A Dynamic Multidomain Green‐Ampt Infiltration Model
Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow. This study incorporates Green‐Ampt infiltration concepts into a multidomain porosity framework to account for variations in pore size distri...
Gespeichert in:
| Veröffentlicht in: | Water resources research Jg. 54; H. 9; S. 6844 - 6859 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Washington
John Wiley & Sons, Inc
01.09.2018
|
| Schlagworte: | |
| ISSN: | 0043-1397, 1944-7973 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow. This study incorporates Green‐Ampt infiltration concepts into a multidomain porosity framework to account for variations in pore size distributions and saturated hydraulic conductivities caused by soil shrinkage and swelling. The model requires three input variables (initial water content, rainfall rate, and time) and up to 15 parameters to simulate infiltration and overland flow, though most of the parameters are universal constants or can be estimated from auxiliary measurements. In comparison, the classic Green‐Ampt model, which assumes constant hydraulic properties and a single domain, requires the same three inputs and up to seven parameters to use. Performance of the proposed multidomain model was verified with two data sets. The first came from a study in Mexico where time to ponding and soil matrix infiltration were quantified under simulated rainfall, and the second came from a study in Chile where overland flow was measured during irrigation experiments on runoff plots. By tuning two (Chile) or three (Mexico) parameters, the multidomain model provided accurate estimations of infiltration/runoff partitioning at multiple scales. Compared to the classic single‐domain model, the multidomain model had lower root‐mean‐square deviations (reducing simulated infiltration errors by 2–3 times) and Akaike Information Criterion (AIC) scores (ΔAIC ~100), thus providing better simulations of infiltration, ponding, and runoff. These results demonstrate that modeling hydrological processes in shrink‐swell soils necessitates separating soil properties mediated by the matrix from those associated with interblock shrinkage cracks.
Plain Language Summary
Many soils develop cracks as they dry. During rainstorms and irrigation events, these cracks permit water to move rapidly, but we do not currently possess appropriate tools to simulate water movement in such conditions. This study proposes a mathematical model that calculates water infiltration into such soils by explicitly accounting for properties of cracks versus those of the surrounding soil. The model was verified using field observations from two locations, which demonstrated that the model can accurately simulate water infiltration, ponding on the soil surface, and surface runoff in soils containing cracks.
Key Points
This model incorporates Green‐Ampt infiltration concepts into a dynamic multidomain porosity framework
Model was verified on two soils, improving estimates of infiltration and ponding compared to the classic Green‐Ampt model
Most model parameters can be constrained using universal constants or auxiliary measurements |
|---|---|
| AbstractList | Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow. This study incorporates Green‐Ampt infiltration concepts into a multidomain porosity framework to account for variations in pore size distributions and saturated hydraulic conductivities caused by soil shrinkage and swelling. The model requires three input variables (initial water content, rainfall rate, and time) and up to 15 parameters to simulate infiltration and overland flow, though most of the parameters are universal constants or can be estimated from auxiliary measurements. In comparison, the classic Green‐Ampt model, which assumes constant hydraulic properties and a single domain, requires the same three inputs and up to seven parameters to use. Performance of the proposed multidomain model was verified with two data sets. The first came from a study in Mexico where time to ponding and soil matrix infiltration were quantified under simulated rainfall, and the second came from a study in Chile where overland flow was measured during irrigation experiments on runoff plots. By tuning two (Chile) or three (Mexico) parameters, the multidomain model provided accurate estimations of infiltration/runoff partitioning at multiple scales. Compared to the classic single‐domain model, the multidomain model had lower root‐mean‐square deviations (reducing simulated infiltration errors by 2–3 times) and Akaike Information Criterion (AIC) scores (ΔAIC ~100), thus providing better simulations of infiltration, ponding, and runoff. These results demonstrate that modeling hydrological processes in shrink‐swell soils necessitates separating soil properties mediated by the matrix from those associated with interblock shrinkage cracks.
Many soils develop cracks as they dry. During rainstorms and irrigation events, these cracks permit water to move rapidly, but we do not currently possess appropriate tools to simulate water movement in such conditions. This study proposes a mathematical model that calculates water infiltration into such soils by explicitly accounting for properties of cracks versus those of the surrounding soil. The model was verified using field observations from two locations, which demonstrated that the model can accurately simulate water infiltration, ponding on the soil surface, and surface runoff in soils containing cracks.
This model incorporates Green‐Ampt infiltration concepts into a dynamic multidomain porosity framework
Model was verified on two soils, improving estimates of infiltration and ponding compared to the classic Green‐Ampt model
Most model parameters can be constrained using universal constants or auxiliary measurements Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow. This study incorporates Green‐Ampt infiltration concepts into a multidomain porosity framework to account for variations in pore size distributions and saturated hydraulic conductivities caused by soil shrinkage and swelling. The model requires three input variables (initial water content, rainfall rate, and time) and up to 15 parameters to simulate infiltration and overland flow, though most of the parameters are universal constants or can be estimated from auxiliary measurements. In comparison, the classic Green‐Ampt model, which assumes constant hydraulic properties and a single domain, requires the same three inputs and up to seven parameters to use. Performance of the proposed multidomain model was verified with two data sets. The first came from a study in Mexico where time to ponding and soil matrix infiltration were quantified under simulated rainfall, and the second came from a study in Chile where overland flow was measured during irrigation experiments on runoff plots. By tuning two (Chile) or three (Mexico) parameters, the multidomain model provided accurate estimations of infiltration/runoff partitioning at multiple scales. Compared to the classic single‐domain model, the multidomain model had lower root‐mean‐square deviations (reducing simulated infiltration errors by 2–3 times) and Akaike Information Criterion (AIC) scores (ΔAIC ~100), thus providing better simulations of infiltration, ponding, and runoff. These results demonstrate that modeling hydrological processes in shrink‐swell soils necessitates separating soil properties mediated by the matrix from those associated with interblock shrinkage cracks. Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow. This study incorporates Green‐Ampt infiltration concepts into a multidomain porosity framework to account for variations in pore size distributions and saturated hydraulic conductivities caused by soil shrinkage and swelling. The model requires three input variables (initial water content, rainfall rate, and time) and up to 15 parameters to simulate infiltration and overland flow, though most of the parameters are universal constants or can be estimated from auxiliary measurements. In comparison, the classic Green‐Ampt model, which assumes constant hydraulic properties and a single domain, requires the same three inputs and up to seven parameters to use. Performance of the proposed multidomain model was verified with two data sets. The first came from a study in Mexico where time to ponding and soil matrix infiltration were quantified under simulated rainfall, and the second came from a study in Chile where overland flow was measured during irrigation experiments on runoff plots. By tuning two (Chile) or three (Mexico) parameters, the multidomain model provided accurate estimations of infiltration/runoff partitioning at multiple scales. Compared to the classic single‐domain model, the multidomain model had lower root‐mean‐square deviations (reducing simulated infiltration errors by 2–3 times) and Akaike Information Criterion (AIC) scores (ΔAIC ~100), thus providing better simulations of infiltration, ponding, and runoff. These results demonstrate that modeling hydrological processes in shrink‐swell soils necessitates separating soil properties mediated by the matrix from those associated with interblock shrinkage cracks. Plain Language Summary Many soils develop cracks as they dry. During rainstorms and irrigation events, these cracks permit water to move rapidly, but we do not currently possess appropriate tools to simulate water movement in such conditions. This study proposes a mathematical model that calculates water infiltration into such soils by explicitly accounting for properties of cracks versus those of the surrounding soil. The model was verified using field observations from two locations, which demonstrated that the model can accurately simulate water infiltration, ponding on the soil surface, and surface runoff in soils containing cracks. Key Points This model incorporates Green‐Ampt infiltration concepts into a dynamic multidomain porosity framework Model was verified on two soils, improving estimates of infiltration and ponding compared to the classic Green‐Ampt model Most model parameters can be constrained using universal constants or auxiliary measurements |
| Author | Stewart, Ryan D. |
| Author_xml | – sequence: 1 givenname: Ryan D. orcidid: 0000-0002-9700-0351 surname: Stewart fullname: Stewart, Ryan D. email: ryan.stewart@vt.edu organization: Virginia Polytechnic Institute and State University |
| BookMark | eNp9kM1KAzEUhYMo2FZ3PsCAGxeO3vzMpFmWqrXQIhSly5DO3IGUTFLnB-nOR_AZfRKn1oUUdHU33zn38PXJsQ8eCbmgcEOBqVsGdLhcAONMySPSo0qIWCrJj0kPQPCYciVPSb-u1wBUJKnskWQU3W29KW0WzVvX2DyUxvpoUiH6z_ePUblpoqkvrGsq09jgo3nI0Z2Rk8K4Gs9_7oC8PNw_jx_j2dNkOh7NYsNTzmMDiCoHswJuGAJboaSAWcJpN5AhFWlOMyEVo8Wqm55kTChQeZpLaVSqkA_I1b53U4XXFutGl7bO0DnjMbS1ZpIOeZoyBh16eYCuQ1v5bp1mlHFFQYgddb2nsirUdYWF3lS2NNVWU9A7h_q3ww5nB3hmm28PnQ7r_grxfejNOtz--0AvF-MF40nC-RdVKILC |
| CitedBy_id | crossref_primary_10_1016_j_biosystemseng_2025_104174 crossref_primary_10_3390_w15132374 crossref_primary_10_1016_j_jhydrol_2023_130606 crossref_primary_10_2136_vzj2018_08_0148 crossref_primary_10_1016_j_geoderma_2023_116471 crossref_primary_10_1016_j_jhydrol_2020_124900 crossref_primary_10_1016_j_jhydrol_2025_133011 crossref_primary_10_3390_rs15051221 crossref_primary_10_1002_jpln_202200239 crossref_primary_10_1016_j_jrmge_2024_11_063 crossref_primary_10_1002_vzj2_20341 crossref_primary_10_1007_s11069_023_05882_6 crossref_primary_10_1016_j_enggeo_2022_106536 crossref_primary_10_1016_j_enggeo_2021_106458 crossref_primary_10_3390_w11040645 crossref_primary_10_1007_s12145_022_00830_7 crossref_primary_10_1016_j_geoderma_2021_115111 crossref_primary_10_1038_s41598_025_93657_3 crossref_primary_10_3390_buildings15040638 crossref_primary_10_1155_vib_5525588 crossref_primary_10_3390_w16030488 crossref_primary_10_1007_s10064_020_01880_1 crossref_primary_10_1029_2021WR030916 crossref_primary_10_1139_cgj_2023_0099 crossref_primary_10_5194_hess_27_783_2023 crossref_primary_10_1016_j_watres_2020_115767 crossref_primary_10_1016_j_catena_2023_107287 crossref_primary_10_1016_j_catena_2025_108957 crossref_primary_10_1016_j_compgeo_2024_106473 crossref_primary_10_1016_j_enggeo_2023_107370 crossref_primary_10_1016_j_enggeo_2025_108122 crossref_primary_10_1002_vzj2_20393 crossref_primary_10_1029_2019WR026948 |
| Cites_doi | 10.1016/0022-1694(88)90115-1 10.1029/2000WR000094 10.1111/j.1365-2389.1981.tb01682.x 10.1029/97WR00616 10.2136/sssaj1980.03615995004400050002x 10.1016/j.jhydrol.2005.01.010 10.2136/sssaj2018.01.0007 10.1002/2016WR019336 10.2136/vzj2017.05.0105 10.1029/96WR00069 10.2136/vzj2015.11.0146 10.2136/vzj2015.02.0021 10.1016/S0022-1694(02)00252-4 10.2134/jeq2011.0292 10.5194/hess-17-1933-2013 10.1061/(ASCE)0733-9437(2000)126:1(41) 10.5194/hess-20-1-2016 10.2136/sssaj2013.08.0346 10.1002/hyp.10165 10.2136/sssaj2004.1807 10.1029/94WR02534 10.1029/2011WR011376 10.1016/S0022-1694(02)00215-9 10.2136/sssaj2017.09.0314 10.4141/S00-047 10.2136/sssaj1990.03615995005400050048x 10.1002/esp.421 10.2136/vzj2013.10.0181 10.1016/S0301-4797(95)90266-X 10.1002/2017WR021020 10.1029/WR020i011p01685 10.2136/vzj2011.0048 |
| ContentType | Journal Article |
| Copyright | 2018. American Geophysical Union. All Rights Reserved. 2018. American Geophysical Union. All rights reserved. |
| Copyright_xml | – notice: 2018. American Geophysical Union. All Rights Reserved. – notice: 2018. American Geophysical Union. All rights reserved. |
| DBID | AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| DOI | 10.1029/2018WR023297 |
| DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | 6859 |
| ExternalDocumentID | 10_1029_2018WR023297 WRCR23553 |
| Genre | article |
| GeographicLocations | Chile Mexico |
| GeographicLocations_xml | – name: Mexico – name: Chile |
| GrantInformation_xml | – fundername: Hatch Program ‐ USDA funderid: 1007839 – fundername: Virginia Agricultural Experiment Station |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a3633-a0ee9d0ab03a2e02be710ec5312972e146d1c47921fb0185c24909d6d77a969e3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448088100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri Sep 05 17:27:57 EDT 2025 Wed Aug 13 06:16:22 EDT 2025 Sat Nov 29 01:36:41 EST 2025 Tue Nov 18 21:20:34 EST 2025 Wed Jan 22 16:36:55 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3633-a0ee9d0ab03a2e02be710ec5312972e146d1c47921fb0185c24909d6d77a969e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9700-0351 |
| PQID | 2123910440 |
| PQPubID | 105507 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2718366220 proquest_journals_2123910440 crossref_primary_10_1029_2018WR023297 crossref_citationtrail_10_1029_2018WR023297 wiley_primary_10_1029_2018WR023297_WRCR23553 |
| PublicationCentury | 2000 |
| PublicationDate | September 2018 2018-09-00 20180901 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 1995; 31 2002; 38 1990; 54 2015; 14 1984; 20 2005; 310 1980; 44 2004; 68 2003; 272 2016; 52 2002; 82 2003 1988; 97 2018; 82 2012; 11 2016; 15 1996; 32 2002; 27 2017; 53 2013; 17 2015; 29 1997; 33 2000; 126 2017; 16 1995; 43 2016; 20 2002; 269 2014; 13 2014 2012; 48 1981; 32 2014; 78 2012; 41 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Burnham K. P. (e_1_2_8_7_1) 2003 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 78 start-page: 445 issue: 2 year: 2014 end-page: 453 article-title: Nondestructive quantification of macropore volume using shear‐thinning fluid publication-title: Soil Science Society of America Journal – volume: 32 start-page: 1251 issue: 5 year: 1996 end-page: 1258 article-title: Parameter equivalence for the Brooks‐Corey and van Genuchten soil characteristics: Preserving the effective capillary drive publication-title: Water Resources Research – volume: 269 start-page: 150 issue: 3‐4 year: 2002 end-page: 168 article-title: Preferential flow in macroporous swelling soil with internal catchment: Model development and applications publication-title: Journal of Hydrology – volume: 53 start-page: 7481 year: 2017 end-page: 7487 article-title: An explicit, parsimonious, and accurate estimate for ponded infiltration into soils using the Green and Ampt Approach publication-title: Water Resources Research – volume: 20 start-page: 1685 issue: 11 year: 1984 end-page: 1690 article-title: A Green‐Ampt Model of infiltration in a cracked soil publication-title: Water Resources Research – volume: 82 start-page: 65 issue: 1 year: 2002 end-page: 74 article-title: The contribution of shrinkage cracks to bypass flow during simulated and natural rainfall experiments in northeastern Mexico publication-title: Canadian Journal of Soil Science – volume: 310 start-page: 294 issue: 1–4 year: 2005 end-page: 315 article-title: An infiltration model based on flow variability in macropores: Development, sensitivity analysis and applications publication-title: Journal of Hydrology – volume: 97 start-page: 199 issue: 3–4 year: 1988 end-page: 212 article-title: Modeling of water‐balance, cracking and subsidence of clay soils publication-title: Journal of Hydrology – volume: 48 year: 2012 article-title: Dual‐permeability model for flow in shrinking soil with dominant horizontal deformation publication-title: Water Resources Research – volume: 29 start-page: 557 issue: 4 year: 2015 end-page: 571 article-title: Hillslope runoff thresholds with shrink‐swell clay soils publication-title: Hydrological Processes – volume: 41 start-page: 229 issue: 1 year: 2012 end-page: 241 article-title: Water and nutrient transport on a heavy clay soil in a fluvial plain in the Netherlands publication-title: Journal of Environmental Quality – year: 2003 – volume: 43 start-page: 359 issue: 4 year: 1995 end-page: 373 article-title: Consequences of preferential flow in cracking clay soils for contamination‐risk of shallow aquifers publication-title: Journal of Environmental Management – volume: 16 start-page: 1 issue: 11 year: 2017 end-page: 6 article-title: One‐dimensional seepage in unsaturated, Expansive Soils publication-title: Vadose Zone Journal – volume: 27 start-page: 1201 issue: 11 year: 2002 end-page: 1222 article-title: A review of two strongly contrasting geomorphological systems within the context of scale publication-title: Earth Surface Processes and Landforms – volume: 14 start-page: 1 issue: 9 year: 2015 end-page: 15 article-title: Simulated preferential water flow and solute transport in shrinking soils publication-title: Vadose Zone Journal – year: 2014 – volume: 38 issue: 8 year: 2002 article-title: Combined effect of interblock and interaggregate capillary cracks on the hydraulic conductivity of swelling clay soils publication-title: Water Resources Research – volume: 17 start-page: 1933 issue: 5 year: 2013 end-page: 1949 article-title: Water storage change estimation from in situ shrinkage measurements of clay soils publication-title: Hydrology and Earth System Sciences – volume: 52 start-page: 7911 year: 2016 end-page: 7930 article-title: Modeling multidomain hydraulic properties of shrink‐swell soils publication-title: Water Resources Research – volume: 54 start-page: 1500 issue: 5 year: 1990 end-page: 1502 article-title: Shrinkage geometry of a heavy clay soil at various stresses publication-title: Soil Science Society of America Journal – volume: 11 start-page: 1 issue: 2 year: 2012 end-page: 6 article-title: Measurement tool for dynamics of soil cracks publication-title: Vadose Zone Journal – volume: 33 start-page: 1375 issue: 6 year: 1997 end-page: 1382 article-title: Estimating the hydraulic conductivity of slowly permeable and swelling materials from single‐ring experiments publication-title: Water Resources Research – volume: 15 start-page: 1 issue: 3 year: 2016 end-page: 15 article-title: A unified model for soil shrinkage, subsidence, and cracking publication-title: Vadose Zone Journal – volume: 13 start-page: 1 issue: 12 year: 2014 end-page: 15 article-title: New analytical model for cumulative infiltration into dual‐permeability soils publication-title: Vadose Zone Journal – volume: 44 start-page: 892 issue: 5 year: 1980 end-page: 898 article-title: A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Science Society of America Journal – volume: 32 start-page: 15 issue: 1 year: 1981 end-page: 29 article-title: Water flow in soil macropores. II. A combined flow model publication-title: Journal of Soil Science – volume: 272 start-page: 14 issue: 1–4 year: 2003 end-page: 35 article-title: Review and comparison of models for describing non‐equilibrium and preferential flow and transport in the vadose zone publication-title: Journal of Hydrology – volume: 20 start-page: 1 issue: 1 year: 2016 end-page: 12 article-title: Soil–aquifer phenomena affecting groundwater under vertisols: A review publication-title: Hydrology and Earth System Sciences – volume: 82 start-page: 734 issue: 4 year: 2018 end-page: 743 article-title: Modeling soil crack volume at the Pedon scale using available soil data publication-title: Soil Science Society of America Journal – volume: 126 start-page: 41 issue: 1 year: 2000 end-page: 47 article-title: Infiltration of water into soil with cracks publication-title: Journal of Irrigation and Drainage Engineering – volume: 68 start-page: 1807 issue: 6 year: 2004 end-page: 1817 article-title: An approach for estimating the shrinkage geometry factor at a moisture content publication-title: Soil Science Society of America Journal – volume: 31 start-page: 517 issue: 3 year: 1995 end-page: 526 article-title: Field‐scale solute transport in a heavy clay soil publication-title: Water Resources Research – volume: 82 start-page: 558 issue: 3 year: 2018 end-page: 567 article-title: A comprehensive model for single ring infiltration. 2: Estimating field‐saturated hydraulic conductivity publication-title: Soil Science Society of America Journal – ident: e_1_2_8_4_1 doi: 10.1016/0022-1694(88)90115-1 – ident: e_1_2_8_9_1 doi: 10.1029/2000WR000094 – ident: e_1_2_8_3_1 doi: 10.1111/j.1365-2389.1981.tb01682.x – ident: e_1_2_8_14_1 doi: 10.1029/97WR00616 – ident: e_1_2_8_34_1 doi: 10.2136/sssaj1980.03615995004400050002x – ident: e_1_2_8_35_1 doi: 10.1016/j.jhydrol.2005.01.010 – ident: e_1_2_8_20_1 doi: 10.2136/sssaj2018.01.0007 – ident: e_1_2_8_30_1 doi: 10.1002/2016WR019336 – ident: e_1_2_8_23_1 doi: 10.2136/vzj2017.05.0105 – ident: e_1_2_8_18_1 doi: 10.1029/96WR00069 – ident: e_1_2_8_31_1 doi: 10.2136/vzj2015.11.0146 – ident: e_1_2_8_11_1 doi: 10.2136/vzj2015.02.0021 – ident: e_1_2_8_25_1 doi: 10.1016/S0022-1694(02)00252-4 – ident: e_1_2_8_33_1 doi: 10.2134/jeq2011.0292 – ident: e_1_2_8_32_1 doi: 10.5194/hess-17-1933-2013 – ident: e_1_2_8_21_1 doi: 10.1061/(ASCE)0733-9437(2000)126:1(41) – ident: e_1_2_8_16_1 doi: 10.5194/hess-20-1-2016 – ident: e_1_2_8_2_1 – ident: e_1_2_8_29_1 doi: 10.2136/sssaj2013.08.0346 – ident: e_1_2_8_27_1 doi: 10.1002/hyp.10165 – ident: e_1_2_8_10_1 doi: 10.2136/sssaj2004.1807 – ident: e_1_2_8_6_1 doi: 10.1029/94WR02534 – ident: e_1_2_8_12_1 doi: 10.1029/2011WR011376 – ident: e_1_2_8_15_1 doi: 10.1016/S0022-1694(02)00215-9 – ident: e_1_2_8_26_1 doi: 10.2136/sssaj2017.09.0314 – ident: e_1_2_8_19_1 doi: 10.4141/S00-047 – ident: e_1_2_8_5_1 doi: 10.2136/sssaj1990.03615995005400050048x – ident: e_1_2_8_8_1 doi: 10.1002/esp.421 – ident: e_1_2_8_17_1 doi: 10.2136/vzj2013.10.0181 – ident: e_1_2_8_22_1 doi: 10.1016/S0301-4797(95)90266-X – ident: e_1_2_8_24_1 doi: 10.1002/2017WR021020 – ident: e_1_2_8_13_1 doi: 10.1029/WR020i011p01685 – ident: e_1_2_8_28_1 doi: 10.2136/vzj2011.0048 – volume-title: Model selection and multimodel inference: A practical information‐theoretic approach year: 2003 ident: e_1_2_8_7_1 |
| SSID | ssj0014567 |
| Score | 2.4595885 |
| Snippet | Shrink‐swell soils possess dynamic hydraulic properties, which may limit the applicability of traditional models for simulating infiltration and overland flow.... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6844 |
| SubjectTerms | bypass flow Chile Computer simulation Constants Cracks Green-Ampt equation Green-Ampt model Groundwater flow Hydraulic properties Hydraulics Hydrologic models Hydrologic processes Infiltration Irrigation Mathematical models Matrix methods Mexico Modelling Moisture content Overland flow Parameter estimation Parameters Ponding Pore size Porosity Rain Rainfall Rainfall rate rainfall simulation Rainfall simulators Rainstorms Runoff Shrinkage shrink‐swell soil Simulated rainfall Soil Soil dynamics Soil porosity Soil properties Soil shrinkage Soil surfaces Soil swelling Surface runoff Swell vertisols Water content Water infiltration |
| Title | A Dynamic Multidomain Green‐Ampt Infiltration Model |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018WR023297 https://www.proquest.com/docview/2123910440 https://www.proquest.com/docview/2718366220 |
| Volume | 54 |
| WOSCitedRecordID | wos000448088100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6igl58i9VaVtCTLu4m-2iOpVoUpMiitrcljykW6lb6ELz5E_yN_hInu9laDwribSETNmQymS-ZzHyEHEtcsxoEuFoBHlAg4K4Me9JFdVMdMwU65wZ8uInb7Xq3y2_thZvJhSnqQ8wu3Ixl5Pu1MXAhx7bYgKmRiZ6r3knQ5VBuksn9wDcEBp3r9iyIgNggLgPMBujYd-_Y_Xy-83eP9AUz58Fq7m1a6_8d5wZZszjTaRQLY5MsQLZFVso05DF-W_rzx9dtEjaci4KZ3skTcvXwSfQzJ3-T8_H23nh6njjXWa8_sDV2HcOgNtgh963Lu-aVa_kUXMEixlzhAXDtCekxQcGjEhBegDJq4TEF3DO1r4KYU78ncdChwqOZx3Wk41jwiAPbJYvZMIM94sRKgC-p1iFVgRAh14oz4FSGdVB4gqmQ03JOU2WLjRvOi0GaB70pT-enpUJOZtLPRZGNH-SqpXpSa2rj1PhexDxB4FXI0awZjcREPkQGwynKoAdmUUQpypzlyvr1P2knaSYUkRjb_5v4AVk1DcUbtCpZnIymcEiW1cukPx7VyNJF0rq_qeWr9BPHAOOo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED-6dJC9rPtXlrZbXeieNlNHsq3oMXQrCc1CCdmSNyNLFxpInZA_hb31I_Qz9pP0ZMtu9rDB2JvBJyR0Ot1PutP9AE5TWrMGFfpGIx1QMJR-Gk1Sn9TNjOAaTc4N-LMn-v3WeCyvHM-pfQtT1IeoLtysZeT7tTVweyHtqg3YIpnkulqjAfkcJsUz2A0Ja1juhlG3X4URCB2IMsRsoY7LfKf2Z9utf_dJT0BzG67m_uZi779H-gpeOqjptYu18Rp2MHsD9fIl8oq-HQP69a-3ELW9rwU5vZe_yTXzGzXNvDwt5-Huvn2zWHvdbDKduTK7niVRm72DHxffhucd31Eq-IrHnPsqQJQmUGnAFcOApUgIA7XVjBQMads0TR0KyZqTlAYdaTqdBdLERgglY4l8H2rZPMP34AmtsJkyYyKmQ6UiabTkKFkatVDTIaYBn8tJTbSrN25pL2ZJHvdmMtmelgZ8qqQXRZ2NP8gdlfpJnLWtEut-CfaEYdCAk-o32YkNfqgM5xuSISfM45gxkvmSa-uv_SSjwfmAERjjB_8mfgz1zvB7L-l1-5eH8MIKFSlpR1BbLzf4AZ7r2_V0tfyYL9VH7rrmJg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5SpzS5JH2FOI9WhfbUisq7ktZ7NHFMTI0xpql9E6vdETE4svEjkFt-Qn5jfklmpbXjHlIIvQk0kpadnZ1vNLPzAXxNac0aVOgbjRSgYCj9NMpSn9TNjOAaTcEN-Kcjut36cCh7jufUnoUp-0Osf7hZyyj2a2vgODWZ6zZgm2SS66oP-uRzmBSvYDu0PDIV2G72W5eddSKB8IFYJZkt2HG17_SGn5vP_-2VnqDmJmAtPE5r_7_H-hb2HNj0GuXqeAdbmL-HndVZ5DldOw70q9sPEDW8ZklP7xWncs3kWo1yryjMebi7b1xPF147z0Zj12jXszRq449w2Tr_fXbhO1IFX_GYc18FiNIEKg24YhiwFAljoLa6kYIhbZympkMhWS1LadCRpvgskCY2QigZS-QHUMknOR6CJ7TCWsqMiZgOlYqk0ZKjZGlUR01hTBW-ryY10a7juCW-GCdF5pvJZHNaqvBtLT0tO208I3ey0k_i7G2eWAdMwCcMgyp8Wd8mS7HpD5XjZEky5IZ5HDNGMj8Kbf3zO8mgf9ZnBMf40cvEP8ObXrOVdNrdX8ewa2XKmrQTqCxmSzyF1_pmMZrPPrm1-ghVSubP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Multidomain+Green%E2%80%90Ampt+Infiltration+Model&rft.jtitle=Water+resources+research&rft.au=Stewart%2C+Ryan+D&rft.date=2018-09-01&rft.issn=0043-1397&rft.volume=54&rft.issue=9+p.6844-6859&rft.spage=6844&rft.epage=6859&rft_id=info:doi/10.1029%2F2018WR023297&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |