A Dynamic Multidomain Green‐Ampt Infiltration Model

Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow. This study incorporates Green‐Ampt infiltration concepts into a multidomain porosity framework to account for variations in pore size distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research Jg. 54; H. 9; S. 6844 - 6859
1. Verfasser: Stewart, Ryan D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington John Wiley & Sons, Inc 01.09.2018
Schlagworte:
ISSN:0043-1397, 1944-7973
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow. This study incorporates Green‐Ampt infiltration concepts into a multidomain porosity framework to account for variations in pore size distributions and saturated hydraulic conductivities caused by soil shrinkage and swelling. The model requires three input variables (initial water content, rainfall rate, and time) and up to 15 parameters to simulate infiltration and overland flow, though most of the parameters are universal constants or can be estimated from auxiliary measurements. In comparison, the classic Green‐Ampt model, which assumes constant hydraulic properties and a single domain, requires the same three inputs and up to seven parameters to use. Performance of the proposed multidomain model was verified with two data sets. The first came from a study in Mexico where time to ponding and soil matrix infiltration were quantified under simulated rainfall, and the second came from a study in Chile where overland flow was measured during irrigation experiments on runoff plots. By tuning two (Chile) or three (Mexico) parameters, the multidomain model provided accurate estimations of infiltration/runoff partitioning at multiple scales. Compared to the classic single‐domain model, the multidomain model had lower root‐mean‐square deviations (reducing simulated infiltration errors by 2–3 times) and Akaike Information Criterion (AIC) scores (ΔAIC ~100), thus providing better simulations of infiltration, ponding, and runoff. These results demonstrate that modeling hydrological processes in shrink‐swell soils necessitates separating soil properties mediated by the matrix from those associated with interblock shrinkage cracks. Plain Language Summary Many soils develop cracks as they dry. During rainstorms and irrigation events, these cracks permit water to move rapidly, but we do not currently possess appropriate tools to simulate water movement in such conditions. This study proposes a mathematical model that calculates water infiltration into such soils by explicitly accounting for properties of cracks versus those of the surrounding soil. The model was verified using field observations from two locations, which demonstrated that the model can accurately simulate water infiltration, ponding on the soil surface, and surface runoff in soils containing cracks. Key Points This model incorporates Green‐Ampt infiltration concepts into a dynamic multidomain porosity framework Model was verified on two soils, improving estimates of infiltration and ponding compared to the classic Green‐Ampt model Most model parameters can be constrained using universal constants or auxiliary measurements
AbstractList Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow. This study incorporates Green‐Ampt infiltration concepts into a multidomain porosity framework to account for variations in pore size distributions and saturated hydraulic conductivities caused by soil shrinkage and swelling. The model requires three input variables (initial water content, rainfall rate, and time) and up to 15 parameters to simulate infiltration and overland flow, though most of the parameters are universal constants or can be estimated from auxiliary measurements. In comparison, the classic Green‐Ampt model, which assumes constant hydraulic properties and a single domain, requires the same three inputs and up to seven parameters to use. Performance of the proposed multidomain model was verified with two data sets. The first came from a study in Mexico where time to ponding and soil matrix infiltration were quantified under simulated rainfall, and the second came from a study in Chile where overland flow was measured during irrigation experiments on runoff plots. By tuning two (Chile) or three (Mexico) parameters, the multidomain model provided accurate estimations of infiltration/runoff partitioning at multiple scales. Compared to the classic single‐domain model, the multidomain model had lower root‐mean‐square deviations (reducing simulated infiltration errors by 2–3 times) and Akaike Information Criterion (AIC) scores (ΔAIC ~100), thus providing better simulations of infiltration, ponding, and runoff. These results demonstrate that modeling hydrological processes in shrink‐swell soils necessitates separating soil properties mediated by the matrix from those associated with interblock shrinkage cracks. Many soils develop cracks as they dry. During rainstorms and irrigation events, these cracks permit water to move rapidly, but we do not currently possess appropriate tools to simulate water movement in such conditions. This study proposes a mathematical model that calculates water infiltration into such soils by explicitly accounting for properties of cracks versus those of the surrounding soil. The model was verified using field observations from two locations, which demonstrated that the model can accurately simulate water infiltration, ponding on the soil surface, and surface runoff in soils containing cracks. This model incorporates Green‐Ampt infiltration concepts into a dynamic multidomain porosity framework Model was verified on two soils, improving estimates of infiltration and ponding compared to the classic Green‐Ampt model Most model parameters can be constrained using universal constants or auxiliary measurements
Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow. This study incorporates Green‐Ampt infiltration concepts into a multidomain porosity framework to account for variations in pore size distributions and saturated hydraulic conductivities caused by soil shrinkage and swelling. The model requires three input variables (initial water content, rainfall rate, and time) and up to 15 parameters to simulate infiltration and overland flow, though most of the parameters are universal constants or can be estimated from auxiliary measurements. In comparison, the classic Green‐Ampt model, which assumes constant hydraulic properties and a single domain, requires the same three inputs and up to seven parameters to use. Performance of the proposed multidomain model was verified with two data sets. The first came from a study in Mexico where time to ponding and soil matrix infiltration were quantified under simulated rainfall, and the second came from a study in Chile where overland flow was measured during irrigation experiments on runoff plots. By tuning two (Chile) or three (Mexico) parameters, the multidomain model provided accurate estimations of infiltration/runoff partitioning at multiple scales. Compared to the classic single‐domain model, the multidomain model had lower root‐mean‐square deviations (reducing simulated infiltration errors by 2–3 times) and Akaike Information Criterion (AIC) scores (ΔAIC ~100), thus providing better simulations of infiltration, ponding, and runoff. These results demonstrate that modeling hydrological processes in shrink‐swell soils necessitates separating soil properties mediated by the matrix from those associated with interblock shrinkage cracks.
Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow. This study incorporates Green‐Ampt infiltration concepts into a multidomain porosity framework to account for variations in pore size distributions and saturated hydraulic conductivities caused by soil shrinkage and swelling. The model requires three input variables (initial water content, rainfall rate, and time) and up to 15 parameters to simulate infiltration and overland flow, though most of the parameters are universal constants or can be estimated from auxiliary measurements. In comparison, the classic Green‐Ampt model, which assumes constant hydraulic properties and a single domain, requires the same three inputs and up to seven parameters to use. Performance of the proposed multidomain model was verified with two data sets. The first came from a study in Mexico where time to ponding and soil matrix infiltration were quantified under simulated rainfall, and the second came from a study in Chile where overland flow was measured during irrigation experiments on runoff plots. By tuning two (Chile) or three (Mexico) parameters, the multidomain model provided accurate estimations of infiltration/runoff partitioning at multiple scales. Compared to the classic single‐domain model, the multidomain model had lower root‐mean‐square deviations (reducing simulated infiltration errors by 2–3 times) and Akaike Information Criterion (AIC) scores (ΔAIC ~100), thus providing better simulations of infiltration, ponding, and runoff. These results demonstrate that modeling hydrological processes in shrink‐swell soils necessitates separating soil properties mediated by the matrix from those associated with interblock shrinkage cracks. Plain Language Summary Many soils develop cracks as they dry. During rainstorms and irrigation events, these cracks permit water to move rapidly, but we do not currently possess appropriate tools to simulate water movement in such conditions. This study proposes a mathematical model that calculates water infiltration into such soils by explicitly accounting for properties of cracks versus those of the surrounding soil. The model was verified using field observations from two locations, which demonstrated that the model can accurately simulate water infiltration, ponding on the soil surface, and surface runoff in soils containing cracks. Key Points This model incorporates Green‐Ampt infiltration concepts into a dynamic multidomain porosity framework Model was verified on two soils, improving estimates of infiltration and ponding compared to the classic Green‐Ampt model Most model parameters can be constrained using universal constants or auxiliary measurements
Author Stewart, Ryan D.
Author_xml – sequence: 1
  givenname: Ryan D.
  orcidid: 0000-0002-9700-0351
  surname: Stewart
  fullname: Stewart, Ryan D.
  email: ryan.stewart@vt.edu
  organization: Virginia Polytechnic Institute and State University
BookMark eNp9kM1KAzEUhYMo2FZ3PsCAGxeO3vzMpFmWqrXQIhSly5DO3IGUTFLnB-nOR_AZfRKn1oUUdHU33zn38PXJsQ8eCbmgcEOBqVsGdLhcAONMySPSo0qIWCrJj0kPQPCYciVPSb-u1wBUJKnskWQU3W29KW0WzVvX2DyUxvpoUiH6z_ePUblpoqkvrGsq09jgo3nI0Z2Rk8K4Gs9_7oC8PNw_jx_j2dNkOh7NYsNTzmMDiCoHswJuGAJboaSAWcJpN5AhFWlOMyEVo8Wqm55kTChQeZpLaVSqkA_I1b53U4XXFutGl7bO0DnjMbS1ZpIOeZoyBh16eYCuQ1v5bp1mlHFFQYgddb2nsirUdYWF3lS2NNVWU9A7h_q3ww5nB3hmm28PnQ7r_grxfejNOtz--0AvF-MF40nC-RdVKILC
CitedBy_id crossref_primary_10_1016_j_biosystemseng_2025_104174
crossref_primary_10_3390_w15132374
crossref_primary_10_1016_j_jhydrol_2023_130606
crossref_primary_10_2136_vzj2018_08_0148
crossref_primary_10_1016_j_geoderma_2023_116471
crossref_primary_10_1016_j_jhydrol_2020_124900
crossref_primary_10_1016_j_jhydrol_2025_133011
crossref_primary_10_3390_rs15051221
crossref_primary_10_1002_jpln_202200239
crossref_primary_10_1016_j_jrmge_2024_11_063
crossref_primary_10_1002_vzj2_20341
crossref_primary_10_1007_s11069_023_05882_6
crossref_primary_10_1016_j_enggeo_2022_106536
crossref_primary_10_1016_j_enggeo_2021_106458
crossref_primary_10_3390_w11040645
crossref_primary_10_1007_s12145_022_00830_7
crossref_primary_10_1016_j_geoderma_2021_115111
crossref_primary_10_1038_s41598_025_93657_3
crossref_primary_10_3390_buildings15040638
crossref_primary_10_1155_vib_5525588
crossref_primary_10_3390_w16030488
crossref_primary_10_1007_s10064_020_01880_1
crossref_primary_10_1029_2021WR030916
crossref_primary_10_1139_cgj_2023_0099
crossref_primary_10_5194_hess_27_783_2023
crossref_primary_10_1016_j_watres_2020_115767
crossref_primary_10_1016_j_catena_2023_107287
crossref_primary_10_1016_j_catena_2025_108957
crossref_primary_10_1016_j_compgeo_2024_106473
crossref_primary_10_1016_j_enggeo_2023_107370
crossref_primary_10_1016_j_enggeo_2025_108122
crossref_primary_10_1002_vzj2_20393
crossref_primary_10_1029_2019WR026948
Cites_doi 10.1016/0022-1694(88)90115-1
10.1029/2000WR000094
10.1111/j.1365-2389.1981.tb01682.x
10.1029/97WR00616
10.2136/sssaj1980.03615995004400050002x
10.1016/j.jhydrol.2005.01.010
10.2136/sssaj2018.01.0007
10.1002/2016WR019336
10.2136/vzj2017.05.0105
10.1029/96WR00069
10.2136/vzj2015.11.0146
10.2136/vzj2015.02.0021
10.1016/S0022-1694(02)00252-4
10.2134/jeq2011.0292
10.5194/hess-17-1933-2013
10.1061/(ASCE)0733-9437(2000)126:1(41)
10.5194/hess-20-1-2016
10.2136/sssaj2013.08.0346
10.1002/hyp.10165
10.2136/sssaj2004.1807
10.1029/94WR02534
10.1029/2011WR011376
10.1016/S0022-1694(02)00215-9
10.2136/sssaj2017.09.0314
10.4141/S00-047
10.2136/sssaj1990.03615995005400050048x
10.1002/esp.421
10.2136/vzj2013.10.0181
10.1016/S0301-4797(95)90266-X
10.1002/2017WR021020
10.1029/WR020i011p01685
10.2136/vzj2011.0048
ContentType Journal Article
Copyright 2018. American Geophysical Union. All Rights Reserved.
2018. American Geophysical Union. All rights reserved.
Copyright_xml – notice: 2018. American Geophysical Union. All Rights Reserved.
– notice: 2018. American Geophysical Union. All rights reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2018WR023297
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Civil Engineering Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage 6859
ExternalDocumentID 10_1029_2018WR023297
WRCR23553
Genre article
GeographicLocations Chile
Mexico
GeographicLocations_xml – name: Mexico
– name: Chile
GrantInformation_xml – fundername: Hatch Program ‐ USDA
  funderid: 1007839
– fundername: Virginia Agricultural Experiment Station
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a3633-a0ee9d0ab03a2e02be710ec5312972e146d1c47921fb0185c24909d6d77a969e3
IEDL.DBID WIN
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448088100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:27:57 EDT 2025
Wed Aug 13 06:16:22 EDT 2025
Sat Nov 29 01:36:41 EST 2025
Tue Nov 18 21:20:34 EST 2025
Wed Jan 22 16:36:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3633-a0ee9d0ab03a2e02be710ec5312972e146d1c47921fb0185c24909d6d77a969e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9700-0351
PQID 2123910440
PQPubID 105507
PageCount 16
ParticipantIDs proquest_miscellaneous_2718366220
proquest_journals_2123910440
crossref_primary_10_1029_2018WR023297
crossref_citationtrail_10_1029_2018WR023297
wiley_primary_10_1029_2018WR023297_WRCR23553
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1995; 31
2002; 38
1990; 54
2015; 14
1984; 20
2005; 310
1980; 44
2004; 68
2003; 272
2016; 52
2002; 82
2003
1988; 97
2018; 82
2012; 11
2016; 15
1996; 32
2002; 27
2017; 53
2013; 17
2015; 29
1997; 33
2000; 126
2017; 16
1995; 43
2016; 20
2002; 269
2014; 13
2014
2012; 48
1981; 32
2014; 78
2012; 41
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Burnham K. P. (e_1_2_8_7_1) 2003
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 78
  start-page: 445
  issue: 2
  year: 2014
  end-page: 453
  article-title: Nondestructive quantification of macropore volume using shear‐thinning fluid
  publication-title: Soil Science Society of America Journal
– volume: 32
  start-page: 1251
  issue: 5
  year: 1996
  end-page: 1258
  article-title: Parameter equivalence for the Brooks‐Corey and van Genuchten soil characteristics: Preserving the effective capillary drive
  publication-title: Water Resources Research
– volume: 269
  start-page: 150
  issue: 3‐4
  year: 2002
  end-page: 168
  article-title: Preferential flow in macroporous swelling soil with internal catchment: Model development and applications
  publication-title: Journal of Hydrology
– volume: 53
  start-page: 7481
  year: 2017
  end-page: 7487
  article-title: An explicit, parsimonious, and accurate estimate for ponded infiltration into soils using the Green and Ampt Approach
  publication-title: Water Resources Research
– volume: 20
  start-page: 1685
  issue: 11
  year: 1984
  end-page: 1690
  article-title: A Green‐Ampt Model of infiltration in a cracked soil
  publication-title: Water Resources Research
– volume: 82
  start-page: 65
  issue: 1
  year: 2002
  end-page: 74
  article-title: The contribution of shrinkage cracks to bypass flow during simulated and natural rainfall experiments in northeastern Mexico
  publication-title: Canadian Journal of Soil Science
– volume: 310
  start-page: 294
  issue: 1–4
  year: 2005
  end-page: 315
  article-title: An infiltration model based on flow variability in macropores: Development, sensitivity analysis and applications
  publication-title: Journal of Hydrology
– volume: 97
  start-page: 199
  issue: 3–4
  year: 1988
  end-page: 212
  article-title: Modeling of water‐balance, cracking and subsidence of clay soils
  publication-title: Journal of Hydrology
– volume: 48
  year: 2012
  article-title: Dual‐permeability model for flow in shrinking soil with dominant horizontal deformation
  publication-title: Water Resources Research
– volume: 29
  start-page: 557
  issue: 4
  year: 2015
  end-page: 571
  article-title: Hillslope runoff thresholds with shrink‐swell clay soils
  publication-title: Hydrological Processes
– volume: 41
  start-page: 229
  issue: 1
  year: 2012
  end-page: 241
  article-title: Water and nutrient transport on a heavy clay soil in a fluvial plain in the Netherlands
  publication-title: Journal of Environmental Quality
– year: 2003
– volume: 43
  start-page: 359
  issue: 4
  year: 1995
  end-page: 373
  article-title: Consequences of preferential flow in cracking clay soils for contamination‐risk of shallow aquifers
  publication-title: Journal of Environmental Management
– volume: 16
  start-page: 1
  issue: 11
  year: 2017
  end-page: 6
  article-title: One‐dimensional seepage in unsaturated, Expansive Soils
  publication-title: Vadose Zone Journal
– volume: 27
  start-page: 1201
  issue: 11
  year: 2002
  end-page: 1222
  article-title: A review of two strongly contrasting geomorphological systems within the context of scale
  publication-title: Earth Surface Processes and Landforms
– volume: 14
  start-page: 1
  issue: 9
  year: 2015
  end-page: 15
  article-title: Simulated preferential water flow and solute transport in shrinking soils
  publication-title: Vadose Zone Journal
– year: 2014
– volume: 38
  issue: 8
  year: 2002
  article-title: Combined effect of interblock and interaggregate capillary cracks on the hydraulic conductivity of swelling clay soils
  publication-title: Water Resources Research
– volume: 17
  start-page: 1933
  issue: 5
  year: 2013
  end-page: 1949
  article-title: Water storage change estimation from in situ shrinkage measurements of clay soils
  publication-title: Hydrology and Earth System Sciences
– volume: 52
  start-page: 7911
  year: 2016
  end-page: 7930
  article-title: Modeling multidomain hydraulic properties of shrink‐swell soils
  publication-title: Water Resources Research
– volume: 54
  start-page: 1500
  issue: 5
  year: 1990
  end-page: 1502
  article-title: Shrinkage geometry of a heavy clay soil at various stresses
  publication-title: Soil Science Society of America Journal
– volume: 11
  start-page: 1
  issue: 2
  year: 2012
  end-page: 6
  article-title: Measurement tool for dynamics of soil cracks
  publication-title: Vadose Zone Journal
– volume: 33
  start-page: 1375
  issue: 6
  year: 1997
  end-page: 1382
  article-title: Estimating the hydraulic conductivity of slowly permeable and swelling materials from single‐ring experiments
  publication-title: Water Resources Research
– volume: 15
  start-page: 1
  issue: 3
  year: 2016
  end-page: 15
  article-title: A unified model for soil shrinkage, subsidence, and cracking
  publication-title: Vadose Zone Journal
– volume: 13
  start-page: 1
  issue: 12
  year: 2014
  end-page: 15
  article-title: New analytical model for cumulative infiltration into dual‐permeability soils
  publication-title: Vadose Zone Journal
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  end-page: 898
  article-title: A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Science Society of America Journal
– volume: 32
  start-page: 15
  issue: 1
  year: 1981
  end-page: 29
  article-title: Water flow in soil macropores. II. A combined flow model
  publication-title: Journal of Soil Science
– volume: 272
  start-page: 14
  issue: 1–4
  year: 2003
  end-page: 35
  article-title: Review and comparison of models for describing non‐equilibrium and preferential flow and transport in the vadose zone
  publication-title: Journal of Hydrology
– volume: 20
  start-page: 1
  issue: 1
  year: 2016
  end-page: 12
  article-title: Soil–aquifer phenomena affecting groundwater under vertisols: A review
  publication-title: Hydrology and Earth System Sciences
– volume: 82
  start-page: 734
  issue: 4
  year: 2018
  end-page: 743
  article-title: Modeling soil crack volume at the Pedon scale using available soil data
  publication-title: Soil Science Society of America Journal
– volume: 126
  start-page: 41
  issue: 1
  year: 2000
  end-page: 47
  article-title: Infiltration of water into soil with cracks
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 68
  start-page: 1807
  issue: 6
  year: 2004
  end-page: 1817
  article-title: An approach for estimating the shrinkage geometry factor at a moisture content
  publication-title: Soil Science Society of America Journal
– volume: 31
  start-page: 517
  issue: 3
  year: 1995
  end-page: 526
  article-title: Field‐scale solute transport in a heavy clay soil
  publication-title: Water Resources Research
– volume: 82
  start-page: 558
  issue: 3
  year: 2018
  end-page: 567
  article-title: A comprehensive model for single ring infiltration. 2: Estimating field‐saturated hydraulic conductivity
  publication-title: Soil Science Society of America Journal
– ident: e_1_2_8_4_1
  doi: 10.1016/0022-1694(88)90115-1
– ident: e_1_2_8_9_1
  doi: 10.1029/2000WR000094
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1365-2389.1981.tb01682.x
– ident: e_1_2_8_14_1
  doi: 10.1029/97WR00616
– ident: e_1_2_8_34_1
  doi: 10.2136/sssaj1980.03615995004400050002x
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jhydrol.2005.01.010
– ident: e_1_2_8_20_1
  doi: 10.2136/sssaj2018.01.0007
– ident: e_1_2_8_30_1
  doi: 10.1002/2016WR019336
– ident: e_1_2_8_23_1
  doi: 10.2136/vzj2017.05.0105
– ident: e_1_2_8_18_1
  doi: 10.1029/96WR00069
– ident: e_1_2_8_31_1
  doi: 10.2136/vzj2015.11.0146
– ident: e_1_2_8_11_1
  doi: 10.2136/vzj2015.02.0021
– ident: e_1_2_8_25_1
  doi: 10.1016/S0022-1694(02)00252-4
– ident: e_1_2_8_33_1
  doi: 10.2134/jeq2011.0292
– ident: e_1_2_8_32_1
  doi: 10.5194/hess-17-1933-2013
– ident: e_1_2_8_21_1
  doi: 10.1061/(ASCE)0733-9437(2000)126:1(41)
– ident: e_1_2_8_16_1
  doi: 10.5194/hess-20-1-2016
– ident: e_1_2_8_2_1
– ident: e_1_2_8_29_1
  doi: 10.2136/sssaj2013.08.0346
– ident: e_1_2_8_27_1
  doi: 10.1002/hyp.10165
– ident: e_1_2_8_10_1
  doi: 10.2136/sssaj2004.1807
– ident: e_1_2_8_6_1
  doi: 10.1029/94WR02534
– ident: e_1_2_8_12_1
  doi: 10.1029/2011WR011376
– ident: e_1_2_8_15_1
  doi: 10.1016/S0022-1694(02)00215-9
– ident: e_1_2_8_26_1
  doi: 10.2136/sssaj2017.09.0314
– ident: e_1_2_8_19_1
  doi: 10.4141/S00-047
– ident: e_1_2_8_5_1
  doi: 10.2136/sssaj1990.03615995005400050048x
– ident: e_1_2_8_8_1
  doi: 10.1002/esp.421
– ident: e_1_2_8_17_1
  doi: 10.2136/vzj2013.10.0181
– ident: e_1_2_8_22_1
  doi: 10.1016/S0301-4797(95)90266-X
– ident: e_1_2_8_24_1
  doi: 10.1002/2017WR021020
– ident: e_1_2_8_13_1
  doi: 10.1029/WR020i011p01685
– ident: e_1_2_8_28_1
  doi: 10.2136/vzj2011.0048
– volume-title: Model selection and multimodel inference: A practical information‐theoretic approach
  year: 2003
  ident: e_1_2_8_7_1
SSID ssj0014567
Score 2.4595885
Snippet Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6844
SubjectTerms bypass flow
Chile
Computer simulation
Constants
Cracks
Green-Ampt equation
Green-Ampt model
Groundwater flow
Hydraulic properties
Hydraulics
Hydrologic models
Hydrologic processes
Infiltration
Irrigation
Mathematical models
Matrix methods
Mexico
Modelling
Moisture content
Overland flow
Parameter estimation
Parameters
Ponding
Pore size
Porosity
Rain
Rainfall
Rainfall rate
rainfall simulation
Rainfall simulators
Rainstorms
Runoff
Shrinkage
shrink‐swell soil
Simulated rainfall
Soil
Soil dynamics
Soil porosity
Soil properties
Soil shrinkage
Soil surfaces
Soil swelling
Surface runoff
Swell
vertisols
Water content
Water infiltration
Title A Dynamic Multidomain Green‐Ampt Infiltration Model
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018WR023297
https://www.proquest.com/docview/2123910440
https://www.proquest.com/docview/2718366220
Volume 54
WOSCitedRecordID wos000448088100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6igl58i9VaVtCTLu4m-2iOpVoUpMiitrcljykW6lb6ELz5E_yN_hInu9laDwribSETNmQymS-ZzHyEHEtcsxoEuFoBHlAg4K4Me9JFdVMdMwU65wZ8uInb7Xq3y2_thZvJhSnqQ8wu3Ixl5Pu1MXAhx7bYgKmRiZ6r3knQ5VBuksn9wDcEBp3r9iyIgNggLgPMBujYd-_Y_Xy-83eP9AUz58Fq7m1a6_8d5wZZszjTaRQLY5MsQLZFVso05DF-W_rzx9dtEjaci4KZ3skTcvXwSfQzJ3-T8_H23nh6njjXWa8_sDV2HcOgNtgh963Lu-aVa_kUXMEixlzhAXDtCekxQcGjEhBegDJq4TEF3DO1r4KYU78ncdChwqOZx3Wk41jwiAPbJYvZMIM94sRKgC-p1iFVgRAh14oz4FSGdVB4gqmQ03JOU2WLjRvOi0GaB70pT-enpUJOZtLPRZGNH-SqpXpSa2rj1PhexDxB4FXI0awZjcREPkQGwynKoAdmUUQpypzlyvr1P2knaSYUkRjb_5v4AVk1DcUbtCpZnIymcEiW1cukPx7VyNJF0rq_qeWr9BPHAOOo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED-6dJC9rPtXlrZbXeieNlNHsq3oMXQrCc1CCdmSNyNLFxpInZA_hb31I_Qz9pP0ZMtu9rDB2JvBJyR0Ot1PutP9AE5TWrMGFfpGIx1QMJR-Gk1Sn9TNjOAaTc4N-LMn-v3WeCyvHM-pfQtT1IeoLtysZeT7tTVweyHtqg3YIpnkulqjAfkcJsUz2A0Ja1juhlG3X4URCB2IMsRsoY7LfKf2Z9utf_dJT0BzG67m_uZi779H-gpeOqjptYu18Rp2MHsD9fIl8oq-HQP69a-3ELW9rwU5vZe_yTXzGzXNvDwt5-Huvn2zWHvdbDKduTK7niVRm72DHxffhucd31Eq-IrHnPsqQJQmUGnAFcOApUgIA7XVjBQMads0TR0KyZqTlAYdaTqdBdLERgglY4l8H2rZPMP34AmtsJkyYyKmQ6UiabTkKFkatVDTIaYBn8tJTbSrN25pL2ZJHvdmMtmelgZ8qqQXRZ2NP8gdlfpJnLWtEut-CfaEYdCAk-o32YkNfqgM5xuSISfM45gxkvmSa-uv_SSjwfmAERjjB_8mfgz1zvB7L-l1-5eH8MIKFSlpR1BbLzf4AZ7r2_V0tfyYL9VH7rrmJg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5SpzS5JH2FOI9WhfbUisq7ktZ7NHFMTI0xpql9E6vdETE4svEjkFt-Qn5jfklmpbXjHlIIvQk0kpadnZ1vNLPzAXxNac0aVOgbjRSgYCj9NMpSn9TNjOAaTcEN-Kcjut36cCh7jufUnoUp-0Osf7hZyyj2a2vgODWZ6zZgm2SS66oP-uRzmBSvYDu0PDIV2G72W5eddSKB8IFYJZkt2HG17_SGn5vP_-2VnqDmJmAtPE5r_7_H-hb2HNj0GuXqeAdbmL-HndVZ5DldOw70q9sPEDW8ZklP7xWncs3kWo1yryjMebi7b1xPF147z0Zj12jXszRq449w2Tr_fXbhO1IFX_GYc18FiNIEKg24YhiwFAljoLa6kYIhbZympkMhWS1LadCRpvgskCY2QigZS-QHUMknOR6CJ7TCWsqMiZgOlYqk0ZKjZGlUR01hTBW-ryY10a7juCW-GCdF5pvJZHNaqvBtLT0tO208I3ey0k_i7G2eWAdMwCcMgyp8Wd8mS7HpD5XjZEky5IZ5HDNGMj8Kbf3zO8mgf9ZnBMf40cvEP8ObXrOVdNrdX8ewa2XKmrQTqCxmSzyF1_pmMZrPPrm1-ghVSubP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Multidomain+Green%E2%80%90Ampt+Infiltration+Model&rft.jtitle=Water+resources+research&rft.au=Stewart%2C+Ryan+D&rft.date=2018-09-01&rft.issn=0043-1397&rft.volume=54&rft.issue=9+p.6844-6859&rft.spage=6844&rft.epage=6859&rft_id=info:doi/10.1029%2F2018WR023297&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon