Subannual Streamflow Responses to Rainfall and Snowmelt Inputs in Snow‐Dominated Watersheds of the Western United States

Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research Jg. 56; H. 4
Hauptverfasser: Hammond, John C., Kampf, Stephanie K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington John Wiley & Sons, Inc 01.04.2020
Schlagworte:
ISSN:0043-1397, 1944-7973
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experience streamflow declines. This research examines whether streamflow generation is different for rainfall versus snowmelt inputs. We compiled a sample of 57 small U.S. Geological Survey watersheds in the western United States containing a Natural Resource Conservation Service Snow Telemetry site and having ratios of mean annual peak snow water equivalent to precipitation ratios >0.25. Daily streamflow was separated into quickflow and baseflow using a digital filter, and quickflow was then divided into quickflow response intervals using thresholds in quickflow slope. Each quickflow response interval was categorized by its fraction of input from snowmelt. Most sites exhibited two streamflow generation peaks each year, with one peak in the winter when runoff efficiency is greatest, and the second in the spring during peak snowmelt input. On average, study watersheds were dominated by snowmelt inputs (70%), and snowmelt and mixed inputs usually generated greater streamflow than rainfall because of higher inputs and longer durations. However, rainfall produced high streamflow generation in winter, when watersheds have their highest runoff efficiency (81%) across all input types. We demonstrate that while snowmelt is important for streamflow generation due to high input over long periods, increases in rain and mixed input during wet winter periods can countervail tendencies for reduced streamflow with declining snowpacks. Key Points Quickflow response intervals (QRIs) are subannual hydrograph responses suitable for analyzing both snowmelt and rainfall‐dominated streamflow Snowmelt contributions to streamflow in western watersheds are lower than previous estimates, with most QRIs originating from mixed rain and snow input Snowmelt and mixed rain and snow QRIs produce more streamflow than rainfall‐dominated QRIs in most watersheds, except those with high winter rain and snowmelt input
AbstractList Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experience streamflow declines. This research examines whether streamflow generation is different for rainfall versus snowmelt inputs. We compiled a sample of 57 small U.S. Geological Survey watersheds in the western United States containing a Natural Resource Conservation Service Snow Telemetry site and having ratios of mean annual peak snow water equivalent to precipitation ratios >0.25. Daily streamflow was separated into quickflow and baseflow using a digital filter, and quickflow was then divided into quickflow response intervals using thresholds in quickflow slope. Each quickflow response interval was categorized by its fraction of input from snowmelt. Most sites exhibited two streamflow generation peaks each year, with one peak in the winter when runoff efficiency is greatest, and the second in the spring during peak snowmelt input. On average, study watersheds were dominated by snowmelt inputs (70%), and snowmelt and mixed inputs usually generated greater streamflow than rainfall because of higher inputs and longer durations. However, rainfall produced high streamflow generation in winter, when watersheds have their highest runoff efficiency (81%) across all input types. We demonstrate that while snowmelt is important for streamflow generation due to high input over long periods, increases in rain and mixed input during wet winter periods can countervail tendencies for reduced streamflow with declining snowpacks.
Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experience streamflow declines. This research examines whether streamflow generation is different for rainfall versus snowmelt inputs. We compiled a sample of 57 small U.S. Geological Survey watersheds in the western United States containing a Natural Resource Conservation Service Snow Telemetry site and having ratios of mean annual peak snow water equivalent to precipitation ratios >0.25. Daily streamflow was separated into quickflow and baseflow using a digital filter, and quickflow was then divided into quickflow response intervals using thresholds in quickflow slope. Each quickflow response interval was categorized by its fraction of input from snowmelt. Most sites exhibited two streamflow generation peaks each year, with one peak in the winter when runoff efficiency is greatest, and the second in the spring during peak snowmelt input. On average, study watersheds were dominated by snowmelt inputs (70%), and snowmelt and mixed inputs usually generated greater streamflow than rainfall because of higher inputs and longer durations. However, rainfall produced high streamflow generation in winter, when watersheds have their highest runoff efficiency (81%) across all input types. We demonstrate that while snowmelt is important for streamflow generation due to high input over long periods, increases in rain and mixed input during wet winter periods can countervail tendencies for reduced streamflow with declining snowpacks. Quickflow response intervals (QRIs) are subannual hydrograph responses suitable for analyzing both snowmelt and rainfall‐dominated streamflow Snowmelt contributions to streamflow in western watersheds are lower than previous estimates, with most QRIs originating from mixed rain and snow input Snowmelt and mixed rain and snow QRIs produce more streamflow than rainfall‐dominated QRIs in most watersheds, except those with high winter rain and snowmelt input
Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experience streamflow declines. This research examines whether streamflow generation is different for rainfall versus snowmelt inputs. We compiled a sample of 57 small U.S. Geological Survey watersheds in the western United States containing a Natural Resource Conservation Service Snow Telemetry site and having ratios of mean annual peak snow water equivalent to precipitation ratios >0.25. Daily streamflow was separated into quickflow and baseflow using a digital filter, and quickflow was then divided into quickflow response intervals using thresholds in quickflow slope. Each quickflow response interval was categorized by its fraction of input from snowmelt. Most sites exhibited two streamflow generation peaks each year, with one peak in the winter when runoff efficiency is greatest, and the second in the spring during peak snowmelt input. On average, study watersheds were dominated by snowmelt inputs (70%), and snowmelt and mixed inputs usually generated greater streamflow than rainfall because of higher inputs and longer durations. However, rainfall produced high streamflow generation in winter, when watersheds have their highest runoff efficiency (81%) across all input types. We demonstrate that while snowmelt is important for streamflow generation due to high input over long periods, increases in rain and mixed input during wet winter periods can countervail tendencies for reduced streamflow with declining snowpacks. Key Points Quickflow response intervals (QRIs) are subannual hydrograph responses suitable for analyzing both snowmelt and rainfall‐dominated streamflow Snowmelt contributions to streamflow in western watersheds are lower than previous estimates, with most QRIs originating from mixed rain and snow input Snowmelt and mixed rain and snow QRIs produce more streamflow than rainfall‐dominated QRIs in most watersheds, except those with high winter rain and snowmelt input
Author Kampf, Stephanie K.
Hammond, John C.
Author_xml – sequence: 1
  givenname: John C.
  orcidid: 0000-0002-4935-0736
  surname: Hammond
  fullname: Hammond, John C.
  email: jhammond@usgs.gov
  organization: U.S. Geological Survey
– sequence: 2
  givenname: Stephanie K.
  orcidid: 0000-0001-8991-2679
  surname: Kampf
  fullname: Kampf, Stephanie K.
  organization: Colorado State University
BookMark eNp9kc-KFDEQxoOs4OzozQcIePFga5JKpydHGf8tLAg9LnNs0p1qNks6GZNuhvXkI-wz7pOYdTzIgl6q4ONXVV_xnZOzEAMS8pKzt5wJ_U4wrvctE4qDeEJWXEtZNbqBM7JiTELFQTfPyHnON4xxWatmRX7slt6EsBhPd3NCM40-HmmL-RBDxkznSFvjwmi8pyZYugvxOKGf6UU4LHOmLvyW7n_efYiTC2ZGS_elpnyNNtM40vka6R5zkQK9Cu4B2M2FyM_J07I244s_fU2uPn38tv1SXX79fLF9f1kZUFBXMA5q0IBc2dHWUhve9JINbNNvBkRsegHWaGGtYrVlCvpRciMaYGqQhiPCmrw-7T2k-H0pTrrJ5QG9NwHjkjvR8I0AxTgU9NUj9CYuKRR3nQAtN1qqcmFNxIkaUsw54dgNrnzkYpiTcb7jrHuIo_s7jjL05tHQIbnJpNt_4XDCj87j7X_Zbt9uWyFrWcMvC0yeIA
CitedBy_id crossref_primary_10_1002_hyp_70151
crossref_primary_10_1029_2024EF005615
crossref_primary_10_1029_2021WR030966
crossref_primary_10_1002_hyp_70092
crossref_primary_10_1093_pnasnexus_pgac295
crossref_primary_10_3390_w14213575
crossref_primary_10_1029_2024WR038215
crossref_primary_10_1016_j_envsoft_2025_106612
crossref_primary_10_1016_j_earscirev_2024_104704
crossref_primary_10_5194_hess_27_1403_2023
crossref_primary_10_1002_hyp_15215
crossref_primary_10_1016_j_ejrh_2024_102085
crossref_primary_10_1016_j_catena_2023_107394
crossref_primary_10_1029_2019WR026699
crossref_primary_10_1002_eco_70111
crossref_primary_10_1002_hyp_15211
crossref_primary_10_1016_j_biocon_2024_110468
crossref_primary_10_1016_j_geomorph_2024_109233
crossref_primary_10_1016_j_jhydrol_2023_129915
crossref_primary_10_1002_hyp_15297
crossref_primary_10_1038_s43017_021_00219_y
crossref_primary_10_3390_w14071095
crossref_primary_10_5194_hess_29_27_2025
crossref_primary_10_5194_hess_28_2895_2024
crossref_primary_10_1002_ldr_3825
crossref_primary_10_1073_pnas_2200333119
crossref_primary_10_1029_2021GL094985
crossref_primary_10_1016_j_jhydrol_2025_133747
crossref_primary_10_1029_2023WR035303
crossref_primary_10_1080_02626667_2024_2390919
crossref_primary_10_1029_2024WR038636
crossref_primary_10_1016_j_jhydrol_2025_133465
crossref_primary_10_1002_rra_4122
crossref_primary_10_3390_w16121665
crossref_primary_10_1088_1748_9326_ac64b4
crossref_primary_10_3390_cli13090177
crossref_primary_10_1029_2021WR031575
crossref_primary_10_3390_w13010003
Cites_doi 10.1111/j.1752‐1688.2012.00641.x
10.1175/JCLI3850.1
10.1002/2016GL069690
10.1111/j.1752‐1688.2005.tb03808.x
10.1175/JCLI‐D‐12‐00528.1
10.1029/2007GL032630
10.1175/EI‐D‐17‐0007.1
10.1002/2017WR021899
10.1111/1752‐1688.12640
10.3389/fpls.2016.00914
10.1038/nclimate3225
10.1002/joc.3413
10.1029/2006WR005653
10.1002/2016GL068070
10.1175/BAMS‐86‐1‐39
10.1175/2010JCLI3729.1
10.1029/2011GL048346
10.1002/hyp.9751
10.5194/tc‐12‐1027‐2018
10.1175/JHM‐D‐11‐037.1
10.1175/BAMS‐88‐3‐319
10.1007/s00382‐007‐0289‐y
10.1175/2011JHM1360.1
10.5194/tc‐7‐67‐2013
10.1007/s11269‐009‐9523‐1
10.1002/jgrg.20073
10.1002/2013WR014939
10.1002/2015GL067613
10.1002/hyp.1423
10.1038/nature04141
10.5066/P9AB3KL9
10.1175/JCLI3321.1
10.1029/2005JD006473
10.1007/s10584-010-9889-3
10.1029/WR026i012p03021
10.5194/hess‐23‐3553‐2019
10.5194/hess‐11‐1417‐2007
10.1002/2014WR016267
10.1038/s41612‐018‐0012‐1
10.1002/hyp.6130
10.5194/essd‐7‐137‐2015
10.1002/eco.48
10.1002/2017JD027704
10.1029/RG028i001p00001
10.1007/s00704‐012‐0584‐3
10.1088/1748‐9326/10/8/084004
10.1029/WR006i005p01296
10.1023/B:CLIM.0000013684.13621.1f
10.1002/2014GL060500
10.1016/j.jhydrol.2014.12.014
10.1016/j.jhydrol.2012.11.021
10.5194/tc‐5‐219‐2011
10.1175/2008JCLI2665.1
10.1016/j.coldregions.2010.08.008
10.1002/hyp.7128
10.1002/(SICI)1099‐1085(19990415)13:5<701::AID‐HYP774>3.0.CO;2‐2
10.1002/hyp.9385
10.1016/j.ejrh.2018.04.005
10.1175/JCLI‐3272.1
10.1002/joc.5674
10.1016/j.rse.2017.01.023
10.1016/j.jhydrol.2017.01.051
10.1029/2010GL046477
10.1029/WR026i007p01465
10.1007/s11707‐016‐0630‐z
10.1002/2014JD022753
10.3133/sir20175034
10.1371/journal.pone.0071297
10.1002/2015GL065855
10.1002/hyp.9355
10.1175/JHM‐D‐17‐0227.1
10.1023/B:CLIM.0000013702.22656.e8
10.1038/nclimate2246
10.1175/JHM543.1
10.1007/s40641‐016‐0036‐8
10.1002/2017GL073551
10.1175/JCLI‐D‐12‐00563.1
10.1002/2015WR017784
10.1029/2019GL084401
10.1175/2009JCLI2951.1
ContentType Journal Article
Copyright 2020. American Geophysical Union. All Rights Reserved. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
2020. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2020. American Geophysical Union. All Rights Reserved. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
– notice: 2020. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2019WR026132
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
CrossRef
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2019WR026132
WRCR24545
Genre article
GeographicLocations Western states
United States--US
GeographicLocations_xml – name: Western states
– name: United States--US
GrantInformation_xml – fundername: United States National Science Foundation
  funderid: EAR 1446870
– fundername: NSF | GEO | Division of Earth Sciences (EAR)
  funderid: 1446870
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a3635-3fc6c93e16dfd549a17b40c08b8ceee7b23da92dd605d063bf41a27306c4a1ee3
IEDL.DBID WIN
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538987800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:17:00 EDT 2025
Wed Aug 13 07:34:28 EDT 2025
Sat Nov 29 01:36:44 EST 2025
Tue Nov 18 21:21:04 EST 2025
Wed Jan 22 16:35:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3635-3fc6c93e16dfd549a17b40c08b8ceee7b23da92dd605d063bf41a27306c4a1ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4935-0736
0000-0001-8991-2679
PQID 2394894606
PQPubID 105507
PageCount 15
ParticipantIDs proquest_miscellaneous_2718236013
proquest_journals_2394894606
crossref_citationtrail_10_1029_2019WR026132
crossref_primary_10_1029_2019WR026132
wiley_primary_10_1029_2019WR026132_WRCR24545
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
1970; 6
2013; 26
2004; 62
2013; 27
2017; 44
2017; 191
2008; 35
2011; 12
2008; 30
2014; 28
2013; 7
2013; 8
2012; 13
1979
2010; 23
2010; 64
2014; 4
2006; 20
2010; 24
2018; 1
2015; 42
2013; 479
2019; 23
2013; 118
2016; 43
1999; 13
2018b; 38
2011; 24
2012; 26
2017; 122
2014; 50
2009; 23
2009; 22
2015; 51
2015; 521
2010
2017; 21
2015; 120
2015; 10
2006; 7
2005; 438
2005; 41
2016; 52
2005; 86
1996
2006; 19
2004
2014; 41
2011; 38
2007; 11
2012; 34
2011; 5
2015; 7
2006; 111
2011; 105
2018; 19
2016; 7
2018; 17
2012; 110
2016; 2
2013; 33
2004; 18
1990; 26
2018a; 54
1990; 28
2020
2019; 46
2017; 11
2019
2018
2017
2013
2012; 48
2018; 12
2009; 2
2007; 43
2018; 54
2007; 88
2005; 18
2017; 547
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Daly C. (e_1_2_7_18_1) 2013
Ma L. J. (e_1_2_7_54_1) 2012; 34
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Broxton P. (e_1_2_7_9_1) 2019
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 23
  start-page: 3553
  year: 2019
  end-page: 3570
  article-title: Partitioning snowmelt and rainfall in the critical zone: Effects of climate type and soil properties
  publication-title: Hydrology and Earth System Sciences
– volume: 35
  year: 2008
  article-title: Twentieth century Antarctic air temperature and snowfall simulations by IPCC climate models
  publication-title: Geophysical Research Letters
– volume: 54
  start-page: 2605
  year: 2018a
  end-page: 2623
  article-title: How does snow persistence relate to annual streamflow in mountain watersheds of the western US with wet maritime and dry continental climates?
  publication-title: Water Resources Research
– volume: 11
  start-page: 515
  issue: 3
  year: 2017
  end-page: 530
  article-title: Effect of snow on mountain river regimes: An example from the Pyrenees
  publication-title: Frontiers of Earth Science
– volume: 20
  start-page: 673
  issue: 4
  year: 2006
  end-page: 688
  article-title: Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model
  publication-title: Hydrological Processes: An International Journal
– year: 2020
  article-title: Sub-annual streamflow responses to rainfall and snowmelt inputs in snow-dominated watersheds of the western U.S.: U.S
  publication-title: Geological Survey data release
– volume: 28
  start-page: 2237
  issue: 4
  year: 2014
  end-page: 2250
  article-title: Estimating source regions for snowmelt runoff in a Rocky Mountain basin: Tests of a data‐based conceptual modeling approach
  publication-title: Hydrological Processes
– volume: 44
  start-page: 6163
  year: 2017
  end-page: 6172
  article-title: How much runoff originates as snow in the western United States, and how will that change in the future?
  publication-title: Geophysical Research Letters
– volume: 51
  start-page: 960
  year: 2015
  end-page: 972
  article-title: Projected changes in snowfall extremes and interannual variability of snowfall in the western United States
  publication-title: Water Resources Research
– volume: 27
  start-page: 2383
  issue: 17
  year: 2013
  end-page: 2400
  article-title: Subgrid variability of snow water equivalent at operational snow stations in the western USA
  publication-title: Hydrological Processes
– volume: 86
  start-page: 39
  issue: 1
  year: 2005
  end-page: 50
  article-title: Declining mountain snowpack in western North America
  publication-title: Bulletin of the American Meteorological Society
– volume: 438
  start-page: 303
  issue: 7066
  year: 2005
  end-page: 309
  article-title: Potential impacts of a warming climate on water availability in snow‐dominated regions
  publication-title: Nature
– volume: 18
  start-page: 1136
  issue: 8
  year: 2005
  end-page: 1155
  article-title: Changes toward earlier streamflow timing across western North America
  publication-title: Journal of Climate
– volume: 23
  start-page: 2293
  issue: 9
  year: 2010
  end-page: 2306
  article-title: Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming
  publication-title: Journal of Climate
– volume: 2
  start-page: 65
  issue: 2
  year: 2016
  end-page: 73
  article-title: Trends and extremes in Northern Hemisphere snow characteristics
  publication-title: Current Climate Change Reports
– volume: 34
  start-page: 1
  issue: 1
  year: 2012
  end-page: 11
  article-title: Spatial‐temporal characteristics of observed key parameters for snow cover in China during 1957–2009
  publication-title: Journal of Glaciology and Geocryology
– volume: 19
  start-page: 4545
  issue: 18
  year: 2006
  end-page: 4559
  article-title: Trends in snowfall versus rainfall in the western United States
  publication-title: Journal of Climate
– volume: 43
  start-page: 8006
  year: 2016
  end-page: 8016
  article-title: Snowmelt rate dictates streamflow
  publication-title: Geophysical Research Letters
– volume: 479
  start-page: 24
  year: 2013
  end-page: 34
  article-title: Variability in effect of climate change on rain‐on‐snow peak flow events in a temperate climate
  publication-title: Journal of Hydrology
– volume: 43
  start-page: 4382
  year: 2016
  end-page: 4390
  article-title: Dominant flood generating mechanisms across the United States
  publication-title: Geophysical Research Letters
– volume: 18
  start-page: 372
  issue: 2
  year: 2005
  end-page: 384
  article-title: Seasonal cycle shifts in hydroclimatology over the western United States
  publication-title: Journal of Climate
– year: 1979
– year: 2018
– volume: 521
  start-page: 395
  year: 2015
  end-page: 409
  article-title: The transformation of frequency distributions of winter precipitation to spring streamflow probabilities in cold regions; case studies from the Canadian Prairies
  publication-title: Journal of Hydrology
– volume: 118
  start-page: 875
  year: 2013
  end-page: 887
  article-title: The sensitivity of forest water use to the timing of precipitation and snowmelt recharge in the California Sierra: Implications for a warming climate
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 54
  start-page: 644
  issue: 3
  year: 2018
  end-page: 659
  article-title: Observed changes in climate and streamflow in the upper Rio Grande Basin
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 7
  start-page: 214
  issue: 3
  year: 2017
  end-page: 219
  article-title: Slower snowmelt in a warmer world
  publication-title: Nature Climate Change
– volume: 7
  start-page: 1164
  issue: 5
  year: 2006
  end-page: 1171
  article-title: Mapping “at risk” snow in the Pacific Northwest
  publication-title: Journal of Hydrometeorology
– volume: 38
  start-page: 4369
  issue: 12
  year: 2018b
  end-page: 4383
  article-title: Global snow zone maps and trends in snow persistence 2001–2016
  publication-title: International Journal of Climatology
– volume: 547
  start-page: 208
  year: 2017
  end-page: 221
  article-title: Trends in snowmelt‐related streamflow timing in the conterminous United States
  publication-title: Journal of Hydrology
– volume: 10
  year: 2015
  article-title: New satellite climate data records indicate strong coupling between recent frozen season changes and snow cover over high northern latitudes
  publication-title: Environmental Research Letters
– volume: 12
  start-page: 1027
  issue: 3
  year: 2018
  end-page: 1046
  article-title: Changes in Andes snow cover from MODIS data, 2000–2016
  publication-title: The Cryosphere
– volume: 23
  start-page: 78
  issue: 1
  year: 2009
  end-page: 94
  article-title: Changes in snowpack and snowmelt runoff for key mountain regions
  publication-title: Hydrological Processes
– volume: 38
  year: 2011
  article-title: Maximum discharge from snowmelt in a changing climate
  publication-title: Geophysical Research Letters
– volume: 62
  start-page: 337
  issue: 1–3
  year: 2004
  end-page: 363
  article-title: The effects of climate change on the hydrology and water resources of the Colorado River basin
  publication-title: Climatic Change
– volume: 7
  year: 2016
  article-title: Modeling root zone effects on preferred pathways for the passive transport of ions and water in plant roots
  publication-title: Frontiers in Plant Science
– volume: 1
  year: 2018
  article-title: Dramatic declines in snowpack in the western US
  publication-title: Npj Climate and Atmospheric Science
– volume: 110
  start-page: 573
  issue: 4
  year: 2012
  end-page: 583
  article-title: Long‐term snow and weather observations at Weissfluhjoch and its relation to other high‐altitude observatories in the Alps
  publication-title: Theoretical and Applied Climatology
– year: 2004
– volume: 26
  start-page: 1465
  issue: 7
  year: 1990
  end-page: 1473
  article-title: Evaluation of automated techniques for base flow and recession analysis
  publication-title: Water Resources Research
– volume: 111
  year: 2006
  article-title: Evaluation of surface albedo and snow cover in AR4 coupled climate models
  publication-title: Journal of Geophysical Research
– volume: 22
  start-page: 2124
  issue: 8
  year: 2009
  end-page: 2145
  article-title: The response of Northern Hemisphere snow cover to a changing climate
  publication-title: Journal of Climate
– volume: 18
  start-page: 1467
  issue: 8
  year: 2004
  end-page: 1486
  article-title: Exploring streamflow response to effective rainfall across event magnitude scale
  publication-title: Hydrological Processes
– year: 2019
– volume: 38
  year: 2011
  article-title: Seasonal versus transient snow and the elevation dependence of climate sensitivity in maritime mountainous regions
  publication-title: Geophysical Research Letters
– volume: 122
  start-page: 13,219
  year: 2017
  end-page: 13,228
  article-title: Potential for changing extreme snowmelt and rainfall events in the mountains of the western United States
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 4
  start-page: 583
  issue: 7
  year: 2014
  end-page: 586
  article-title: A precipitation shift from snow towards rain leads to a decrease in streamflow
  publication-title: Nature Climate Change
– volume: 26
  start-page: 2583
  issue: 17
  year: 2012
  end-page: 2591
  article-title: Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA
  publication-title: Hydrological Processes
– volume: 7
  start-page: 67
  issue: 1
  year: 2013
  end-page: 80
  article-title: An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models
  publication-title: The Cryosphere
– volume: 7
  start-page: 137
  issue: 1
  year: 2015
  end-page: 142
  article-title: A long‐term Northern Hemisphere snow cover extent data record for climate studies and monitoring
  publication-title: Earth System Science Data
– volume: 50
  start-page: 6986
  year: 2014
  end-page: 6999
  article-title: Continuous estimation of baseflow in snowmelt‐dominated streams and rivers in the Upper Colorado River Basin: A chemical hydrograph separation approach
  publication-title: Water Resources Research
– volume: 5
  start-page: 219
  issue: 1
  year: 2011
  end-page: 229
  article-title: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty
  publication-title: The Cryosphere
– volume: 12
  start-page: 989
  issue: 5
  year: 2011
  end-page: 1006
  article-title: Shifts in western North American snowmelt runoff regimes for the recent warm decades
  publication-title: Journal of Hydrometeorology
– start-page: 14
  year: 2013
– volume: 48
  start-page: 667
  issue: 4
  year: 2012
  end-page: 678
  article-title: Snowmelt runoff and water yield along elevation and temperature gradients in California's southern Sierra Nevada 1
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 24
  start-page: 1666
  issue: 6
  year: 2011
  end-page: 1687
  article-title: Climatic controls on the snowmelt hydrology of the northern Rocky Mountains
  publication-title: Journal of Climate
– volume: 13
  start-page: 701
  issue: 5
  year: 1999
  end-page: 714
  article-title: A comparison of algorithms for stream flow recession and baseflow separation
  publication-title: Hydrological Processes
– volume: 88
  start-page: 319
  issue: 3
  year: 2007
  end-page: 328
  article-title: Rain‐on‐snow events in the western United States
  publication-title: Bulletin of the American Meteorological Society
– year: 1996
– volume: 30
  start-page: 307
  issue: 2‐3
  year: 2008
  end-page: 319
  article-title: Warmer climate: Less or more snow?
  publication-title: Climate Dynamics
– volume: 33
  start-page: 121
  issue: 1
  year: 2013
  end-page: 131
  article-title: Development of gridded surface meteorological data for ecological applications and modelling
  publication-title: International Journal of Climatology
– volume: 26
  start-page: 6904
  issue: 18
  year: 2013
  end-page: 6914
  article-title: Detection and attribution of observed changes in Northern Hemisphere spring snow cover
  publication-title: Journal of Climate
– volume: 11
  start-page: 1417
  year: 2007
  end-page: 1434
  article-title: A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin
  publication-title: Hydrology and Earth System Sciences
– year: 2010
– volume: 41
  start-page: 1407
  issue: 6
  year: 2005
  end-page: 1416
  article-title: Automated web GIS based hydrograph analysis tool, WHAT 1
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 43
  year: 2007
  article-title: Mountains of the world, water towers for humanity: Typology, mapping, and global significance
  publication-title: Water Resources Research
– volume: 191
  start-page: 402
  year: 2017
  end-page: 418
  article-title: A 38‐year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite‐borne optical sensors
  publication-title: Remote Sensing of Environment
– volume: 24
  start-page: 1763
  issue: 9
  year: 2010
  end-page: 1777
  article-title: Assessment of snowmelt runoff using remote sensing and effect of climate change on runoff
  publication-title: Water Resources Management
– volume: 19
  start-page: 803
  issue: 5
  year: 2018
  end-page: 814
  article-title: Warming is driving decreases in snow fractions while runoff efficiency remains mostly unchanged in snow‐covered areas of the western United States
  publication-title: Journal of Hydrometeorology
– volume: 64
  start-page: 146
  issue: 2
  year: 2010
  end-page: 157
  article-title: Recent snow cover variability in the Italian Alps
  publication-title: Cold Regions Science and Technology
– volume: 41
  start-page: 4560
  year: 2014
  end-page: 4568
  article-title: Extent of the rain‐snow transition zone in the western US under historic and projected climate
  publication-title: Geophysical Research Letters
– volume: 52
  start-page: 407
  year: 2016
  end-page: 422
  article-title: Transition of dominant peak flow source from snowmelt to rainfall along the Colorado Front Range: Historical patterns, trends, and lessons from the 2013 Colorado Front Range floods
  publication-title: Water Resources Research
– volume: 17
  start-page: 36
  year: 2018
  end-page: 46
  article-title: Determining the proportion of streamflow that is generated by cold season processes versus summer rainfall in Utah, USA
  publication-title: Journal of Hydrology: Regional Studies
– volume: 21
  start-page: 1
  issue: 10
  year: 2017
  end-page: 14
  article-title: Evidence that recent warming is reducing Upper Colorado River flows
  publication-title: Earth Interactions
– volume: 62
  start-page: 217
  issue: 1–3
  year: 2004
  end-page: 232
  article-title: Changes in snowmelt runoff timing in western North America under a business as usual climate change scenario
  publication-title: Climatic Change
– volume: 43
  start-page: 2174
  year: 2016
  end-page: 2181
  article-title: Increasing influence of air temperature on upper Colorado River streamflow
  publication-title: Geophysical Research Letters
– volume: 6
  start-page: 1296
  issue: 5
  year: 1970
  end-page: 1311
  article-title: Partial area contributions to storm runoff in a small New England watershed
  publication-title: Water Resources Research
– volume: 42
  start-page: 8011
  year: 2015
  end-page: 8020
  article-title: Sensitivity of soil water availability to changing snowmelt timing in the western US
  publication-title: Geophysical Research Letters
– volume: 105
  start-page: 489
  issue: 3‐4
  year: 2011
  end-page: 508
  article-title: Effects of climate change on the intensity and frequency of heavy snowfall events in the Pyrenees
  publication-title: Climatic Change
– volume: 28
  start-page: 1
  issue: 1
  year: 1990
  end-page: 18
  article-title: Similarity and scale in catchment storm response
  publication-title: Reviews of Geophysics
– volume: 26
  start-page: 3021
  issue: 12
  year: 1990
  end-page: 3036
  article-title: Hydrogeochemical response of a forested watershed to storms: Effects of preferential flow along shallow and deep pathways
  publication-title: Water Resources Research
– year: 2017
– volume: 120
  start-page: 2375
  year: 2015
  end-page: 2381
  article-title: Large snowmelt versus rainfall events in the mountains
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 46
  start-page: 10,122
  year: 2019
  end-page: 10,131
  article-title: Spatiotemporal variability of 21st‐century changes in site‐specific snowfall frequency over the Northwest United States
  publication-title: Geophysical Research Letters
– volume: 8
  issue: 8
  year: 2013
  article-title: Climate change impacts on streamflow and subbasin‐scale hydrology in the Upper Colorado River Basin
  publication-title: PLoS ONE
– volume: 2
  start-page: 129
  issue: 2
  year: 2009
  end-page: 142
  article-title: Ecohydrological controls on snowmelt partitioning in mixed‐conifer sub‐alpine forests
  publication-title: Ecohydrology: Ecosystems, Land and Water Processes Interactions, Ecohydrogeomorphology
– volume: 26
  start-page: 5537
  issue: 15
  year: 2013
  end-page: 5562
  article-title: Controls of global snow under a changed climate
  publication-title: Journal of Climate
– volume: 13
  start-page: 837
  issue: 3
  year: 2012
  end-page: 855
  article-title: A stochastic conceptual modeling approach for examining the effects of climate change on streamflows in mountain basins
  publication-title: Journal of Hydrometeorology
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1752‐1688.2012.00641.x
– ident: e_1_2_7_46_1
  doi: 10.1175/JCLI3850.1
– ident: e_1_2_7_4_1
  doi: 10.1002/2016GL069690
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1752‐1688.2005.tb03808.x
– ident: e_1_2_7_43_1
  doi: 10.1175/JCLI‐D‐12‐00528.1
– ident: e_1_2_7_63_1
  doi: 10.1029/2007GL032630
– start-page: 14
  volume-title: Descriptions of PRISM spatial climate datasets for the conterminous United States
  year: 2013
  ident: e_1_2_7_18_1
– ident: e_1_2_7_57_1
  doi: 10.1175/EI‐D‐17‐0007.1
– ident: e_1_2_7_31_1
  doi: 10.1002/2017WR021899
– ident: e_1_2_7_13_1
  doi: 10.1111/1752‐1688.12640
– ident: e_1_2_7_25_1
  doi: 10.3389/fpls.2016.00914
– volume-title: Daily 4 km gridded SWE and snow depth from assimilated in‐situ and modeled data over the conterminous US, Version 1
  year: 2019
  ident: e_1_2_7_9_1
– ident: e_1_2_7_67_1
  doi: 10.1038/nclimate3225
– ident: e_1_2_7_2_1
  doi: 10.1002/joc.3413
– ident: e_1_2_7_88_1
  doi: 10.1029/2006WR005653
– ident: e_1_2_7_6_1
  doi: 10.1002/2016GL068070
– ident: e_1_2_7_64_1
  doi: 10.1175/BAMS‐86‐1‐39
– ident: e_1_2_7_71_1
  doi: 10.1175/2010JCLI3729.1
– ident: e_1_2_7_39_1
  doi: 10.1029/2011GL048346
– ident: e_1_2_7_42_1
  doi: 10.1002/hyp.9751
– ident: e_1_2_7_77_1
  doi: 10.5194/tc‐12‐1027‐2018
– ident: e_1_2_7_28_1
  doi: 10.1175/JHM‐D‐11‐037.1
– ident: e_1_2_7_56_1
  doi: 10.1175/BAMS‐88‐3‐319
– ident: e_1_2_7_73_1
  doi: 10.1007/s00382‐007‐0289‐y
– ident: e_1_2_7_26_1
  doi: 10.1175/2011JHM1360.1
– ident: e_1_2_7_10_1
  doi: 10.5194/tc‐7‐67‐2013
– ident: e_1_2_7_38_1
  doi: 10.1007/s11269‐009‐9523‐1
– ident: e_1_2_7_85_1
  doi: 10.1002/jgrg.20073
– ident: e_1_2_7_60_1
  doi: 10.1002/2013WR014939
– ident: e_1_2_7_90_1
  doi: 10.1002/2015GL067613
– ident: e_1_2_7_47_1
  doi: 10.1002/hyp.1423
– ident: e_1_2_7_3_1
  doi: 10.1038/nature04141
– ident: e_1_2_7_29_1
  doi: 10.5066/P9AB3KL9
– ident: e_1_2_7_83_1
  doi: 10.1175/JCLI3321.1
– ident: e_1_2_7_75_1
  doi: 10.1029/2005JD006473
– ident: e_1_2_7_27_1
– ident: e_1_2_7_35_1
– ident: e_1_2_7_51_1
  doi: 10.1007/s10584-010-9889-3
– ident: e_1_2_7_66_1
  doi: 10.1029/WR026i012p03021
– ident: e_1_2_7_30_1
  doi: 10.5194/hess‐23‐3553‐2019
– ident: e_1_2_7_14_1
  doi: 10.5194/hess‐11‐1417‐2007
– ident: e_1_2_7_52_1
  doi: 10.1002/2014WR016267
– ident: e_1_2_7_65_1
  doi: 10.1038/s41612‐018‐0012‐1
– ident: e_1_2_7_19_1
  doi: 10.1002/hyp.6130
– ident: e_1_2_7_22_1
  doi: 10.5194/essd‐7‐137‐2015
– ident: e_1_2_7_62_1
  doi: 10.1002/eco.48
– volume: 34
  start-page: 1
  issue: 1
  year: 2012
  ident: e_1_2_7_54_1
  article-title: Spatial‐temporal characteristics of observed key parameters for snow cover in China during 1957–2009
  publication-title: Journal of Glaciology and Geocryology
– ident: e_1_2_7_33_1
  doi: 10.1002/2017JD027704
– ident: e_1_2_7_89_1
  doi: 10.1029/RG028i001p00001
– ident: e_1_2_7_55_1
  doi: 10.1007/s00704‐012‐0584‐3
– ident: e_1_2_7_44_1
  doi: 10.1088/1748‐9326/10/8/084004
– ident: e_1_2_7_21_1
  doi: 10.1029/WR006i005p01296
– ident: e_1_2_7_15_1
  doi: 10.1023/B:CLIM.0000013684.13621.1f
– ident: e_1_2_7_45_1
  doi: 10.1002/2014GL060500
– ident: e_1_2_7_79_1
  doi: 10.1016/j.jhydrol.2014.12.014
– ident: e_1_2_7_84_1
  doi: 10.1016/j.jhydrol.2012.11.021
– ident: e_1_2_7_8_1
  doi: 10.5194/tc‐5‐219‐2011
– ident: e_1_2_7_7_1
  doi: 10.1175/2008JCLI2665.1
– ident: e_1_2_7_87_1
  doi: 10.1016/j.coldregions.2010.08.008
– ident: e_1_2_7_81_1
  doi: 10.1002/hyp.7128
– ident: e_1_2_7_12_1
  doi: 10.1002/(SICI)1099‐1085(19990415)13:5<701::AID‐HYP774>3.0.CO;2‐2
– ident: e_1_2_7_17_1
  doi: 10.1002/hyp.9385
– ident: e_1_2_7_40_1
  doi: 10.1016/j.ejrh.2018.04.005
– ident: e_1_2_7_86_1
– ident: e_1_2_7_74_1
  doi: 10.1175/JCLI‐3272.1
– ident: e_1_2_7_32_1
  doi: 10.1002/joc.5674
– ident: e_1_2_7_36_1
  doi: 10.1016/j.rse.2017.01.023
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jhydrol.2017.01.051
– ident: e_1_2_7_61_1
  doi: 10.1029/2010GL046477
– ident: e_1_2_7_68_1
  doi: 10.1029/WR026i007p01465
– ident: e_1_2_7_78_1
  doi: 10.1007/s11707‐016‐0630‐z
– ident: e_1_2_7_23_1
  doi: 10.1002/2014JD022753
– ident: e_1_2_7_69_1
– ident: e_1_2_7_72_1
  doi: 10.3133/sir20175034
– ident: e_1_2_7_80_1
– ident: e_1_2_7_24_1
  doi: 10.1371/journal.pone.0071297
– ident: e_1_2_7_34_1
  doi: 10.1002/2015GL065855
– ident: e_1_2_7_59_1
  doi: 10.1002/hyp.9355
– ident: e_1_2_7_53_1
– ident: e_1_2_7_58_1
  doi: 10.1175/JHM‐D‐17‐0227.1
– ident: e_1_2_7_82_1
  doi: 10.1023/B:CLIM.0000013702.22656.e8
– ident: e_1_2_7_5_1
  doi: 10.1038/nclimate2246
– ident: e_1_2_7_70_1
  doi: 10.1175/JHM543.1
– ident: e_1_2_7_48_1
  doi: 10.1007/s40641‐016‐0036‐8
– ident: e_1_2_7_49_1
  doi: 10.1002/2017GL073551
– ident: e_1_2_7_76_1
  doi: 10.1175/JCLI‐D‐12‐00563.1
– ident: e_1_2_7_41_1
  doi: 10.1002/2015WR017784
– ident: e_1_2_7_11_1
  doi: 10.1029/2019GL084401
– ident: e_1_2_7_16_1
  doi: 10.1175/2009JCLI2951.1
SSID ssj0014567
Score 2.505648
Snippet Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Annual precipitation
Annual variations
Base flow
Conservation
Digital filters
Geological surveys
hydrologic response
Hydrology
mountain hydrology
Mountains
Natural resources
natural resources conservation
Rain
Rainfall
Ratios
Resource conservation
Runoff
Snow
Snow accumulation
Snow-water equivalent
Snowmelt
Snowpack
spring
Stream discharge
Stream flow
streamflow
Surveying
Telemetry
United States Geological Survey
Watersheds
Winter
Title Subannual Streamflow Responses to Rainfall and Snowmelt Inputs in Snow‐Dominated Watersheds of the Western United States
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019WR026132
https://www.proquest.com/docview/2394894606
https://www.proquest.com/docview/2718236013
Volume 56
WOSCitedRecordID wos000538987800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB-kCu1L1Wrp6Vm2UJ809JJdk-yjXD0syFGiJX0Lk-wuLaRJaXIWffIj-Bn9JM4kufN8qCB9C8ksCdmdnd_82d8AHCpFdiTMjfcuQuQ0o_IIhUjP6hB1HhkTKdM1m4jm8_j8XJ8OATc-C9PzQ6wCbqwZ3X7NCo55M5ANMEcmWS6dJuxCSN6CfeVzA4P0ZL5KIhA2iJYJZgY6Q907DT9aH_y3RfoDM9fBamdtZo_v-51PYHvAmeJ9vzCewgNb7cDm8hhyQ9dD-_OLb8_gO20fPTmp4Cw1XrmyvhVJXz5rG9HWgvNADstSYGXE56q-vbJlK06q60XbiMuqu_Xrx8_jmktrCMWKFJm388KaRtROEMwUaU_KIHqYK3qY-xzOZh--TD96Q1MGDyWBE0-6Iiy0tH5onCHnEv0oV5NiEucx2Vsb5YE0qANjyE8yhH9yp3wkjDQJC4W-tXIXNqq6snsgYoMxxpYwaZArizoO3MQ57RuOIzsbjuDNcmKyYmAs58YZZdZlzgOdrf_bEbxeSV_3TB13yI2Xc5wN-tpk3CA-1oq8uREcrB6TpnH6BCtbL0iGzHggyYGVI3jbzfg_35OlyTQJFCHUF_8n_hK2Anbqu_KgMWy0Nwv7Ch4VX9vL5mYfHh4ns7NP-91S_w3DXf3m
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1fS9xAEMCHogV90dYqnv-6gj7V0Et2TbKPYhWP2kNOS3wLm-wuJ8RETE7RJz-Cn9FP4kySO8-HFkrfQjJLQvbP_GZndgZgRwjUI36inf1AKXIzCgcphDtG-komgdaB0HWxiaDfDy8v5Vlb55TOwjT5ISYbbjQz6vWaJjhtSLfZBihJJqouGQ3IhuC4Bs8KZA2q3RD1-hM3AtJBMHYxE-q0ke_Y_vt06_c66Q00p3G11jfHi__9pZ9goUVNdtCMjc_wweRLMDc-iVzidVsBffjwBR5xBWnykzJyVKtrmxX3bNBE0JqSVQUjV5BVWcZUrtl5Xtxfm6xivfxmVJXsKq9vvTw9_ygougZBlkWKUncOjS5ZYRmSJouavAysIV3WkO4y_D4-ujg8cdq6DI7iyCcOt6mfSm5cX1uN9qVyg0R0026YhKhyTZB4XCvpaY2mkkYESqxwFWJS10-Fco3hKzCTF7lZBRZqFarQIJZ6iTBKhp7tWitdTVvJ1vgd-DbumThtk5ZT7Ywsrp3nnoyn_20HdifSN02yjj_IbYw7OW6nbBlTjfhQCjToOrA9eYyTjTwoKjfFCGVQk3scbVjegb26y__6njgaHA48gZC69m_iX2Hu5OLXaXza6_9ch3mPbPw6WmgDZqrbkdmEj-lddVXebtXj_RWkdgBz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VS1V66S-ILbQYCU4lYhO7SXys2K6KilYogJZb5MS2QArJimSL2lMfgWfsk3Qm8S7bQyshblEy-VHG4_nGM_4GYFcI9CNhpr1PkVKUZhQeohDuGRkqmUVaR0K3zSai8Ti-uJAnrs8p7YXp-CEWC25kGe18TQZupto6tgEiyUTXJScJxRAc5-AVQX1kerAyTEbnx4tEAuKDaJ5kJrDjat_xCQfL9__tle6h5jJgbT3O6OWjv_UVvHBgk33uRsdreGLKN7A634tc47HrgX754y38xDmkYyhllKpW17aoblnS1dCamjUVo2SQVUXBVKnZaVndXpuiYUfldNbU7KpsT_3-dTesqL4GoSybKCLvvDS6ZpVliDXZpGNmYB3WZR3WXYPz0Zezw6-e68zgKY4IxeM2D3PJjR9qqzHCVH6UiUE-iLMYna6JsoBrJQOtMVjSCIIyK3yFQGkQ5kL5xvB16JVVaTaAxVrFKjYITINMGCXjwA6slb6mxWRrwj58nGsmzR1tOXXPKNI2fR7IdPnf9mFvIT3t6Dr-Ibc1V3LqjLZOqUt8LAWGdH3YWVxGc6MciipNNUMZ9OUBxyiW92G_Vfl_35NOksMkEAhT3z1MfBuenQxH6fHR-NsmPA8oyG_Lhbag19zMzHt4mn9vruqbD27A_wFCVAEc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subannual+Streamflow+Responses+to+Rainfall+and+Snowmelt+Inputs+in+Snow%E2%80%90Dominated+Watersheds+of+the+Western+United+States&rft.jtitle=Water+resources+research&rft.au=Hammond%2C+John+C.&rft.au=Kampf%2C+Stephanie+K.&rft.date=2020-04-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=56&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2019WR026132&rft.externalDBID=10.1029%252F2019WR026132&rft.externalDocID=WRCR24545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon