Integration of Deep Learning‐Based Inversion and Upscaled Mass‐Transfer Model for DNAPL Mass‐Discharge Estimation and Uncertainty Assessment

The challenges posed by high‐resolution characterization of dense nonaqueous phase liquid (DNAPL) source zone architecture (SZA) have motivated the development of simpler upscaled models that rely on domain‐averaged metrics to capture the average mass discharge downstream of source zones (SZ). Howev...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research Vol. 58; no. 10
Main Authors: Kang, Xueyuan, Kokkinaki, Amalia, Shi, Xiaoqing, Yoon, Hongkyu, Lee, Jonghyun, Kitanidis, Peter K., Wu, Jichun
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01.10.2022
Subjects:
ISSN:0043-1397, 1944-7973
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The challenges posed by high‐resolution characterization of dense nonaqueous phase liquid (DNAPL) source zone architecture (SZA) have motivated the development of simpler upscaled models that rely on domain‐averaged metrics to capture the average mass discharge downstream of source zones (SZ). However, SZA is highly irregular, making estimation of these domain‐averaged metrics from sparse borehole data extremely difficult. Poor estimation of SZ metrics means that upscaled models cannot reproduce the multistage effluent concentrations. Bayesian inversion methods can be used to obtain accurate estimates of SZ metrics and their uncertainties from sparse data, and from there, upscaled models can better reproduce multistage effluent concentrations. This work presents a framework for integrating a deep‐learning‐based 3D SZA inversion method named Convolutional Variational AutoEncoder—Ensemble Smoother with Multiple Data Assimilation (CVAE‐ESMDA) with a process‐based (PB) upscaled mass‐transfer model. This framework can utilize sparse SZ data to estimate directly mass discharge without multiphase modeling. First, CVAE‐ESMDA estimates the SZA by conditioning on sparse data, which is then used as input in the upscaled model for mass‐discharge estimation. We evaluated our framework on two real and 30 synthetic bench‐scale experiments, with significantly different SZAs and multistage effluent concentrations. The results demonstrate that the CVAE‐based inversion method captures the temporal variations in SZ metrics better than standard ordinary kriging. With the improved SZ metrics, the PB model more accurately reproduces the salient patterns of the multistage mass‐discharge profiles and associated uncertainty. This approach can be used to provide valuable input for risk‐based decision making in remediation applications. Key Points We propose a framework to estimate mass discharge from complex dense nonaqueous phase liquid (DNAPL) source zones (SZ) using sparse monitoring data The proposed framework outperforms standard kriging method in characterizing the SZ metrics controlling mass‐transfer kinetics Combining the improved SZ metrics with an upscaled model allows better reproduction of multistage DNAPL mass discharge
AbstractList The challenges posed by high‐resolution characterization of dense nonaqueous phase liquid (DNAPL) source zone architecture (SZA) have motivated the development of simpler upscaled models that rely on domain‐averaged metrics to capture the average mass discharge downstream of source zones (SZ). However, SZA is highly irregular, making estimation of these domain‐averaged metrics from sparse borehole data extremely difficult. Poor estimation of SZ metrics means that upscaled models cannot reproduce the multistage effluent concentrations. Bayesian inversion methods can be used to obtain accurate estimates of SZ metrics and their uncertainties from sparse data, and from there, upscaled models can better reproduce multistage effluent concentrations. This work presents a framework for integrating a deep‐learning‐based 3D SZA inversion method named Convolutional Variational AutoEncoder—Ensemble Smoother with Multiple Data Assimilation (CVAE‐ESMDA) with a process‐based (PB) upscaled mass‐transfer model. This framework can utilize sparse SZ data to estimate directly mass discharge without multiphase modeling. First, CVAE‐ESMDA estimates the SZA by conditioning on sparse data, which is then used as input in the upscaled model for mass‐discharge estimation. We evaluated our framework on two real and 30 synthetic bench‐scale experiments, with significantly different SZAs and multistage effluent concentrations. The results demonstrate that the CVAE‐based inversion method captures the temporal variations in SZ metrics better than standard ordinary kriging. With the improved SZ metrics, the PB model more accurately reproduces the salient patterns of the multistage mass‐discharge profiles and associated uncertainty. This approach can be used to provide valuable input for risk‐based decision making in remediation applications.
The challenges posed by high‐resolution characterization of dense nonaqueous phase liquid (DNAPL) source zone architecture (SZA) have motivated the development of simpler upscaled models that rely on domain‐averaged metrics to capture the average mass discharge downstream of source zones (SZ). However, SZA is highly irregular, making estimation of these domain‐averaged metrics from sparse borehole data extremely difficult. Poor estimation of SZ metrics means that upscaled models cannot reproduce the multistage effluent concentrations. Bayesian inversion methods can be used to obtain accurate estimates of SZ metrics and their uncertainties from sparse data, and from there, upscaled models can better reproduce multistage effluent concentrations. This work presents a framework for integrating a deep‐learning‐based 3D SZA inversion method named Convolutional Variational AutoEncoder—Ensemble Smoother with Multiple Data Assimilation (CVAE‐ESMDA) with a process‐based (PB) upscaled mass‐transfer model. This framework can utilize sparse SZ data to estimate directly mass discharge without multiphase modeling. First, CVAE‐ESMDA estimates the SZA by conditioning on sparse data, which is then used as input in the upscaled model for mass‐discharge estimation. We evaluated our framework on two real and 30 synthetic bench‐scale experiments, with significantly different SZAs and multistage effluent concentrations. The results demonstrate that the CVAE‐based inversion method captures the temporal variations in SZ metrics better than standard ordinary kriging. With the improved SZ metrics, the PB model more accurately reproduces the salient patterns of the multistage mass‐discharge profiles and associated uncertainty. This approach can be used to provide valuable input for risk‐based decision making in remediation applications. We propose a framework to estimate mass discharge from complex dense nonaqueous phase liquid (DNAPL) source zones (SZ) using sparse monitoring data The proposed framework outperforms standard kriging method in characterizing the SZ metrics controlling mass‐transfer kinetics Combining the improved SZ metrics with an upscaled model allows better reproduction of multistage DNAPL mass discharge
The challenges posed by high‐resolution characterization of dense nonaqueous phase liquid (DNAPL) source zone architecture (SZA) have motivated the development of simpler upscaled models that rely on domain‐averaged metrics to capture the average mass discharge downstream of source zones (SZ). However, SZA is highly irregular, making estimation of these domain‐averaged metrics from sparse borehole data extremely difficult. Poor estimation of SZ metrics means that upscaled models cannot reproduce the multistage effluent concentrations. Bayesian inversion methods can be used to obtain accurate estimates of SZ metrics and their uncertainties from sparse data, and from there, upscaled models can better reproduce multistage effluent concentrations. This work presents a framework for integrating a deep‐learning‐based 3D SZA inversion method named Convolutional Variational AutoEncoder—Ensemble Smoother with Multiple Data Assimilation (CVAE‐ESMDA) with a process‐based (PB) upscaled mass‐transfer model. This framework can utilize sparse SZ data to estimate directly mass discharge without multiphase modeling. First, CVAE‐ESMDA estimates the SZA by conditioning on sparse data, which is then used as input in the upscaled model for mass‐discharge estimation. We evaluated our framework on two real and 30 synthetic bench‐scale experiments, with significantly different SZAs and multistage effluent concentrations. The results demonstrate that the CVAE‐based inversion method captures the temporal variations in SZ metrics better than standard ordinary kriging. With the improved SZ metrics, the PB model more accurately reproduces the salient patterns of the multistage mass‐discharge profiles and associated uncertainty. This approach can be used to provide valuable input for risk‐based decision making in remediation applications. Key Points We propose a framework to estimate mass discharge from complex dense nonaqueous phase liquid (DNAPL) source zones (SZ) using sparse monitoring data The proposed framework outperforms standard kriging method in characterizing the SZ metrics controlling mass‐transfer kinetics Combining the improved SZ metrics with an upscaled model allows better reproduction of multistage DNAPL mass discharge
Author Kang, Xueyuan
Yoon, Hongkyu
Shi, Xiaoqing
Kokkinaki, Amalia
Lee, Jonghyun
Kitanidis, Peter K.
Wu, Jichun
Author_xml – sequence: 1
  givenname: Xueyuan
  orcidid: 0000-0002-8359-8479
  surname: Kang
  fullname: Kang, Xueyuan
  organization: Nanjing University
– sequence: 2
  givenname: Amalia
  orcidid: 0000-0002-8166-0371
  surname: Kokkinaki
  fullname: Kokkinaki, Amalia
  organization: University of San Francisco
– sequence: 3
  givenname: Xiaoqing
  orcidid: 0000-0002-5074-8856
  surname: Shi
  fullname: Shi, Xiaoqing
  email: shixq@nju.edu.cn
  organization: Nanjing University
– sequence: 4
  givenname: Hongkyu
  orcidid: 0000-0001-6719-280X
  surname: Yoon
  fullname: Yoon, Hongkyu
  organization: Sandia National Laboratories
– sequence: 5
  givenname: Jonghyun
  orcidid: 0000-0002-3646-2915
  surname: Lee
  fullname: Lee, Jonghyun
  organization: University of Hawaii at Manoa
– sequence: 6
  givenname: Peter K.
  surname: Kitanidis
  fullname: Kitanidis, Peter K.
  organization: Stanford University
– sequence: 7
  givenname: Jichun
  orcidid: 0000-0001-9799-6745
  surname: Wu
  fullname: Wu, Jichun
  email: jcwu@nju.edu.cn
  organization: Nanjing University
BookMark eNp9kc9uEzEQxi1UpKaFGw9giQsHFvwv6_UxTQpESimKWvW48u6Ow1YbO3icVrnxCIhH5ElwGyqhSu1ppG9-M_PNzBE58MEDIW84-8CZMB8FE-JqyaQUWr8gI26UKrTR8oCMGFOy4NLoQ3KEeM0YV-NSj8jvuU-wijb1wdPg6AxgQxdgo-_96s_PXycWoaNzfwMR7xDrO3q5wdYOWT6ziJm5iNajg0jPQgcDdSHS2dfJt8VDftZj-93GFdBTTP16P-u-kW8hJtv7tKMTREBcg0-vyEtnB4TX_-Ixufx0ejH9UizOP8-nk0VhZSl5oVVlK8FKzjRTRmvXGKcYgHGic23Hx1lmjZM5KVzVjBkH3VSi7ca6acuuk8fk3b7vJoYfW8BUr7NRGAbrIWyxFhXnRnNmTEbfPkKvwzb67K4WWlRKK1OJTL3fU20MiBFcvYl53birOavvHlT__6CMi0d426f746Ro--GpIrkvuu0H2D07oL5aTpeiFJrLv2q_p1Y
CitedBy_id crossref_primary_10_1016_j_enggeo_2025_107998
crossref_primary_10_1016_j_jhazmat_2025_139321
crossref_primary_10_1016_j_jconhyd_2024_104452
crossref_primary_10_1007_s11356_024_33405_8
crossref_primary_10_1016_j_advwatres_2024_104677
crossref_primary_10_1016_j_jenvman_2023_118817
crossref_primary_10_1016_j_watres_2023_120649
Cites_doi 10.1016/j.jconhyd.2020.103716
10.1029/2019WR026082
10.1029/2004WR003239
10.1029/2021wr029754
10.1029/2006WR004877
10.1007/978-1-4614-2239-6_10
10.1016/j.advwatres.2017.09.029
10.1016/j.jhydrol.2020.125443
10.1017/CBO9780511626166
10.1021/es032488k
10.1021/es061675q
10.1016/j.jconhyd.2017.01.002
10.1016/j.jconhyd.2010.02.005
10.1029/2019WR026481
10.1002/wrcr.20503
10.1002/2013WR013796
10.1029/2003WR002807
10.1016/j.jconhyd.2021.103920
10.1016/j.jappgeo.2014.10.022
10.1111/j.1745-6584.2004.tb02667.x
10.1016/S0169-7722(03)00142-6
10.1016/j.jconhyd.2003.11.002
10.1029/2020WR028538
10.1029/2004WR003214
10.1021/es101654j
10.1029/2007WR006213
10.1029/2020WR027627
10.1029/2006WR005427
10.1016/j.cageo.2019.04.006
10.1016/j.jconhyd.2006.09.004
10.1029/wr025i007p01727
10.1190/geo2019-0019.1
10.1016/j.jconhyd.2008.05.007
10.1002/2015WR018483
10.1016/s0169-7722(01)00177-2
10.1016/j.jhydrol.2021.126655
10.1029/2012WR012149
10.1029/2020WR027399
10.1016/j.jhydrol.2018.10.019
10.1002/2015WR017894
10.1016/j.cageo.2012.03.011
10.1111/j.1745-6584.2005.tb02287.x
10.1029/97WR03754
10.1029/2002wr001570
10.1016/j.jconhyd.2018.02.003
10.1029/2003wr001980
10.1002/2014WR015478
10.1002/2013WR014663
10.1029/2006WR004886
10.1016/s0169-7722(99)00092-3
10.1029/2008WR007009
10.1016/j.jhydrol.2016.11.036
ContentType Journal Article
Copyright 2022. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2022. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2022WR033277
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
CrossRef

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2022WR033277
WRCR26271
Genre article
GrantInformation_xml – fundername: Jiangsu Funding Program for Excellent Postdoctoral Talent
  funderid: 20220ZB15
– fundername: National Science Foundation's Research Infrastructure Improvement
  funderid: OIA‐1557349
– fundername: Laboratory Directed Research and Development program at Sandia National Laboratories
– fundername: China Postdoctoral Science Foundation
  funderid: 2022M711565
– fundername: National Natural Science Foundation of China
  funderid: 41730856; 41977157; 42202267
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a3631-748a820610704977fb9f40ee9f2dfcd157040bf30492f8b501e7b82cd57bc6dd3
IEDL.DBID DRFUL
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871486400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:25:21 EDT 2025
Wed Aug 13 09:03:31 EDT 2025
Sat Nov 29 01:36:50 EST 2025
Tue Nov 18 19:41:24 EST 2025
Wed Jan 22 16:22:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3631-748a820610704977fb9f40ee9f2dfcd157040bf30492f8b501e7b82cd57bc6dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3646-2915
0000-0001-6719-280X
0000-0002-5074-8856
0000-0002-8166-0371
0000-0002-8359-8479
0000-0001-9799-6745
PQID 2728474982
PQPubID 105507
PageCount 21
ParticipantIDs proquest_miscellaneous_2811971099
proquest_journals_2728474982
crossref_primary_10_1029_2022WR033277
crossref_citationtrail_10_1029_2022WR033277
wiley_primary_10_1029_2022WR033277_WRCR26271
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2009; 45
2018; 567
2004; 68
2000; 42
2020; 56
2019; 128
2017; 110
2017; 198
2008; 102
2022; 244
2004; 72
2013; 55
2010; 114
2018; 211
2021b; 601
2021a; 57
2014; 50
2001; 53
2004; 42
2004; 40
2013; 49
2012
2011
2020; 85
2015; 51
1998
2007; 90
2005; 41
1997
2016; 52
1996
2003; 37
2005; 43
2003; 39
2003
1989; 25
2010; 44
2021; 57
2006; 42
2015; 112
2020; 590
2016
2008; 44
2020; 235
2014
2013
2012; 48
2007; 41
2007; 43
2017; 544
1998; 34
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
Deutsch C. V. (e_1_2_8_15_1) 1998
e_1_2_8_3_1
e_1_2_8_5_1
Pankow J. F. (e_1_2_8_47_1) 1996
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_13_1
Kavanaugh M. C. (e_1_2_8_29_1) 2003
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Illman W. (e_1_2_8_22_1) 2011
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
Goodfellow I. (e_1_2_8_19_1) 2016
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – start-page: 450
  year: 2011
– start-page: 239
  year: 2012
  end-page: 276
– volume: 114
  start-page: 18
  issue: 1–4
  year: 2010
  end-page: 34
  article-title: Predicting DNAPL mass discharge from pool‐dominated source zones
  publication-title: Journal of Contaminant Hydrology
– volume: 48
  issue: 10
  year: 2012
  article-title: Highly parameterized inverse estimation of hydraulic conductivity and porosity in a three‐dimensional, heterogeneous transport experiment
  publication-title: Water Resources Research
– volume: 56
  issue: 8
  year: 2020
  article-title: Improved characterization of DNAPL source zones via sequential hydrogeophysical inversion of hydraulic‐head, self‐potential and partitioning‐tracer data
  publication-title: Water Resources Research
– volume: 42
  start-page: 187
  issue: 2
  year: 2000
  end-page: 218
  article-title: The influence of field‐scale heterogeneity on the infiltration and entrapment of dense nonaqueous phase liquids in saturated formations
  publication-title: Journal of Contaminant Hydrology
– volume: 112
  start-page: 1
  year: 2015
  end-page: 13
  article-title: Improved time‐lapse electrical resistivity tomography monitoring of dense nonaqueous phase liquids with surface‐to‐horizontal borehole arrays
  publication-title: Journal of Applied Geophysics
– volume: 57
  issue: 11
  year: 2021
  article-title: Deep convolutional autoencoders for robust flow model calibration under uncertainty in geologic continuity
  publication-title: Water Resources Research
– volume: 42
  start-page: 190
  issue: 2
  year: 2004
  end-page: 202
  article-title: Spatial interpolation methods for nonstationary plume data
  publication-title: Ground Water
– volume: 44
  start-page: 8609
  issue: 22
  year: 2010
  end-page: 8614
  article-title: Hydraulic/partitioning tracer tomography for DNAPL source zone characterization: Small‐scale sandbox experiments
  publication-title: Environmental Science & Technology
– volume: 211
  start-page: 1
  year: 2018
  end-page: 14
  article-title: Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones
  publication-title: Journal of Contaminant Hydrology
– volume: 198
  start-page: 37
  year: 2017
  end-page: 47
  article-title: Field data and numerical simulation of btex concentration trends under water table fluctuations: Example of a jet fuel‐contaminated site in Brazil
  publication-title: Journal of Contaminant Hydrology
– volume: 68
  start-page: 1
  issue: 1
  year: 2004
  end-page: 22
  article-title: Noninvasive monitoring of DNAPL migration through a saturated porous medium using electrical impedance tomography
  publication-title: Journal of Contaminant Hydrology
– volume: 56
  issue: 12
  year: 2020
  article-title: Using deep learning to improve ensemble smoother: Applications to subsurface characterization
  publication-title: Water Resources Research
– year: 2014
– volume: 37
  start-page: 224A
  issue: 11
  year: 2003
  end-page: 230A
  article-title: Remediating chlorinated solvent source zones
  publication-title: Environmental Science & Technology
– year: 1998
– volume: 57
  issue: 2
  year: 2021a
  article-title: Hydrogeophysical characterization of nonstationary DNAPL source zones by integrating a convolutional variational autoencoder and ensemble smoother
  publication-title: Water Resources Research
– volume: 41
  start-page: 3672
  issue: 10
  year: 2007
  end-page: 3678
  article-title: Characterization of NAPL source zone architecture and dissolution kinetics in heterogeneous porous media using magnetic resonance imaging
  publication-title: Environmental Science & Technology
– volume: 40
  issue: 5
  year: 2004
  article-title: Modeling field‐scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers
  publication-title: Water Resources Research
– volume: 49
  start-page: 7023
  issue: 10
  year: 2013
  end-page: 7036
  article-title: Coupled simulation of DNAPL infiltration and dissolution in three‐dimensional heterogeneous domains: Process model validation
  publication-title: Water Resources Research
– volume: 590
  year: 2020
  article-title: Coupling ensemble smoother and deep learning with generative adversarial networks to deal with non‐Gaussianity in flow and transport data assimilation
  publication-title: Journal of Hydrology
– volume: 55
  start-page: 3
  issue: 3
  year: 2013
  end-page: 15
  article-title: Ensemble smoother with multiple data assimilation
  publication-title: Computers & Geosciences
– year: 1997
– volume: 85
  start-page: M15
  issue: 1
  year: 2020
  end-page: M31
  article-title: Time‐lapse seismic history matching with an iterative ensemble smoother and deep convolutional autoencoder
  publication-title: Geophysics
– volume: 56
  issue: 3
  year: 2020
  article-title: Subsurface source zone characterization and uncertainty quantification using discriminative random fields
  publication-title: Water Resources Research
– volume: 128
  start-page: 87
  year: 2019
  end-page: 102
  article-title: Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother
  publication-title: Computers & Geosciences
– volume: 56
  issue: 2
  year: 2020
  article-title: Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non‐Gaussian hydraulic conductivities
  publication-title: Water Resources Research
– volume: 42
  issue: 11
  year: 2006
  article-title: Estimating mass discharge from dense nonaqueous phase liquid source zones using upscaled mass transfer coefficients: An evaluation using multiphase numerical simulations
  publication-title: Water Resources Research
– volume: 25
  start-page: 1727
  issue: 7
  year: 1989
  end-page: 1736
  article-title: A model for hysteretic constitutive relations governing multiphase flow: 3. Refinements and numerical simulations
  publication-title: Water Resources Research
– volume: 102
  start-page: 49
  issue: 1–2
  year: 2008
  end-page: 60
  article-title: Evaluation of simplified mass transfer models to simulate the impacts of source zone architecture on nonaqueous phase liquid dissolution in heterogeneous porous media
  publication-title: Journal of Contaminant Hydrology
– volume: 53
  start-page: 429
  issue: 3–4
  year: 2001
  end-page: 453
  article-title: An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site
  publication-title: Journal of Contaminant Hydrology
– volume: 34
  start-page: 611
  issue: 4
  year: 1998
  end-page: 622
  article-title: A generalized growth model for simulating initial migration of dense nonaqueous phase liquids
  publication-title: Water Resources Research
– volume: 544
  start-page: 254
  year: 2017
  end-page: 266
  article-title: Quantitative assessment of electrical resistivity tomography for monitoring DNAPLs migration—Comparison with high‐resolution light transmission visualization in laboratory sandbox
  publication-title: Journal of Hydrology
– volume: 39
  issue: 10
  year: 2003
  article-title: Influence of constitutive model parameters on the predicted migration of DNAPL in heterogeneous porous media
  publication-title: Water Resources Research
– volume: 244
  year: 2022
  article-title: Upscaled modeling of complex DNAPL dissolution
  publication-title: Journal of Contaminant Hydrology
– volume: 52
  start-page: 1009
  issue: 2
  year: 2016
  end-page: 1025
  article-title: Identification of contaminant source architectures‐A statistical inversion that emulates multiphase physics in a computationally practicable manner
  publication-title: Water Resources Research
– year: 2003
– volume: 72
  start-page: 245
  issue: 1–4
  year: 2004
  end-page: 258
  article-title: Simple screening models of NAPL dissolution in the subsurface
  publication-title: Journal of Contaminant Hydrology
– year: 1996
– volume: 50
  start-page: 1374
  issue: 2
  year: 2014
  end-page: 1395
  article-title: A method for implementing Dirichlet and third‐type boundary conditions in PTRW simulations
  publication-title: Water Resources Research
– volume: 52
  start-page: 5213
  issue: 7
  year: 2016
  end-page: 5231
  article-title: Scalable subsurface inverse modeling of huge data sets with an application to tracer concentration breakthrough data from magnetic resonance imaging
  publication-title: Water Resources Research
– year: 2016
– volume: 45
  issue: 8
  year: 2009
  article-title: Interphase mass transfer in variable aperture fractures: Controlling parameters and proposed constitutive relationships
  publication-title: Water Resources Research
– volume: 43
  issue: 6
  year: 2007
  article-title: Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones
  publication-title: Water Resources Research
– volume: 43
  issue: 6
  year: 2007
  article-title: A geostatistical approach for quantification of contaminant mass discharge uncertainty using multilevel sampler measurements
  publication-title: Water Resources Research
– volume: 40
  issue: 1
  year: 2004
  article-title: DNAPL source zone characterization: Influence of hydraulic property correlation on predictions of DNAPL infiltration and entrapment
  publication-title: Water Resources Research
– volume: 44
  issue: 6
  year: 2008
  article-title: Numerical simulation of water flow in three dimensional heterogeneous porous media observed in a magnetic resonance imaging experiment
  publication-title: Water Resources Research
– volume: 601
  year: 2021b
  article-title: Integrating deep learning‐based data assimilation and hydrogeophysical data for improved monitoring of DNAPL source zones during remediation
  publication-title: Journal of Hydrology
– volume: 43
  start-page: 70
  issue: 1
  year: 2005
  end-page: 86
  article-title: Mass and flux distributions from DNAPL zones in sandy aquifers
  publication-title: Ground Water
– volume: 51
  start-page: 806
  issue: 2
  year: 2015
  end-page: 831
  article-title: Predicting DNAPL mass discharge and contaminated site longevity probabilities: Conceptual model and high‐resolution stochastic simulation
  publication-title: Water Resources Research
– volume: 40
  issue: 8
  year: 2004
  article-title: Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling
  publication-title: Water Resources Research
– volume: 235
  year: 2020
  article-title: Mathematical modeling of organic liquid dissolution in heterogeneous source zones
  publication-title: Journal of Contaminant Hydrology
– volume: 567
  start-page: 149
  year: 2018
  end-page: 164
  article-title: Coupled hydrogeophysical inversion of DNAPL source zone architecture and permeability field in a 3D heterogeneous sandbox by assimilation time‐lapse cross‐borehole electrical resistivity data via ensemble Kalman filtering
  publication-title: Journal of Hydrology
– volume: 50
  start-page: 3187
  issue: 4
  year: 2014
  end-page: 3205
  article-title: Comparison of upscaled models for multistage mass discharge from DNAPL source zones
  publication-title: Water Resources Research
– volume: 110
  start-page: 387
  year: 2017
  end-page: 405
  article-title: Inversion using a new low‐dimensional representation of complex binary geological media based on a deep neural network
  publication-title: Advances in Water Resources
– volume: 90
  start-page: 21
  issue: 1
  year: 2007
  end-page: 40
  article-title: Source‐zone characterization of a chlorinated‐solvent contaminated superfund site in Tucson, AZ
  publication-title: Journal of Contaminant Hydrology
– volume: 41
  issue: 1
  year: 2005
  article-title: Comparison of two‐dimensional and three‐dimensional simulations of dense nonaqueous phase liquids (DNAPLs): Migration and entrapment in a nonuniform permeability field
  publication-title: Water Resources Research
– year: 2013
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jconhyd.2020.103716
– ident: e_1_2_8_45_1
  doi: 10.1029/2019WR026082
– ident: e_1_2_8_9_1
  doi: 10.1029/2004WR003239
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_8_19_1
– ident: e_1_2_8_24_1
  doi: 10.1029/2021wr029754
– ident: e_1_2_8_31_1
– ident: e_1_2_8_55_1
  doi: 10.1029/2006WR004877
– ident: e_1_2_8_2_1
  doi: 10.1007/978-1-4614-2239-6_10
– ident: e_1_2_8_38_1
  doi: 10.1016/j.advwatres.2017.09.029
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jhydrol.2020.125443
– ident: e_1_2_8_32_1
  doi: 10.1017/CBO9780511626166
– ident: e_1_2_8_52_1
  doi: 10.1021/es032488k
– ident: e_1_2_8_58_1
  doi: 10.1021/es061675q
– ident: e_1_2_8_53_1
  doi: 10.1016/j.jconhyd.2017.01.002
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jconhyd.2010.02.005
– ident: e_1_2_8_3_1
  doi: 10.1029/2019WR026481
– ident: e_1_2_8_36_1
  doi: 10.1002/wrcr.20503
– ident: e_1_2_8_33_1
  doi: 10.1002/2013WR013796
– ident: e_1_2_8_48_1
  doi: 10.1029/2003WR002807
– ident: e_1_2_8_51_1
  doi: 10.1016/j.jconhyd.2021.103920
– ident: e_1_2_8_49_1
  doi: 10.1016/j.jappgeo.2014.10.022
– ident: e_1_2_8_50_1
  doi: 10.1111/j.1745-6584.2004.tb02667.x
– ident: e_1_2_8_8_1
  doi: 10.1016/S0169-7722(03)00142-6
– ident: e_1_2_8_61_1
  doi: 10.1016/j.jconhyd.2003.11.002
– ident: e_1_2_8_25_1
  doi: 10.1029/2020WR028538
– ident: e_1_2_8_44_1
  doi: 10.1029/2004WR003214
– ident: e_1_2_8_23_1
  doi: 10.1021/es101654j
– ident: e_1_2_8_57_1
  doi: 10.1029/2007WR006213
– ident: e_1_2_8_26_1
  doi: 10.1029/2020WR027627
– ident: e_1_2_8_42_1
  doi: 10.1029/2006WR005427
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cageo.2019.04.006
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jconhyd.2006.09.004
– start-page: 450
  volume-title: Fusion of tomography tests for DNAPL source zone characterization: Technology development and validation (Final Report No. Project ER‐1365)
  year: 2011
  ident: e_1_2_8_22_1
– ident: e_1_2_8_41_1
  doi: 10.1029/wr025i007p01727
– ident: e_1_2_8_43_1
  doi: 10.1190/geo2019-0019.1
– volume-title: Geostatistical software library and user's guide
  year: 1998
  ident: e_1_2_8_15_1
– ident: e_1_2_8_59_1
  doi: 10.1016/j.jconhyd.2008.05.007
– ident: e_1_2_8_39_1
  doi: 10.1002/2015WR018483
– ident: e_1_2_8_5_1
  doi: 10.1016/s0169-7722(01)00177-2
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jhydrol.2021.126655
– ident: e_1_2_8_56_1
  doi: 10.1029/2012WR012149
– volume-title: Dense chlorinated solvents and other DNAPLs in groundwater: History, behavior, and remediation
  year: 1996
  ident: e_1_2_8_47_1
– ident: e_1_2_8_60_1
  doi: 10.1029/2020WR027399
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jhydrol.2018.10.019
– ident: e_1_2_8_35_1
  doi: 10.1002/2015WR017894
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cageo.2012.03.011
– volume-title: The DNAPL remediation challenge: Is there a case for source depletion?
  year: 2003
  ident: e_1_2_8_29_1
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1745-6584.2005.tb02287.x
– ident: e_1_2_8_17_1
  doi: 10.1029/97WR03754
– ident: e_1_2_8_18_1
  doi: 10.1029/2002wr001570
– ident: e_1_2_8_54_1
  doi: 10.1016/j.jconhyd.2018.02.003
– ident: e_1_2_8_40_1
  doi: 10.1029/2003wr001980
– ident: e_1_2_8_46_1
– ident: e_1_2_8_30_1
– ident: e_1_2_8_34_1
  doi: 10.1002/2014WR015478
– ident: e_1_2_8_37_1
  doi: 10.1002/2013WR014663
– ident: e_1_2_8_10_1
  doi: 10.1029/2006WR004886
– ident: e_1_2_8_12_1
  doi: 10.1016/s0169-7722(99)00092-3
– ident: e_1_2_8_14_1
  doi: 10.1029/2008WR007009
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jhydrol.2016.11.036
SSID ssj0014567
Score 2.4428172
Snippet The challenges posed by high‐resolution characterization of dense nonaqueous phase liquid (DNAPL) source zone architecture (SZA) have motivated the development...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3D DNAPL characterization
Bayesian analysis
Bayesian theory
Boreholes
convolutional variational autoencoder
Data assimilation
Data collection
Decision making
Deep learning
Discharge
DNAPL mass discharge
Domains
Effluents
Estimates
Frameworks
kriging
Mass
mass transfer
Mathematical models
Modelling
multistage dissolution
Nonaqueous phase liquids
Probability theory
remediation
Statistical methods
Temporal variations
Uncertainty
upscaled modeling
water
Title Integration of Deep Learning‐Based Inversion and Upscaled Mass‐Transfer Model for DNAPL Mass‐Discharge Estimation and Uncertainty Assessment
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022WR033277
https://www.proquest.com/docview/2728474982
https://www.proquest.com/docview/2811971099
Volume 58
WOSCitedRecordID wos000871486400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231214
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELcGTBovwP4gCgx50va0VUscN3YeC6UaEqtQtaq8RfG_DQmlVVOQeOMjoH3EfRLuHCfrHoY07S2yL3YUn32_89m_I-R9z1hVRDruWqZ4l-MxV6nBWeFpJIvIWKsj45NNiNFIXl5mF2HDDe_C1PwQ7YYbzgy_XuMEL1QVyAaQIxO8djYdR0nChFgjG3ivCpyvjcF4ODlv4wgAD0QTY0asE46-QwufV9__0yj9RpqreNUbnOH2_37qDtkKUJP2a914SZ7Z8hV50dxEruA5ZED_cfea_DwLvBEwTnTm6MDaOQ3kq99_3T8cg7UzFFk5_P4aLUpDJ_MKRhiKvwICBxlv95xdUEywdk0BDtPBqH9x3tQPripPzGTpKSws9Z3JuiHQPH8yYXlH-y1V6BsyGZ5-O_nSDfkaukWSJjHSkhZIBw8eJfgdQjiVOR5ZmzlmnDZxD4oj5TCwx5xUvSi2QkmmTU8onRqT7JL1clbaPUJ5wh2sPHHKlOJapgpwH6hPUgB6k4azDvnYDFiuA5k55tS4zn1QnWX56j_vkA-t9Lwm8fiL3GEz9nmYylXOBFpwnkno9F1bDZMQIytFaWc3ICMxGotBxg755DXhyX7y6fhkzFIm4v1_Ez8gm1hRHyY8JOvLxY19S57r2-VVtTgKyn9E1qZno0daYgb7
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9BhzRe-I8oDDASPEFF4rix81jWVZvoqqlatb1F8Z_ApCmtmg5pb3wExEfkk3DnOKE8gIR4i-yLHcU-3-989u8AXg-t00Vk4oHjWgwEHXNVBp0VkUaqiKxzJrI-2YSczdT5eXYS8pzSXZiGH6LbcCPN8Os1KThtSAe2ASLJRLedn82jJOFS3oQdkSZS9WBnPJ8spl0gAfGBbIPMBHbC2Xds4f32-79bpV9Qcxuweoszufvf33oP7gSwyUbN7LgPN1z1AHbbu8g1Pocc6J-vH8L3o8AcgSPFliUbO7digX7104-v3z6gvbOMeDn8DhsrKssWqxrHGIuPEYOjjLd8pVszSrF2yRAQs_FsdDJt68cXtadmcuwAl5bm1mTTEM49fzZhc81GHVnoI1hMDk73DwchY8OgSNIkJmLSggjh0adEz0PKUmeliJzLSm5LY-MhFke6pNAeL5UeRrGTWnFjh1Kb1NrkMfSqZeWeABOJKHHtiVOutTAq1Yj8cAIlBeI3ZQXvw9t2xHIT6Mwpq8Zl7sPqPMu3_3kf3nTSq4bG4w9ye-3g50GZ65xLsuEiU9jpq64a1ZBiK0XlllcooygeS2HGPrzzU-Gv_eRn8_05T7mMn_6b-EvYPTw9nubTo9nHZ3CbhJqjhXvQ26yv3HO4Zb5sLur1i6AJPwHlSQnc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfGQLAX_qN1DDASPEFF4rix81jWVVSMqKqYurco_rdNmtKq6ZD2xkeY-Ih8Eu4cJ5SHISHeouRiRzmf72ff-XeEvBkYq8pIx33LFO9zTHOVGhYrPI1kGRlrdWR8sQmR5_LkJJuGOqd4Fqbhh-g23NAy_HyNBm6XxgW2ASTJhGU7m8-iJGFC3CK3ofUUc7rmk7wLIwA6EG2IGaFOyHyH9z9svv2nT_oNNDfhqvc34wf__aUPyf0ANemwGRuPyJatHpN77UnkGq5DBfSzqyfkxyTwRoCe6MLRkbVLGshXT39-v_4I3s5QZOXw-2u0rAw9XtagYbj9BRA4yHi_5-yKYoG1CwpwmI7y4fSofT46rz0xk6WHMLE0ZyabhmDk-cyE9RUddlShT8nx-PDrwad-qNfQL5M0iZGWtEQ6eFhRwrpDCKcyxyNrM8eM0yYewO1IOQzsMSfVIIqtUJJpMxBKp8Ykz8h2tajsLqE84Q5mnjhlSnEtUwW4DxSclIDepOGsR961Git0IDPHmhoXhQ-qs6zY_Oc98raTXjYkHjfI7bfKL4Ip1wUT6MF5JqHT191jMEKMrJSVXVyCjMRoLAYZe-S9Hwp_7aeYzw5mLGUi3vs38Vfk7nQ0Lo4m-efnZAdlmrzCfbK9Xl3aF-SO_rY-r1cvvRn8AkbsCDI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+Deep+Learning%E2%80%90Based+Inversion+and+Upscaled+Mass%E2%80%90Transfer+Model+for+DNAPL+Mass%E2%80%90Discharge+Estimation+and+Uncertainty+Assessment&rft.jtitle=Water+resources+research&rft.au=Kang%2C+Xueyuan&rft.au=Kokkinaki%2C+Amalia&rft.au=Shi%2C+Xiaoqing&rft.au=Yoon%2C+Hongkyu&rft.date=2022-10-01&rft.issn=0043-1397&rft.volume=58&rft.issue=10+p.e2022WR033277-&rft_id=info:doi/10.1029%2F2022WR033277&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon