. (e_1_2_7_9_1) 2019 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
| References_xml | – volume: 23 start-page: 3553 year: 2019 end-page: 3570 article-title: Partitioning snowmelt and rainfall in the critical zone: Effects of climate type and soil properties publication-title: Hydrology and Earth System Sciences – volume: 35 year: 2008 article-title: Twentieth century Antarctic air temperature and snowfall simulations by IPCC climate models publication-title: Geophysical Research Letters – volume: 54 start-page: 2605 year: 2018a end-page: 2623 article-title: How does snow persistence relate to annual streamflow in mountain watersheds of the western US with wet maritime and dry continental climates? publication-title: Water Resources Research – volume: 11 start-page: 515 issue: 3 year: 2017 end-page: 530 article-title: Effect of snow on mountain river regimes: An example from the Pyrenees publication-title: Frontiers of Earth Science – volume: 20 start-page: 673 issue: 4 year: 2006 end-page: 688 article-title: Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model publication-title: Hydrological Processes: An International Journal – year: 2020 article-title: Sub-annual streamflow responses to rainfall and snowmelt inputs in snow-dominated watersheds of the western U.S.: U.S publication-title: Geological Survey data release – volume: 28 start-page: 2237 issue: 4 year: 2014 end-page: 2250 article-title: Estimating source regions for snowmelt runoff in a Rocky Mountain basin: Tests of a data‐based conceptual modeling approach publication-title: Hydrological Processes – volume: 44 start-page: 6163 year: 2017 end-page: 6172 article-title: How much runoff originates as snow in the western United States, and how will that change in the future? publication-title: Geophysical Research Letters – volume: 51 start-page: 960 year: 2015 end-page: 972 article-title: Projected changes in snowfall extremes and interannual variability of snowfall in the western United States publication-title: Water Resources Research – volume: 27 start-page: 2383 issue: 17 year: 2013 end-page: 2400 article-title: Subgrid variability of snow water equivalent at operational snow stations in the western USA publication-title: Hydrological Processes – volume: 86 start-page: 39 issue: 1 year: 2005 end-page: 50 article-title: Declining mountain snowpack in western North America publication-title: Bulletin of the American Meteorological Society – volume: 438 start-page: 303 issue: 7066 year: 2005 end-page: 309 article-title: Potential impacts of a warming climate on water availability in snow‐dominated regions publication-title: Nature – volume: 18 start-page: 1136 issue: 8 year: 2005 end-page: 1155 article-title: Changes toward earlier streamflow timing across western North America publication-title: Journal of Climate – volume: 23 start-page: 2293 issue: 9 year: 2010 end-page: 2306 article-title: Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming publication-title: Journal of Climate – volume: 2 start-page: 65 issue: 2 year: 2016 end-page: 73 article-title: Trends and extremes in Northern Hemisphere snow characteristics publication-title: Current Climate Change Reports – volume: 34 start-page: 1 issue: 1 year: 2012 end-page: 11 article-title: Spatial‐temporal characteristics of observed key parameters for snow cover in China during 1957–2009 publication-title: Journal of Glaciology and Geocryology – volume: 19 start-page: 4545 issue: 18 year: 2006 end-page: 4559 article-title: Trends in snowfall versus rainfall in the western United States publication-title: Journal of Climate – volume: 43 start-page: 8006 year: 2016 end-page: 8016 article-title: Snowmelt rate dictates streamflow publication-title: Geophysical Research Letters – volume: 479 start-page: 24 year: 2013 end-page: 34 article-title: Variability in effect of climate change on rain‐on‐snow peak flow events in a temperate climate publication-title: Journal of Hydrology – volume: 43 start-page: 4382 year: 2016 end-page: 4390 article-title: Dominant flood generating mechanisms across the United States publication-title: Geophysical Research Letters – volume: 18 start-page: 372 issue: 2 year: 2005 end-page: 384 article-title: Seasonal cycle shifts in hydroclimatology over the western United States publication-title: Journal of Climate – year: 1979 – year: 2018 – volume: 521 start-page: 395 year: 2015 end-page: 409 article-title: The transformation of frequency distributions of winter precipitation to spring streamflow probabilities in cold regions; case studies from the Canadian Prairies publication-title: Journal of Hydrology – volume: 118 start-page: 875 year: 2013 end-page: 887 article-title: The sensitivity of forest water use to the timing of precipitation and snowmelt recharge in the California Sierra: Implications for a warming climate publication-title: Journal of Geophysical Research: Biogeosciences – volume: 54 start-page: 644 issue: 3 year: 2018 end-page: 659 article-title: Observed changes in climate and streamflow in the upper Rio Grande Basin publication-title: JAWRA Journal of the American Water Resources Association – volume: 7 start-page: 214 issue: 3 year: 2017 end-page: 219 article-title: Slower snowmelt in a warmer world publication-title: Nature Climate Change – volume: 7 start-page: 1164 issue: 5 year: 2006 end-page: 1171 article-title: Mapping “at risk” snow in the Pacific Northwest publication-title: Journal of Hydrometeorology – volume: 38 start-page: 4369 issue: 12 year: 2018b end-page: 4383 article-title: Global snow zone maps and trends in snow persistence 2001–2016 publication-title: International Journal of Climatology – volume: 547 start-page: 208 year: 2017 end-page: 221 article-title: Trends in snowmelt‐related streamflow timing in the conterminous United States publication-title: Journal of Hydrology – volume: 10 year: 2015 article-title: New satellite climate data records indicate strong coupling between recent frozen season changes and snow cover over high northern latitudes publication-title: Environmental Research Letters – volume: 12 start-page: 1027 issue: 3 year: 2018 end-page: 1046 article-title: Changes in Andes snow cover from MODIS data, 2000–2016 publication-title: The Cryosphere – volume: 23 start-page: 78 issue: 1 year: 2009 end-page: 94 article-title: Changes in snowpack and snowmelt runoff for key mountain regions publication-title: Hydrological Processes – volume: 38 year: 2011 article-title: Maximum discharge from snowmelt in a changing climate publication-title: Geophysical Research Letters – volume: 62 start-page: 337 issue: 1–3 year: 2004 end-page: 363 article-title: The effects of climate change on the hydrology and water resources of the Colorado River basin publication-title: Climatic Change – volume: 7 year: 2016 article-title: Modeling root zone effects on preferred pathways for the passive transport of ions and water in plant roots publication-title: Frontiers in Plant Science – volume: 1 year: 2018 article-title: Dramatic declines in snowpack in the western US publication-title: Npj Climate and Atmospheric Science – volume: 110 start-page: 573 issue: 4 year: 2012 end-page: 583 article-title: Long‐term snow and weather observations at Weissfluhjoch and its relation to other high‐altitude observatories in the Alps publication-title: Theoretical and Applied Climatology – year: 2004 – volume: 26 start-page: 1465 issue: 7 year: 1990 end-page: 1473 article-title: Evaluation of automated techniques for base flow and recession analysis publication-title: Water Resources Research – volume: 111 year: 2006 article-title: Evaluation of surface albedo and snow cover in AR4 coupled climate models publication-title: Journal of Geophysical Research – volume: 22 start-page: 2124 issue: 8 year: 2009 end-page: 2145 article-title: The response of Northern Hemisphere snow cover to a changing climate publication-title: Journal of Climate – volume: 18 start-page: 1467 issue: 8 year: 2004 end-page: 1486 article-title: Exploring streamflow response to effective rainfall across event magnitude scale publication-title: Hydrological Processes – year: 2019 – volume: 38 year: 2011 article-title: Seasonal versus transient snow and the elevation dependence of climate sensitivity in maritime mountainous regions publication-title: Geophysical Research Letters – volume: 122 start-page: 13,219 year: 2017 end-page: 13,228 article-title: Potential for changing extreme snowmelt and rainfall events in the mountains of the western United States publication-title: Journal of Geophysical Research: Atmospheres – volume: 4 start-page: 583 issue: 7 year: 2014 end-page: 586 article-title: A precipitation shift from snow towards rain leads to a decrease in streamflow publication-title: Nature Climate Change – volume: 26 start-page: 2583 issue: 17 year: 2012 end-page: 2591 article-title: Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA publication-title: Hydrological Processes – volume: 7 start-page: 67 issue: 1 year: 2013 end-page: 80 article-title: An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models publication-title: The Cryosphere – volume: 7 start-page: 137 issue: 1 year: 2015 end-page: 142 article-title: A long‐term Northern Hemisphere snow cover extent data record for climate studies and monitoring publication-title: Earth System Science Data – volume: 50 start-page: 6986 year: 2014 end-page: 6999 article-title: Continuous estimation of baseflow in snowmelt‐dominated streams and rivers in the Upper Colorado River Basin: A chemical hydrograph separation approach publication-title: Water Resources Research – volume: 5 start-page: 219 issue: 1 year: 2011 end-page: 229 article-title: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty publication-title: The Cryosphere – volume: 12 start-page: 989 issue: 5 year: 2011 end-page: 1006 article-title: Shifts in western North American snowmelt runoff regimes for the recent warm decades publication-title: Journal of Hydrometeorology – start-page: 14 year: 2013 – volume: 48 start-page: 667 issue: 4 year: 2012 end-page: 678 article-title: Snowmelt runoff and water yield along elevation and temperature gradients in California's southern Sierra Nevada 1 publication-title: JAWRA Journal of the American Water Resources Association – volume: 24 start-page: 1666 issue: 6 year: 2011 end-page: 1687 article-title: Climatic controls on the snowmelt hydrology of the northern Rocky Mountains publication-title: Journal of Climate – volume: 13 start-page: 701 issue: 5 year: 1999 end-page: 714 article-title: A comparison of algorithms for stream flow recession and baseflow separation publication-title: Hydrological Processes – volume: 88 start-page: 319 issue: 3 year: 2007 end-page: 328 article-title: Rain‐on‐snow events in the western United States publication-title: Bulletin of the American Meteorological Society – year: 1996 – volume: 30 start-page: 307 issue: 2‐3 year: 2008 end-page: 319 article-title: Warmer climate: Less or more snow? publication-title: Climate Dynamics – volume: 33 start-page: 121 issue: 1 year: 2013 end-page: 131 article-title: Development of gridded surface meteorological data for ecological applications and modelling publication-title: International Journal of Climatology – volume: 26 start-page: 6904 issue: 18 year: 2013 end-page: 6914 article-title: Detection and attribution of observed changes in Northern Hemisphere spring snow cover publication-title: Journal of Climate – volume: 11 start-page: 1417 year: 2007 end-page: 1434 article-title: A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin publication-title: Hydrology and Earth System Sciences – year: 2010 – volume: 41 start-page: 1407 issue: 6 year: 2005 end-page: 1416 article-title: Automated web GIS based hydrograph analysis tool, WHAT 1 publication-title: JAWRA Journal of the American Water Resources Association – volume: 43 year: 2007 article-title: Mountains of the world, water towers for humanity: Typology, mapping, and global significance publication-title: Water Resources Research – volume: 191 start-page: 402 year: 2017 end-page: 418 article-title: A 38‐year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite‐borne optical sensors publication-title: Remote Sensing of Environment – volume: 24 start-page: 1763 issue: 9 year: 2010 end-page: 1777 article-title: Assessment of snowmelt runoff using remote sensing and effect of climate change on runoff publication-title: Water Resources Management – volume: 19 start-page: 803 issue: 5 year: 2018 end-page: 814 article-title: Warming is driving decreases in snow fractions while runoff efficiency remains mostly unchanged in snow‐covered areas of the western United States publication-title: Journal of Hydrometeorology – volume: 64 start-page: 146 issue: 2 year: 2010 end-page: 157 article-title: Recent snow cover variability in the Italian Alps publication-title: Cold Regions Science and Technology – volume: 41 start-page: 4560 year: 2014 end-page: 4568 article-title: Extent of the rain‐snow transition zone in the western US under historic and projected climate publication-title: Geophysical Research Letters – volume: 52 start-page: 407 year: 2016 end-page: 422 article-title: Transition of dominant peak flow source from snowmelt to rainfall along the Colorado Front Range: Historical patterns, trends, and lessons from the 2013 Colorado Front Range floods publication-title: Water Resources Research – volume: 17 start-page: 36 year: 2018 end-page: 46 article-title: Determining the proportion of streamflow that is generated by cold season processes versus summer rainfall in Utah, USA publication-title: Journal of Hydrology: Regional Studies – volume: 21 start-page: 1 issue: 10 year: 2017 end-page: 14 article-title: Evidence that recent warming is reducing Upper Colorado River flows publication-title: Earth Interactions – volume: 62 start-page: 217 issue: 1–3 year: 2004 end-page: 232 article-title: Changes in snowmelt runoff timing in western North America under a business as usual climate change scenario publication-title: Climatic Change – volume: 43 start-page: 2174 year: 2016 end-page: 2181 article-title: Increasing influence of air temperature on upper Colorado River streamflow publication-title: Geophysical Research Letters – volume: 6 start-page: 1296 issue: 5 year: 1970 end-page: 1311 article-title: Partial area contributions to storm runoff in a small New England watershed publication-title: Water Resources Research – volume: 42 start-page: 8011 year: 2015 end-page: 8020 article-title: Sensitivity of soil water availability to changing snowmelt timing in the western US publication-title: Geophysical Research Letters – volume: 105 start-page: 489 issue: 3‐4 year: 2011 end-page: 508 article-title: Effects of climate change on the intensity and frequency of heavy snowfall events in the Pyrenees publication-title: Climatic Change – volume: 28 start-page: 1 issue: 1 year: 1990 end-page: 18 article-title: Similarity and scale in catchment storm response publication-title: Reviews of Geophysics – volume: 26 start-page: 3021 issue: 12 year: 1990 end-page: 3036 article-title: Hydrogeochemical response of a forested watershed to storms: Effects of preferential flow along shallow and deep pathways publication-title: Water Resources Research – year: 2017 – volume: 120 start-page: 2375 year: 2015 end-page: 2381 article-title: Large snowmelt versus rainfall events in the mountains publication-title: Journal of Geophysical Research: Atmospheres – volume: 46 start-page: 10,122 year: 2019 end-page: 10,131 article-title: Spatiotemporal variability of 21st‐century changes in site‐specific snowfall frequency over the Northwest United States publication-title: Geophysical Research Letters – volume: 8 issue: 8 year: 2013 article-title: Climate change impacts on streamflow and subbasin‐scale hydrology in the Upper Colorado River Basin publication-title: PLoS ONE – volume: 2 start-page: 129 issue: 2 year: 2009 end-page: 142 article-title: Ecohydrological controls on snowmelt partitioning in mixed‐conifer sub‐alpine forests publication-title: Ecohydrology: Ecosystems, Land and Water Processes Interactions, Ecohydrogeomorphology – volume: 26 start-page: 5537 issue: 15 year: 2013 end-page: 5562 article-title: Controls of global snow under a changed climate publication-title: Journal of Climate – volume: 13 start-page: 837 issue: 3 year: 2012 end-page: 855 article-title: A stochastic conceptual modeling approach for examining the effects of climate change on streamflows in mountain basins publication-title: Journal of Hydrometeorology – ident: e_1_2_7_37_1 doi: 10.1111/j.1752‐1688.2012.00641.x – ident: e_1_2_7_46_1 doi: 10.1175/JCLI3850.1 – ident: e_1_2_7_4_1 doi: 10.1002/2016GL069690 – ident: e_1_2_7_50_1 doi: 10.1111/j.1752‐1688.2005.tb03808.x – ident: e_1_2_7_43_1 doi: 10.1175/JCLI‐D‐12‐00528.1 – ident: e_1_2_7_63_1 doi: 10.1029/2007GL032630 – start-page: 14 volume-title: Descriptions of PRISM spatial climate datasets for the conterminous United States year: 2013 ident: e_1_2_7_18_1 – ident: e_1_2_7_57_1 doi: 10.1175/EI‐D‐17‐0007.1 – ident: e_1_2_7_31_1 doi: 10.1002/2017WR021899 – ident: e_1_2_7_13_1 doi: 10.1111/1752‐1688.12640 – ident: e_1_2_7_25_1 doi: 10.3389/fpls.2016.00914 – volume-title: Daily 4 km gridded SWE and snow depth from assimilated in‐situ and modeled data over the conterminous US, Version 1 year: 2019 ident: e_1_2_7_9_1 – ident: e_1_2_7_67_1 doi: 10.1038/nclimate3225 – ident: e_1_2_7_2_1 doi: 10.1002/joc.3413 – ident: e_1_2_7_88_1 doi: 10.1029/2006WR005653 – ident: e_1_2_7_6_1 doi: 10.1002/2016GL068070 – ident: e_1_2_7_64_1 doi: 10.1175/BAMS‐86‐1‐39 – ident: e_1_2_7_71_1 doi: 10.1175/2010JCLI3729.1 – ident: e_1_2_7_39_1 doi: 10.1029/2011GL048346 – ident: e_1_2_7_42_1 doi: 10.1002/hyp.9751 – ident: e_1_2_7_77_1 doi: 10.5194/tc‐12‐1027‐2018 – ident: e_1_2_7_28_1 doi: 10.1175/JHM‐D‐11‐037.1 – ident: e_1_2_7_56_1 doi: 10.1175/BAMS‐88‐3‐319 – ident: e_1_2_7_73_1 doi: 10.1007/s00382‐007‐0289‐y – ident: e_1_2_7_26_1 doi: 10.1175/2011JHM1360.1 – ident: e_1_2_7_10_1 doi: 10.5194/tc‐7‐67‐2013 – ident: e_1_2_7_38_1 doi: 10.1007/s11269‐009‐9523‐1 – ident: e_1_2_7_85_1 doi: 10.1002/jgrg.20073 – ident: e_1_2_7_60_1 doi: 10.1002/2013WR014939 – ident: e_1_2_7_90_1 doi: 10.1002/2015GL067613 – ident: e_1_2_7_47_1 doi: 10.1002/hyp.1423 – ident: e_1_2_7_3_1 doi: 10.1038/nature04141 – ident: e_1_2_7_29_1 doi: 10.5066/P9AB3KL9 – ident: e_1_2_7_83_1 doi: 10.1175/JCLI3321.1 – ident: e_1_2_7_75_1 doi: 10.1029/2005JD006473 – ident: e_1_2_7_27_1 – ident: e_1_2_7_35_1 – ident: e_1_2_7_51_1 doi: 10.1007/s10584-010-9889-3 – ident: e_1_2_7_66_1 doi: 10.1029/WR026i012p03021 – ident: e_1_2_7_30_1 doi: 10.5194/hess‐23‐3553‐2019 – ident: e_1_2_7_14_1 doi: 10.5194/hess‐11‐1417‐2007 – ident: e_1_2_7_52_1 doi: 10.1002/2014WR016267 – ident: e_1_2_7_65_1 doi: 10.1038/s41612‐018‐0012‐1 – ident: e_1_2_7_19_1 doi: 10.1002/hyp.6130 – ident: e_1_2_7_22_1 doi: 10.5194/essd‐7‐137‐2015 – ident: e_1_2_7_62_1 doi: 10.1002/eco.48 – volume: 34 start-page: 1 issue: 1 year: 2012 ident: e_1_2_7_54_1 article-title: Spatial‐temporal characteristics of observed key parameters for snow cover in China during 1957–2009 publication-title: Journal of Glaciology and Geocryology – ident: e_1_2_7_33_1 doi: 10.1002/2017JD027704 – ident: e_1_2_7_89_1 doi: 10.1029/RG028i001p00001 – ident: e_1_2_7_55_1 doi: 10.1007/s00704‐012‐0584‐3 – ident: e_1_2_7_44_1 doi: 10.1088/1748‐9326/10/8/084004 – ident: e_1_2_7_21_1 doi: 10.1029/WR006i005p01296 – ident: e_1_2_7_15_1 doi: 10.1023/B:CLIM.0000013684.13621.1f – ident: e_1_2_7_45_1 doi: 10.1002/2014GL060500 – ident: e_1_2_7_79_1 doi: 10.1016/j.jhydrol.2014.12.014 – ident: e_1_2_7_84_1 doi: 10.1016/j.jhydrol.2012.11.021 – ident: e_1_2_7_8_1 doi: 10.5194/tc‐5‐219‐2011 – ident: e_1_2_7_7_1 doi: 10.1175/2008JCLI2665.1 – ident: e_1_2_7_87_1 doi: 10.1016/j.coldregions.2010.08.008 – ident: e_1_2_7_81_1 doi: 10.1002/hyp.7128 – ident: e_1_2_7_12_1 doi: 10.1002/(SICI)1099‐1085(19990415)13:5<701::AID‐HYP774>3.0.CO;2‐2 – ident: e_1_2_7_17_1 doi: 10.1002/hyp.9385 – ident: e_1_2_7_40_1 doi: 10.1016/j.ejrh.2018.04.005 – ident: e_1_2_7_86_1 – ident: e_1_2_7_74_1 doi: 10.1175/JCLI‐3272.1 – ident: e_1_2_7_32_1 doi: 10.1002/joc.5674 – ident: e_1_2_7_36_1 doi: 10.1016/j.rse.2017.01.023 – ident: e_1_2_7_20_1 doi: 10.1016/j.jhydrol.2017.01.051 – ident: e_1_2_7_61_1 doi: 10.1029/2010GL046477 – ident: e_1_2_7_68_1 doi: 10.1029/WR026i007p01465 – ident: e_1_2_7_78_1 doi: 10.1007/s11707‐016‐0630‐z – ident: e_1_2_7_23_1 doi: 10.1002/2014JD022753 – ident: e_1_2_7_69_1 – ident: e_1_2_7_72_1 doi: 10.3133/sir20175034 – ident: e_1_2_7_80_1 – ident: e_1_2_7_24_1 doi: 10.1371/journal.pone.0071297 – ident: e_1_2_7_34_1 doi: 10.1002/2015GL065855 – ident: e_1_2_7_59_1 doi: 10.1002/hyp.9355 – ident: e_1_2_7_53_1 – ident: e_1_2_7_58_1 doi: 10.1175/JHM‐D‐17‐0227.1 – ident: e_1_2_7_82_1 doi: 10.1023/B:CLIM.0000013702.22656.e8 – ident: e_1_2_7_5_1 doi: 10.1038/nclimate2246 – ident: e_1_2_7_70_1 doi: 10.1175/JHM543.1 – ident: e_1_2_7_48_1 doi: 10.1007/s40641‐016‐0036‐8 – ident: e_1_2_7_49_1 doi: 10.1002/2017GL073551 – ident: e_1_2_7_76_1 doi: 10.1175/JCLI‐D‐12‐00563.1 – ident: e_1_2_7_41_1 doi: 10.1002/2015WR017784 – ident: e_1_2_7_11_1 doi: 10.1029/2019GL084401 – ident: e_1_2_7_16_1 doi: 10.1175/2009JCLI2951.1 |
| SSID | ssj0014567 |
| Score | 2.505648 |
| Snippet | Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Annual precipitation Annual variations Base flow Conservation Digital filters Geological surveys hydrologic response Hydrology mountain hydrology Mountains Natural resources natural resources conservation Rain Rainfall Ratios Resource conservation Runoff Snow Snow accumulation Snow-water equivalent Snowmelt Snowpack spring Stream discharge Stream flow streamflow Surveying Telemetry United States Geological Survey Watersheds Winter |
| Title | Subannual Streamflow Responses to Rainfall and Snowmelt Inputs in Snow‐Dominated Watersheds of the Western United States |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019WR026132 https://www.proquest.com/docview/2394894606 https://www.proquest.com/docview/2718236013 |
| Volume | 56 |
| WOSCitedRecordID | wos000538987800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEB-KFfSlrbal16qsoE829JLdJruPoj0qlEOiEt_CZP-gEBMxuUr71I_Qz9hP0tkkd70-WCi-hWRCwu7Mzm92Zn8DsIcqUaglDzSGLhBJVASS40fSZa1iwzFMEtM1m0imU3l5qU6HDTd_Fqbnh1hsuHnL6NZrb-BYNAPZgOfIJM-lstSHENwvwaEIfQOD7GS6SCIQNkjmCWYPdIa6d3r9w_LLf3ukPzBzGax23mby_LH_-QKeDTiTHfaKsQFPbLUJa_NjyA1dD-3Pr769hO-0fPTkpMxnqfHGlfU9S_vyWduwtmY-D-SwLBlWhp1V9f2NLVt2Ut3O2oZdV92tXz9-Hte-tIZQLMvQ83ZeWdOw2jGCmSzrSRlYD3NZD3NfwcXk0_nR52BoyhAgJ3AScKdjrbgNY-MMBZc0m4UY67EsJPlbmxQRN6giYyhOMoR_CidCJIw0jrXA0Fr-GlaqurJvgGHBBY2OlAWGAh0phyNAxxMrlBzHVo_gYD4xuR4Yy33jjDLvMueRypfHdgT7C-nbnqnjAbmt-Rzng702uW8QL5WgaG4Eu4vHZGk-fYKVrWckQ2484hTA8hG872b8n9_Js_QojQQh1Lf_J_4O1iMf1HflQVuw0t7N7Das6q_tdXO3A0-P08nFl51O1X8D_sj9aQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEJ8YNMEX_yDGU8QlgSdpvHbXdvfRIISLeCEHprw10_2TIyktoT2JPvER-Ix-Emfb3nE8aGJ8a9pp2uzO7PxmZ_Y3ANuoEoVa8kBj6AKRRHkgOX4kXdYqNhzDJDFts4lkPJZnZ-q473Pqz8J0_BCLDTdvGe167Q3cb0j3bAOeJJNcl0onPobgtAY_FIQ1fO-GdDRepBEIHSTzFLOHOn3lO73_Yfnt-z7pDmguw9XW3xw8_e8_fQZPeqjJPnW68Rwe2HINVucnkWu67jugT3-8gJ-0gnT8pMwnqvHCFdU1m3QVtLZmTcV8KshhUTAsDTspq-sLWzRsVF7Ompqdl-2tXze3nytfXUNAlqXoqTun1tSscoyQJks7XgbWIV3WId11-Hawf7p3GPR9GQLkhE8C7nSsFbdhbJyh-JImNBdDPZS5JJdrkzziBlVkDIVKhiBQ7kSIBJOGsRYYWstfwkpZlfYVMMy5oNGRMsdQoCP9cITpeGKFksPY6gG8n89MpnvSct87o8ja5HmksuWxHcDOQvqyI-v4g9zGfJKz3mTrzPeIl0pQQDeArcVjMjafQcHSVjOSIU8ecYph-QB22yn_63eydLI3iQSB1Nf_Jv4OVg9Pvx5lR6PxlzfwOPIxflsttAErzdXMvoVH-ntzXl9ttvr-G97-_-c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hLQIuvBELBYwEJ4i6iU1iH1GXFRXVqgpU21s08UOtlCarJksFJ34Cv5FfwjjxLssBJMQtSiYPecaebzLjbwBeoMoUaskjjbGLRJaUkeT4hmxZq9RwjLPM9M0msvlcnpyoo9Dn1O-FGfghNj_c_Mzo12s_we3SuMA24EkyyXWpRe5jCE5r8I7wfWRGsDPNZ8eHm0QC4YNsnWT2YCfUvtMT9rbv_90r_YKa24C19zizW__9rbfhZgCb7O1gHXfgiq3vwvX1XuSWjkMP9NMv9-ArrSEDQynzqWo8d1VzyfKhhta2rGuYTwY5rCqGtWEf6-by3FYdO6iXq65lZ3V_6se379PG19cQlGUL9OSdp9a0rHGMsCZbDMwMbMC6bMC69-F49u7T_vsodGaIkBNCibjTqVbcxqlxhiJMUmkpJnoiS0lO12Zlwg2qxBgKlgyBoNKJGAkoTVItMLaWP4BR3dT2ITAsuaDRkbLEWKAjC3GE6nhmhZKT1OoxvFprptCBttx3z6iKPn2eqGJ7bMfwciO9HOg6_iC3u1ZyESZtW_gu8VIJCunG8Hxzmaabz6FgbZsVyZAvTzhFsXwMr3uV__U9xSLfzxNBMPXRv4k_g2tH01lxeDD_8BhuJD7I78uFdmHUXazsE7iqP3dn7cXTYPA_AX0VAJ8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subannual+Streamflow+Responses+to+Rainfall+and+Snowmelt+Inputs+in+Snow%E2%80%90Dominated+Watersheds+of+the+Western+United+States&rft.jtitle=Water+resources+research&rft.au=Hammond%2C+John+C.&rft.au=Kampf%2C+Stephanie+K.&rft.date=2020-04-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=56&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2019WR026132&rft.externalDBID=10.1029%252F2019WR026132&rft.externalDocID=WRCR24545 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |