Randomly generating three-dimensional realistic schistous sand particles using deep learning: Variational autoencoder implementation
Nanjing sand, a type of greenish-grey schistous sand, is rich in weathered mica fragments, making it anisotropic and significantly differ from the round-grained quartz sand in terms of composition, grading, and mechanical properties. In this paper, the variational-autoencoder (VAE), a generative dee...
Uloženo v:
| Vydáno v: | Engineering geology Ročník 291; s. 106235 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
20.09.2021
|
| Témata: | |
| ISSN: | 0013-7952, 1872-6917 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Nanjing sand, a type of greenish-grey schistous sand, is rich in weathered mica fragments, making it anisotropic and significantly differ from the round-grained quartz sand in terms of composition, grading, and mechanical properties. In this paper, the variational-autoencoder (VAE), a generative deep-learning model, was used to randomly generate realistic three-dimensional (3D) schistous sand particles. A training set was developed based on a micro-computed tomography scanned image sequence of the specimens of Nanjing sand. A total of 30,000 particles were chosen as the training set. Two thousand realistic 3D schistous sand particles were randomly generated by the trained VAE model and statistically compared with all the natural sand particles. The agreement of the statistical distribution and parameters between the generated and natural schistous sand particles confirmed the generative fidelity of the trained VAE model. Also, the validity and controllability of the generation is testified by the addition of Gaussian random noise and conducting linear interpolation to the latent variables. This methodology not only can be used for the clump template of the DEM, but also holds the potential of generating other geological entities and modeling complicated engineering geological processes.
•The variational autoencoder is used to generate 3D realistic schistous sand particles.•The validity and fidelity of the generated particles is verified by statistical comparison.•Gaussian random noises and linear interpolation can approach expected micromorphology.•Statistical assumption and parameter estimation can be avoided when using the VAE model. |
|---|---|
| AbstractList | Nanjing sand, a type of greenish-grey schistous sand, is rich in weathered mica fragments, making it anisotropic and significantly differ from the round-grained quartz sand in terms of composition, grading, and mechanical properties. In this paper, the variational-autoencoder (VAE), a generative deep-learning model, was used to randomly generate realistic three-dimensional (3D) schistous sand particles. A training set was developed based on a micro-computed tomography scanned image sequence of the specimens of Nanjing sand. A total of 30,000 particles were chosen as the training set. Two thousand realistic 3D schistous sand particles were randomly generated by the trained VAE model and statistically compared with all the natural sand particles. The agreement of the statistical distribution and parameters between the generated and natural schistous sand particles confirmed the generative fidelity of the trained VAE model. Also, the validity and controllability of the generation is testified by the addition of Gaussian random noise and conducting linear interpolation to the latent variables. This methodology not only can be used for the clump template of the DEM, but also holds the potential of generating other geological entities and modeling complicated engineering geological processes. Nanjing sand, a type of greenish-grey schistous sand, is rich in weathered mica fragments, making it anisotropic and significantly differ from the round-grained quartz sand in terms of composition, grading, and mechanical properties. In this paper, the variational-autoencoder (VAE), a generative deep-learning model, was used to randomly generate realistic three-dimensional (3D) schistous sand particles. A training set was developed based on a micro-computed tomography scanned image sequence of the specimens of Nanjing sand. A total of 30,000 particles were chosen as the training set. Two thousand realistic 3D schistous sand particles were randomly generated by the trained VAE model and statistically compared with all the natural sand particles. The agreement of the statistical distribution and parameters between the generated and natural schistous sand particles confirmed the generative fidelity of the trained VAE model. Also, the validity and controllability of the generation is testified by the addition of Gaussian random noise and conducting linear interpolation to the latent variables. This methodology not only can be used for the clump template of the DEM, but also holds the potential of generating other geological entities and modeling complicated engineering geological processes. •The variational autoencoder is used to generate 3D realistic schistous sand particles.•The validity and fidelity of the generated particles is verified by statistical comparison.•Gaussian random noises and linear interpolation can approach expected micromorphology.•Statistical assumption and parameter estimation can be avoided when using the VAE model. |
| ArticleNumber | 106235 |
| Author | Sun, Yun-han Zhu, Hong-hu Shi, Jia-jie Sun, Zheng-xing Wang, Wei Zhang, Wei Xu, Chuan-yi |
| Author_xml | – sequence: 1 givenname: Jia-jie surname: Shi fullname: Shi, Jia-jie organization: School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China – sequence: 2 givenname: Wei surname: Zhang fullname: Zhang, Wei email: wzhang@nju.edu.cn organization: School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China – sequence: 3 givenname: Wei surname: Wang fullname: Wang, Wei organization: School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China – sequence: 4 givenname: Yun-han surname: Sun fullname: Sun, Yun-han organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China – sequence: 5 givenname: Chuan-yi surname: Xu fullname: Xu, Chuan-yi organization: School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China – sequence: 6 givenname: Hong-hu surname: Zhu fullname: Zhu, Hong-hu organization: School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China – sequence: 7 givenname: Zheng-xing surname: Sun fullname: Sun, Zheng-xing organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China |
| BookMark | eNqFkE1rGzEQhkVJoLaTf9CDjr2sI-2HtJtDoZi2KQQCIclVTKSxI6OVtpJc8D0_PHK2px7a02hG87wwz5Kc-eCRkE-crTnj4mq_Rr_bYVjXrOZlJOqm-0AWvJd1JQYuz8iCMd5Ucujqj2SZ0v7UMiYX5PUevAmjO9IdeoyQrd_R_BIRK2NH9MkGD45GBGdTtpom_VIe4ZBoKiSdIJapw0QP6YQaxIk6hOhLd02fINqS-Z4BhxzQ62AwUjtODkt8fv-8IOdbcAkv_9QVefz-7WFzU93e_fi5-XpbQSPqXIEWcqhN99wbPbQ9yr7tS48DylaIdoCePXdCGCO20CDXwGUDGralCOwb2azI5zl3iuHXAVNWo00anQOP5SJVdx0fOinZUFbbeVXHkFLErZqiHSEeFWfqJF3t1SxdnaSrWXrBrv_CtJ1vzBGs-x_8ZYaxOPhtMaqkbTGGxkbUWZlg_x3wBuzApfw |
| CitedBy_id | crossref_primary_10_1016_j_jrmge_2025_01_055 crossref_primary_10_2118_228279_PA crossref_primary_10_1007_s10035_022_01282_y crossref_primary_10_1016_j_partic_2024_11_019 crossref_primary_10_1080_1064119X_2022_2140317 crossref_primary_10_1016_j_compgeo_2025_107340 crossref_primary_10_1029_2024WR038170 crossref_primary_10_1002_gj_5000 crossref_primary_10_3390_rs16214041 crossref_primary_10_1016_j_compgeo_2022_105231 crossref_primary_10_1016_j_enggeo_2023_107023 crossref_primary_10_1007_s10596_023_10202_9 crossref_primary_10_1016_j_compgeo_2024_106164 crossref_primary_10_1016_j_compgeo_2025_107310 crossref_primary_10_1016_j_compgeo_2024_106923 crossref_primary_10_1016_j_compgeo_2025_107510 crossref_primary_10_1016_j_compgeo_2023_105510 crossref_primary_10_1029_2022WR033161 crossref_primary_10_3390_ma17205100 crossref_primary_10_1016_j_powtec_2025_120755 crossref_primary_10_1016_j_engappai_2024_109402 crossref_primary_10_1016_j_ijrmms_2025_106245 crossref_primary_10_1016_j_commatsci_2023_112628 crossref_primary_10_1016_j_medengphy_2023_104046 crossref_primary_10_1016_j_enggeo_2023_107332 crossref_primary_10_1016_j_compgeo_2023_105564 crossref_primary_10_1007_s12145_023_01095_4 crossref_primary_10_1109_ACCESS_2025_3529521 |
| Cites_doi | 10.1680/jgeot.16.P.208 10.1016/j.powtec.2005.10.013 10.1016/j.enggeo.2020.105871 10.1037/h0070888 10.1016/j.enggeo.2013.05.017 10.1016/j.compgeo.2020.103532 10.1016/j.compgeo.2018.08.002 10.1016/j.enggeo.2018.04.018 10.1016/j.neucom.2015.08.104 10.1016/j.powtec.2017.09.030 10.1561/2200000056 10.3390/ijgi8070300 10.1007/s10035-017-0716-7 10.1111/cgf.13240 10.1016/j.csda.2011.08.020 10.1007/s10015-020-00634-2 10.1016/j.powtec.2005.04.031 10.1016/j.powtec.2018.02.006 10.1007/s10035-012-0380-x 10.1029/2018WR024638 10.1109/72.701181 10.1016/j.enggeo.2013.05.007 10.1038/nature14539 10.1006/cviu.1995.1013 10.1126/science.1127647 10.1029/2018WR023528 10.1109/TMI.2018.2833499 10.1109/ISIT.2004.1365067 10.1016/j.powtec.2015.08.026 10.1038/s41467-021-20910-4 10.1016/j.cma.2014.06.022 10.1109/ACCESS.2017.2696365 10.1007/s11803-010-0038-9 10.1016/j.powtec.2006.03.026 10.1080/17486020802253992 10.1016/j.powtec.2019.08.028 10.1145/37402.37422 10.1007/s10035-013-0409-9 10.1086/624298 10.1007/978-3-319-67777-4_31 10.1109/34.87344 10.1103/PhysRev.106.620 10.1145/2647868.2654889 10.1680/geot.1980.30.3.331 10.1680/geolett.14.00082 10.1016/S0008-8846(02)00836-0 10.1016/j.enggeo.2012.10.001 10.1016/j.enggeo.2021.106142 10.1016/j.enggeo.2020.105989 10.1680/geot.2004.54.8.539 10.1038/nature25988 10.1016/j.powtec.2007.02.016 10.1016/j.enggeo.2015.09.003 10.1016/j.enggeo.2019.04.006 10.1680/geot.2001.51.6.545 10.1113/jphysiol.1959.sp006308 10.1007/s11440-020-00963-3 10.1016/j.compgeo.2017.07.016 10.1016/0196-6774(83)90013-5 10.1016/j.enggeo.2014.11.009 10.1016/S0925-2312(03)00430-2 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.enggeo.2021.106235 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-6917 |
| ExternalDocumentID | 10_1016_j_enggeo_2021_106235 S0013795221002465 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSZ T5K TN5 ~02 ~G- 29G 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ K-O R2- SEP SET SEW VH1 WUQ XOL XPP ZCG ZMT ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a362t-ac6792d5b8dc948e784892de9e746649a80b566dd6fa3e1ca173acaf1736e8373 |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000678363000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-7952 |
| IngestDate | Sun Nov 09 13:04:51 EST 2025 Sat Nov 29 07:32:46 EST 2025 Tue Nov 18 22:29:00 EST 2025 Fri Feb 23 02:47:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Variational autoencoder Micro-computed tomography imaging Schistous sand Random particle generation Gaussian random noise |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a362t-ac6792d5b8dc948e784892de9e746649a80b566dd6fa3e1ca173acaf1736e8373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2551957709 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2551957709 crossref_primary_10_1016_j_enggeo_2021_106235 crossref_citationtrail_10_1016_j_enggeo_2021_106235 elsevier_sciencedirect_doi_10_1016_j_enggeo_2021_106235 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-20 |
| PublicationDateYYYYMMDD | 2021-09-20 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering geology |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Welzl (bb0320) 1991 Zhu, Liu, Cauley, Rosen, Rosen (bb0395) 2018; 555 Mollon, Zhao (bb0210) 2012; 15 Yun, Jeong, Kim, Min (bb0340) 2013; 163 Yeh, Chen, Lim, Schwing, Hasegawa-Johnson, Do (bb0335) 2017 L’Heureux, Grolinger, Elyamany, Capretz (bb0155) 2017; 5 Li, Tang (bb0160) 2019; 2019 Mo, Zhu, Zabaras, Shi, Wu (bb0200) 2019; 55 Glorot, Bordes, Bengio (bb0080) 2011; 15 Kim, Yun (bb0135) 2021; 288 LeCun, Bengio, Hinton (bb0150) 2015; 521 Rorato, Arroyo, Andò, Gens (bb0245) 2019; 254 Zhou, Wang (bb0375) 2016; 291 Wang, Chen, Jin (bb0300) 2010; 04 Vincent, Soille (bb0285) 1991; 13 Chen (bb0040) 2008 Wang, Goh (bb0295) 2021; 281 Wang, Yao, Zhao (bb0305) 2016; 184 Li, Xu, Meng (bb0165) 2015; 286 Zhai, Chen, Zhang, Wang (bb0345) 2017 Hinton, Salakhutdinov (bb0100) 2006; 313 Hubel, Wiesel (bb0115) 1959; 1959 Sun, Zheng (bb0265) 2020 Garboczi (bb0075) 2002; 32 Mo, Zabaras, Shi, Wu (bb0205) 2019; 55 Nebauer (bb0225) 1998; 9 Oda, Takemura, Takahashi (bb0235) 2004; 54 Goh, Wang, Yeow, Poh, Li, Tan (bb0085) 2021; 12 Hinton, Zemel (bb0105) 1993; 1993 Kingma, Welling (bb0140) 2019; 12 Wurfl, Hoffmann, Christlein, Breininger, Huang, Unberath, Maier (bb0330) 2018; 37 Wadell (bb0290) 1935; 43 Zhuang, Wang, Chen, Miao, Zhao (bb0400) 2018; 240 Cundall, Strack (bb0045) 1979; 30 Erdogan, Garboczi, Fowler (bb0050) 2007; 177 Li, Wang, Shi, Hou, Liu (bb0175) 2016; 80 Su, Yan (bb0255) 2018; 323 Sun, Zhang (bb0260) 2020 Bowman, Soga, Drummond (bb0025) 2001; 51 Jaynes (bb0120) 1957; 106 Sun, Zheng, Li (bb0270) 2019; 356 Lecun, Bengio (bb0145) 1998 Graham, Yao (bb0090) 1983; 4 Bishop (bb0020) 2006 Zhou, Huang, Wang, Wang (bb0380) 2013; 15 Ferellec, Mcdowell (bb0055) 2008; 3 Jerves, Kawamoto, Andrade (bb0125) 2017; 19 Lorensen, Cline (bb0185) 1987; 21 Lin, Miller (bb0180) 2005; 154 Fityus, Giacomini, Buzzi (bb0060) 2013; 162 Fuglede, Topsoe (bb0070) 2004 Zhou (bb0360) 1999; 21 Karatza, Andò, Papanicolopulos, Ooi, Viggiani (bb0130) 2018; 68 Wei, Wang, Nie, Zhou (bb0310) 2018; 104 Zheng, Hryciw (bb0355) 2017; 19 Wei, Wang, Zhao (bb0315) 2018; 330 Alpaydin (bb0005) 2020 Li, Zheng, Cao, Tang, Phoon (bb0170) 2016; 203 Can, Kocaman, Gokceoglu (bb0035) 2019; 2019 Mollon, Zhao (bb0215) 2014; 279 Taylor, Garboczi, Erdogan, Fowler (bb0275) 2006; 162 Zhou, Wei, Ku, Wang, Zhang (bb0385) 2020; 122 Masaki, Nagumo, Lamsal, Owiwa, Nozawa (bb0190) 2021; 26 Hotelling (bb0110) 1933; 24 Fu, Hu, Zhou (bb0065) 2017; 91 Nash, Williams (bb0220) 2017; 36 Anguita, Ridella, Rivieccio (bb0010) 2003; 55 Zhou, Wang (bb0370) 2015; 184 Wu, Wang, Russel, Cheng (bb0325) 2020 Jia, Shelhamer, Donahue, Karayev (bib401) 2014 Zhu, Xia, Zhang, Belloulata (bb0390) 2007 Berrett, Calder (bb0015) 2012; 56 Grigoriu, Garboczi, Kafali (bb0095) 2006; 166 Zhang, Wang, Yin, Liang (bb0350) 2020; 279 Uday, Padmakumar, Singh (bb0280) 2013; 152 Mitchell, Soga (bb0195) 2005 Zhou, Wang (bb0365) 2015; 5 Brechbühler, Gerig, Kübler (bb0030) 1995; 61 Anguita (10.1016/j.enggeo.2021.106235_bb0010) 2003; 55 Li (10.1016/j.enggeo.2021.106235_bb0160) 2019; 2019 L’Heureux (10.1016/j.enggeo.2021.106235_bb0155) 2017; 5 Li (10.1016/j.enggeo.2021.106235_bb0175) 2016; 80 Welzl (10.1016/j.enggeo.2021.106235_bb0320) 1991 Kingma (10.1016/j.enggeo.2021.106235_bb0140) 2019; 12 Wei (10.1016/j.enggeo.2021.106235_bb0310) 2018; 104 Zhuang (10.1016/j.enggeo.2021.106235_bb0400) 2018; 240 Sun (10.1016/j.enggeo.2021.106235_bb0265) 2020 Wadell (10.1016/j.enggeo.2021.106235_bb0290) 1935; 43 Bishop (10.1016/j.enggeo.2021.106235_bb0020) 2006 Hinton (10.1016/j.enggeo.2021.106235_bb0100) 2006; 313 Zhou (10.1016/j.enggeo.2021.106235_bb0360) 1999; 21 Grigoriu (10.1016/j.enggeo.2021.106235_bb0095) 2006; 166 Yeh (10.1016/j.enggeo.2021.106235_bb0335) 2017 Nebauer (10.1016/j.enggeo.2021.106235_bb0225) 1998; 9 Sun (10.1016/j.enggeo.2021.106235_bb0270) 2019; 356 Mo (10.1016/j.enggeo.2021.106235_bb0200) 2019; 55 Zhu (10.1016/j.enggeo.2021.106235_bb0395) 2018; 555 Jia (10.1016/j.enggeo.2021.106235_bib401) 2014 Mollon (10.1016/j.enggeo.2021.106235_bb0210) 2012; 15 Zhou (10.1016/j.enggeo.2021.106235_bb0375) 2016; 291 Cundall (10.1016/j.enggeo.2021.106235_bb0045) 1979; 30 Rorato (10.1016/j.enggeo.2021.106235_bb0245) 2019; 254 Oda (10.1016/j.enggeo.2021.106235_bb0235) 2004; 54 Graham (10.1016/j.enggeo.2021.106235_bb0090) 1983; 4 Jaynes (10.1016/j.enggeo.2021.106235_bb0120) 1957; 106 Zhu (10.1016/j.enggeo.2021.106235_bb0390) 2007 Nash (10.1016/j.enggeo.2021.106235_bb0220) 2017; 36 Taylor (10.1016/j.enggeo.2021.106235_bb0275) 2006; 162 Brechbühler (10.1016/j.enggeo.2021.106235_bb0030) 1995; 61 Hubel (10.1016/j.enggeo.2021.106235_bb0115) 1959; 1959 Fityus (10.1016/j.enggeo.2021.106235_bb0060) 2013; 162 Wang (10.1016/j.enggeo.2021.106235_bb0300) 2010; 04 Zhou (10.1016/j.enggeo.2021.106235_bb0380) 2013; 15 Wang (10.1016/j.enggeo.2021.106235_bb0305) 2016; 184 Hotelling (10.1016/j.enggeo.2021.106235_bb0110) 1933; 24 Ferellec (10.1016/j.enggeo.2021.106235_bb0055) 2008; 3 Vincent (10.1016/j.enggeo.2021.106235_bb0285) 1991; 13 Kim (10.1016/j.enggeo.2021.106235_bb0135) 2021; 288 Sun (10.1016/j.enggeo.2021.106235_bb0260) 2020 Yun (10.1016/j.enggeo.2021.106235_bb0340) 2013; 163 Uday (10.1016/j.enggeo.2021.106235_bb0280) 2013; 152 Wei (10.1016/j.enggeo.2021.106235_bb0315) 2018; 330 Masaki (10.1016/j.enggeo.2021.106235_bb0190) 2021; 26 Zhang (10.1016/j.enggeo.2021.106235_bb0350) 2020; 279 Erdogan (10.1016/j.enggeo.2021.106235_bb0050) 2007; 177 Wang (10.1016/j.enggeo.2021.106235_bb0295) 2021; 281 Zhou (10.1016/j.enggeo.2021.106235_bb0370) 2015; 184 Goh (10.1016/j.enggeo.2021.106235_bb0085) 2021; 12 Mollon (10.1016/j.enggeo.2021.106235_bb0215) 2014; 279 LeCun (10.1016/j.enggeo.2021.106235_bb0150) 2015; 521 Hinton (10.1016/j.enggeo.2021.106235_bb0105) 1993; 1993 Wurfl (10.1016/j.enggeo.2021.106235_bb0330) 2018; 37 Bowman (10.1016/j.enggeo.2021.106235_bb0025) 2001; 51 Fuglede (10.1016/j.enggeo.2021.106235_bb0070) 2004 Berrett (10.1016/j.enggeo.2021.106235_bb0015) 2012; 56 Mo (10.1016/j.enggeo.2021.106235_bb0205) 2019; 55 Wu (10.1016/j.enggeo.2021.106235_bb0325) 2020 Jerves (10.1016/j.enggeo.2021.106235_bb0125) 2017; 19 Li (10.1016/j.enggeo.2021.106235_bb0170) 2016; 203 Alpaydin (10.1016/j.enggeo.2021.106235_bb0005) 2020 Su (10.1016/j.enggeo.2021.106235_bb0255) 2018; 323 Zhou (10.1016/j.enggeo.2021.106235_bb0365) 2015; 5 Zheng (10.1016/j.enggeo.2021.106235_bb0355) 2017; 19 Zhou (10.1016/j.enggeo.2021.106235_bb0385) 2020; 122 Lecun (10.1016/j.enggeo.2021.106235_bb0145) 1998 Can (10.1016/j.enggeo.2021.106235_bb0035) 2019; 2019 Lorensen (10.1016/j.enggeo.2021.106235_bb0185) 1987; 21 Zhai (10.1016/j.enggeo.2021.106235_bb0345) 2017 Fu (10.1016/j.enggeo.2021.106235_bb0065) 2017; 91 Lin (10.1016/j.enggeo.2021.106235_bb0180) 2005; 154 Chen (10.1016/j.enggeo.2021.106235_bb0040) 2008 Glorot (10.1016/j.enggeo.2021.106235_bb0080) 2011; 15 Mitchell (10.1016/j.enggeo.2021.106235_bb0195) 2005 Garboczi (10.1016/j.enggeo.2021.106235_bb0075) 2002; 32 Karatza (10.1016/j.enggeo.2021.106235_bb0130) 2018; 68 Li (10.1016/j.enggeo.2021.106235_bb0165) 2015; 286 |
| References_xml | – volume: 32 start-page: 1621 year: 2002 end-page: 1638 ident: bb0075 article-title: Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: Application to aggregates used in concrete publication-title: Cem. Concr. Res. – volume: 356 start-page: 295 year: 2019 end-page: 303 ident: bb0270 article-title: Improved watershed analysis for segmenting contacting particles of coarse granular soils in volumetric images publication-title: Powder Technol. – volume: 61 start-page: 154 year: 1995 end-page: 170 ident: bb0030 article-title: Parametrization of closed surfaces for 3-D shape description publication-title: Comput. Vis. Image Underst. – volume: 279 start-page: 105871 year: 2020 ident: bb0350 article-title: DEM modeling of large-scale triaxial test of rock clasts considering realistic particle shapes and flexible membrane boundary publication-title: Eng. Geol. – volume: 91 start-page: 179 year: 2017 end-page: 191 ident: bb0065 article-title: Discrete element modeling of crushable sands conserving realistic particle shape effect publication-title: Comput. Geotech. – start-page: 359 year: 1991 end-page: 370 ident: bb0320 article-title: Smallest Enclosing Disks (Balls and Ellipsoids). New Results and New Trends in Computer Science – volume: 154 start-page: 61 year: 2005 end-page: 69 ident: bb0180 article-title: 3D characterization and analysis of particle shape using X-ray microtomography (XMT) publication-title: Powder Technol. – start-page: 212 year: 2020 ident: bb0325 article-title: DEM modelling of mini-triaxial test based on one-to-one mapping of sand particles publication-title: Geotèchnique – volume: 55 start-page: 3856 year: 2019 end-page: 3881 ident: bb0205 article-title: Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification publication-title: Water Resour. Res. – year: 2017 ident: bb0335 article-title: Semantic image Inpainting with Deep Generative Models. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 15 start-page: 95 year: 2012 end-page: 108 ident: bb0210 article-title: Generating realistic 3D sand particles using Fourier descriptors publication-title: Granul. Matter – volume: 106 start-page: 620 year: 1957 ident: bb0120 article-title: Information Theory and Statistical Mechanics publication-title: Phys. Rev. – volume: 51 start-page: 545 year: 2001 end-page: 554 ident: bb0025 article-title: Particle shape characterisation using fourier descriptor analysis publication-title: Geotechnique. – volume: 184 start-page: 232 year: 2016 end-page: 242 ident: bb0305 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomputing – volume: 152 start-page: 48 year: 2013 end-page: 55 ident: bb0280 article-title: Some studies on morphology of the coarse-grained soils publication-title: Eng. Geol. – volume: 3 start-page: 211 year: 2008 end-page: 216 ident: bb0055 article-title: A simple method to create complex particle shapes for DEM publication-title: Geomech. Geoeng. – volume: 30 start-page: 331 year: 1979 end-page: 336 ident: bb0045 article-title: A discrete numerical model for granular assemblies publication-title: Géotechnique – year: 2007 ident: bb0390 article-title: An image segmentation algorithm in image processing based on threshold segmentation publication-title: 2007 Third International IEEE Conference on Signal-image Technologies and Internet-based System – year: 2020 ident: bb0005 article-title: Introduction to Machine Learning – volume: 36 start-page: 1 year: 2017 end-page: 12 ident: bb0220 article-title: The shape variational autoencoder: a deep generative model of part-segmented 3D objects publication-title: Comput. Graph. Forum – volume: 21 start-page: 163 year: 1987 end-page: 169 ident: bb0185 article-title: Marching cubes: a high resolution 3D surface construction algorithm publication-title: ACM SIGGRAPH Comput. Graph. – volume: 203 start-page: 3 year: 2016 end-page: 14 ident: bb0170 article-title: Response surface methods for slope reliability analysis: review and comparison publication-title: Eng. Geol. – volume: 19 year: 2017 ident: bb0355 article-title: An image based clump library for DEM simulations publication-title: Granul. Mater. – volume: 163 start-page: 11 year: 2013 end-page: 19 ident: bb0340 article-title: Evaluation of rock anisotropy using 3D X-ray computed tomography publication-title: Eng. Geol. – year: 2020 ident: bb0260 article-title: Clone granular soils with mixed particle morphological characteristic by integrating spherical harmonics with Gaussian mixture model, expectation-maximization, and Dirichlet process publication-title: Acta Geotech. – volume: 5 start-page: 6 year: 2015 end-page: 11 ident: bb0365 article-title: Random generation of natural sand assembly using micro X-ray tomography and spherical harmonics publication-title: Geotèchnique Lett. – volume: 68 start-page: 107 year: 2018 end-page: 117 ident: bb0130 article-title: Evolution of deformation and breakage in sand studied using X-ray tomography publication-title: Géotechnique – volume: 291 start-page: 262 year: 2016 end-page: 275 ident: bb0375 article-title: Generation of a realistic 3D sand assembly using X-ray micro-computed tomography and spherical harmonic-based principal component analysis publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 9 start-page: 685 year: 1998 end-page: 696 ident: bb0225 article-title: Evaluation of convolutional neural networks for visual recognition publication-title: Neural Netw. IEEE Trans. – volume: 104 start-page: 1 year: 2018 end-page: 12 ident: bb0310 article-title: Generation of realistic sand particles with fractal nature using an improved spherical harmonic analysis publication-title: Comput. Geotech. – volume: 1959 start-page: 574 year: 1959 end-page: 591 ident: bb0115 article-title: Receptive fields of single neurones in the cat’s striate cortex publication-title: J. Physiol. – volume: 122 year: 2020 ident: bb0385 article-title: Study on the effect of particle morphology on single particle breakage using a combined finite-discrete element method publication-title: Comput. Geotech. – volume: 55 start-page: 703 year: 2019 end-page: 728 ident: bb0200 article-title: deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media publication-title: Water Resour. Res. – volume: 12 start-page: 711 year: 2021 ident: bb0085 article-title: Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in health care publication-title: Nat. Commun. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bb0100 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 162 start-page: 43 year: 2013 end-page: 52 ident: bb0060 article-title: The significance of geology for the morphology of potentially unstable rocks publication-title: Eng. Geol. – start-page: 30 year: 2004 ident: bb0070 article-title: Jensen-Shannon divergence and Hilbert space embedding publication-title: Proceedings of the International Symposium on Information Theory, 2004 – volume: 288 year: 2021 ident: bb0135 article-title: How to classify sand types: a deep learning approach publication-title: Eng. Geol. – volume: 21 start-page: 2 year: 1999 end-page: 8 ident: bb0360 article-title: Some cases in geotechnical engineering publication-title: Chin. J. Geotech. Eng. – volume: 254 start-page: 43 year: 2019 end-page: 53 ident: bb0245 article-title: Sphericity measures of sand grains publication-title: Eng. Geol. – volume: 279 start-page: 46 year: 2014 end-page: 65 ident: bb0215 article-title: 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors publication-title: Comput. Methods Appl. Mech. Eng. – volume: 4 start-page: 324 year: 1983 end-page: 331 ident: bb0090 article-title: Finding the convex hull of a simple polygon publication-title: J. Algorithm. – volume: 184 start-page: 126 year: 2015 end-page: 137 ident: bb0370 article-title: Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics publication-title: Eng. Geol. – start-page: 356 year: 2017 end-page: 367 ident: bb0345 article-title: Robust variational auto-encoder for radar HRRP target recognition publication-title: Intell. Sci. Big Data Eng. – volume: 43 start-page: 250 year: 1935 end-page: 280 ident: bb0290 article-title: Volume, Shape, and Roundness of Quartz Particles publication-title: J. Geol. – volume: 286 start-page: 478 year: 2015 end-page: 487 ident: bb0165 article-title: Multi-sphere approximation of real particles for DEM simulation based on a modified greedy heuristic algorithm publication-title: Power Technol. – volume: 13 start-page: 583 year: 1991 end-page: 598 ident: bb0285 article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 162 start-page: 1 year: 2006 end-page: 15 ident: bb0275 article-title: Some properties of irregular 3-d particles publication-title: Powder Technol. – volume: 55 start-page: 109 year: 2003 end-page: 134 ident: bb0010 article-title: Hyperparameter design criteria for support vector classifiers publication-title: Neurocomputing – year: 2020 ident: bb0265 article-title: Realistic soil particle generation based on limited morphological information by probability-based spherical harmonics publication-title: Comput. Partic. Mech. – year: 2006 ident: bb0020 article-title: Pattern Recognition and Machine Learning (Information Science and Statistics) – volume: 19 start-page: 30 year: 2017 ident: bb0125 article-title: A geometry-based algorithm for cloning real grains publication-title: Granul. Mater. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bb0150 article-title: Deep Learning publication-title: Nature – volume: 330 start-page: 284 year: 2018 end-page: 291 ident: bb0315 article-title: A simple method for particle shape generation with spherical harmonics publication-title: Powder Technol. – volume: 166 start-page: 123 year: 2006 end-page: 138 ident: bb0095 article-title: Spherical harmonic-based random fields for aggregates used in concrete publication-title: Power Technol. – volume: 80 start-page: 107 year: 2016 end-page: 117 ident: bb0175 article-title: Revisiting batch normalization for practical domain adaptation publication-title: Pattern Recogn. – volume: 15 start-page: 315 year: 2011 end-page: 323 ident: bb0080 article-title: Deep Sparse Rectifier Neural Networks publication-title: J. Mach. Learn. Res. – year: 2005 ident: bb0195 article-title: Fundamentals of Soil Behavior – volume: 56 start-page: 478 year: 2012 end-page: 490 ident: bb0015 article-title: Data augmentation strategies for the Bayesian spatial probit regression model publication-title: Comput. Stat. Data Anal. – volume: 177 start-page: 53 year: 2007 end-page: 63 ident: bb0050 article-title: Shape and size of micro-fine aggregates: X-ray microcomputed tomography versus laser diffraction publication-title: Powder Technol. – volume: 12 start-page: 307 year: 2019 end-page: 392 ident: bb0140 article-title: An introduction to Variational Autoencoders publication-title: Found. Trends Mach. Learn. – volume: 04 start-page: 569 year: 2010 end-page: 576 ident: bb0300 article-title: Pore water pressure increment model for saturated Nanjing fine sand subject to cyclic loading publication-title: Earthq. Eng. Eng. Vib. – volume: 24 start-page: 498 year: 1933 end-page: 520 ident: bb0110 article-title: Analysis of a complex of statistical variables into principal components publication-title: J. Educ. Psychol. – volume: 54 start-page: 539 year: 2004 end-page: 542 ident: bb0235 article-title: Microstructure in shear band observed by microfocus X-ray computed tomography publication-title: Géotechnique – volume: 15 start-page: 315 year: 2013 end-page: 326 ident: bb0380 article-title: DEM investigation of particle anti-rotation effects on the micro-mechanical response of granular materials publication-title: Granul. Matter – year: 1998 ident: bb0145 article-title: Convolutional networks for images, speech, and time serie publication-title: The Handbook of Brain Theory and Neural Networks – volume: 2019 start-page: 300 year: 2019 ident: bb0035 article-title: A convolutional neural network architecture for auto-detection of landslide photographs to assess citizen science and volunteered geographic information data quality publication-title: ISPRS Int. J. Geo-Inf. – volume: 281 start-page: 105989 year: 2021 ident: bb0295 article-title: Novel approach to efficient slope reliability analysis in spatially variable soils publication-title: Eng. Geol. – volume: 1993 year: 1993 ident: bb0105 article-title: Autoencoders minimum description length and Helmholtz free energy publication-title: Proc. Neural Inform. Process. Syst. – start-page: 675 year: 2014 end-page: 678 ident: bib401 article-title: Caffe: convolutional architecture for fast feature embedding publication-title: Proceedings of the 22nd ACM International Conference on Multimedia, ACM – volume: 555 start-page: 487 year: 2018 end-page: 492 ident: bb0395 article-title: Image reconstruction by domain-transform manifold learning publication-title: Nature – year: 2008 ident: bb0040 article-title: Dynamic Shear Characters of Nanjing Sand, Guangzhou sand, Harbin Sand and Lanzhou Sand Compared with Fujian Sand – volume: 240 start-page: 110 year: 2018 end-page: 122 ident: bb0400 article-title: Shear modulus reduction of saturated sand under large liquefaction-induced deformation in cyclic torsional shear tests publication-title: Eng. Geol. – volume: 26 start-page: 122 year: 2021 end-page: 128 ident: bb0190 article-title: Anomaly detection in facial skin temperature using variational autoencoder publication-title: Aritf. Life Rob. – volume: 323 start-page: 8 year: 2018 end-page: 23 ident: bb0255 article-title: 3D characterization of general-shape sand particles using microfocus X-ray computed tomography and spherical harmonic functions, and particle regeneration using multivariate random vector publication-title: Powder Technol. – volume: 37 start-page: 1454 year: 2018 end-page: 1463 ident: bb0330 article-title: Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems publication-title: IEEE Trans. Med. Imaging – volume: 5 start-page: 7776 year: 2017 end-page: 7797 ident: bb0155 article-title: Machine learning with Big Data: challenges and approaches publication-title: IEEE Access. – volume: 2019 start-page: 1 year: 2019 end-page: 11 ident: bb0160 article-title: Using Synchrotron-based X-Ray microcomputed tomography to characterize water distribution in compacted Soils publication-title: Adv. Mater. Sci. Eng. – volume: 68 start-page: 107 issue: 2 year: 2018 ident: 10.1016/j.enggeo.2021.106235_bb0130 article-title: Evolution of deformation and breakage in sand studied using X-ray tomography publication-title: Géotechnique doi: 10.1680/jgeot.16.P.208 – volume: 162 start-page: 1 year: 2006 ident: 10.1016/j.enggeo.2021.106235_bb0275 article-title: Some properties of irregular 3-d particles publication-title: Powder Technol. doi: 10.1016/j.powtec.2005.10.013 – volume: 1993 year: 1993 ident: 10.1016/j.enggeo.2021.106235_bb0105 article-title: Autoencoders minimum description length and Helmholtz free energy publication-title: Proc. Neural Inform. Process. Syst. – volume: 279 start-page: 105871 year: 2020 ident: 10.1016/j.enggeo.2021.106235_bb0350 article-title: DEM modeling of large-scale triaxial test of rock clasts considering realistic particle shapes and flexible membrane boundary publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105871 – volume: 24 start-page: 498 issue: 417–441 year: 1933 ident: 10.1016/j.enggeo.2021.106235_bb0110 article-title: Analysis of a complex of statistical variables into principal components publication-title: J. Educ. Psychol. doi: 10.1037/h0070888 – volume: 163 start-page: 11 year: 2013 ident: 10.1016/j.enggeo.2021.106235_bb0340 article-title: Evaluation of rock anisotropy using 3D X-ray computed tomography publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2013.05.017 – volume: 122 year: 2020 ident: 10.1016/j.enggeo.2021.106235_bb0385 article-title: Study on the effect of particle morphology on single particle breakage using a combined finite-discrete element method publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2020.103532 – volume: 104 start-page: 1 year: 2018 ident: 10.1016/j.enggeo.2021.106235_bb0310 article-title: Generation of realistic sand particles with fractal nature using an improved spherical harmonic analysis publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2018.08.002 – volume: 240 start-page: 110 year: 2018 ident: 10.1016/j.enggeo.2021.106235_bb0400 article-title: Shear modulus reduction of saturated sand under large liquefaction-induced deformation in cyclic torsional shear tests publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2018.04.018 – volume: 184 start-page: 232 year: 2016 ident: 10.1016/j.enggeo.2021.106235_bb0305 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.104 – volume: 323 start-page: 8 issue: 1 year: 2018 ident: 10.1016/j.enggeo.2021.106235_bb0255 article-title: 3D characterization of general-shape sand particles using microfocus X-ray computed tomography and spherical harmonic functions, and particle regeneration using multivariate random vector publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.09.030 – start-page: 359 year: 1991 ident: 10.1016/j.enggeo.2021.106235_bb0320 – volume: 12 start-page: 307 issue: 4 year: 2019 ident: 10.1016/j.enggeo.2021.106235_bb0140 article-title: An introduction to Variational Autoencoders publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000056 – volume: 2019 start-page: 300 issue: 8 year: 2019 ident: 10.1016/j.enggeo.2021.106235_bb0035 article-title: A convolutional neural network architecture for auto-detection of landslide photographs to assess citizen science and volunteered geographic information data quality publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi8070300 – volume: 19 issue: 26 year: 2017 ident: 10.1016/j.enggeo.2021.106235_bb0355 article-title: An image based clump library for DEM simulations publication-title: Granul. Mater. – volume: 19 start-page: 30 year: 2017 ident: 10.1016/j.enggeo.2021.106235_bb0125 article-title: A geometry-based algorithm for cloning real grains publication-title: Granul. Mater. doi: 10.1007/s10035-017-0716-7 – volume: 36 start-page: 1 issue: 5 year: 2017 ident: 10.1016/j.enggeo.2021.106235_bb0220 article-title: The shape variational autoencoder: a deep generative model of part-segmented 3D objects publication-title: Comput. Graph. Forum doi: 10.1111/cgf.13240 – volume: 56 start-page: 478 issue: 3 year: 2012 ident: 10.1016/j.enggeo.2021.106235_bb0015 article-title: Data augmentation strategies for the Bayesian spatial probit regression model publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2011.08.020 – volume: 26 start-page: 122 year: 2021 ident: 10.1016/j.enggeo.2021.106235_bb0190 article-title: Anomaly detection in facial skin temperature using variational autoencoder publication-title: Aritf. Life Rob. doi: 10.1007/s10015-020-00634-2 – volume: 154 start-page: 61 issue: 1 year: 2005 ident: 10.1016/j.enggeo.2021.106235_bb0180 article-title: 3D characterization and analysis of particle shape using X-ray microtomography (XMT) publication-title: Powder Technol. doi: 10.1016/j.powtec.2005.04.031 – volume: 330 start-page: 284 year: 2018 ident: 10.1016/j.enggeo.2021.106235_bb0315 article-title: A simple method for particle shape generation with spherical harmonics publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.02.006 – volume: 80 start-page: 107 year: 2016 ident: 10.1016/j.enggeo.2021.106235_bb0175 article-title: Revisiting batch normalization for practical domain adaptation publication-title: Pattern Recogn. – volume: 15 start-page: 95 issue: 1 year: 2012 ident: 10.1016/j.enggeo.2021.106235_bb0210 article-title: Generating realistic 3D sand particles using Fourier descriptors publication-title: Granul. Matter doi: 10.1007/s10035-012-0380-x – year: 2020 ident: 10.1016/j.enggeo.2021.106235_bb0005 – volume: 55 start-page: 3856 year: 2019 ident: 10.1016/j.enggeo.2021.106235_bb0205 article-title: Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification publication-title: Water Resour. Res. doi: 10.1029/2018WR024638 – volume: 9 start-page: 685 issue: 4 year: 1998 ident: 10.1016/j.enggeo.2021.106235_bb0225 article-title: Evaluation of convolutional neural networks for visual recognition publication-title: Neural Netw. IEEE Trans. doi: 10.1109/72.701181 – volume: 162 start-page: 43 year: 2013 ident: 10.1016/j.enggeo.2021.106235_bb0060 article-title: The significance of geology for the morphology of potentially unstable rocks publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2013.05.007 – year: 1998 ident: 10.1016/j.enggeo.2021.106235_bb0145 article-title: Convolutional networks for images, speech, and time serie – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.enggeo.2021.106235_bb0150 article-title: Deep Learning publication-title: Nature doi: 10.1038/nature14539 – volume: 61 start-page: 154 issue: 2 year: 1995 ident: 10.1016/j.enggeo.2021.106235_bb0030 article-title: Parametrization of closed surfaces for 3-D shape description publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.1995.1013 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.enggeo.2021.106235_bb0100 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – year: 2006 ident: 10.1016/j.enggeo.2021.106235_bb0020 – volume: 55 start-page: 703 year: 2019 ident: 10.1016/j.enggeo.2021.106235_bb0200 article-title: deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media publication-title: Water Resour. Res. doi: 10.1029/2018WR023528 – volume: 37 start-page: 1454 issue: 6 year: 2018 ident: 10.1016/j.enggeo.2021.106235_bb0330 article-title: Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2833499 – start-page: 30 year: 2004 ident: 10.1016/j.enggeo.2021.106235_bb0070 article-title: Jensen-Shannon divergence and Hilbert space embedding doi: 10.1109/ISIT.2004.1365067 – volume: 286 start-page: 478 year: 2015 ident: 10.1016/j.enggeo.2021.106235_bb0165 article-title: Multi-sphere approximation of real particles for DEM simulation based on a modified greedy heuristic algorithm publication-title: Power Technol. doi: 10.1016/j.powtec.2015.08.026 – volume: 12 start-page: 711 year: 2021 ident: 10.1016/j.enggeo.2021.106235_bb0085 article-title: Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in health care publication-title: Nat. Commun. doi: 10.1038/s41467-021-20910-4 – volume: 279 start-page: 46 year: 2014 ident: 10.1016/j.enggeo.2021.106235_bb0215 article-title: 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.06.022 – volume: 5 start-page: 7776 year: 2017 ident: 10.1016/j.enggeo.2021.106235_bb0155 article-title: Machine learning with Big Data: challenges and approaches publication-title: IEEE Access. doi: 10.1109/ACCESS.2017.2696365 – volume: 04 start-page: 569 year: 2010 ident: 10.1016/j.enggeo.2021.106235_bb0300 article-title: Pore water pressure increment model for saturated Nanjing fine sand subject to cyclic loading publication-title: Earthq. Eng. Eng. Vib. doi: 10.1007/s11803-010-0038-9 – volume: 166 start-page: 123 issue: 3 year: 2006 ident: 10.1016/j.enggeo.2021.106235_bb0095 article-title: Spherical harmonic-based random fields for aggregates used in concrete publication-title: Power Technol. doi: 10.1016/j.powtec.2006.03.026 – year: 2017 ident: 10.1016/j.enggeo.2021.106235_bb0335 – volume: 3 start-page: 211 issue: 3 year: 2008 ident: 10.1016/j.enggeo.2021.106235_bb0055 article-title: A simple method to create complex particle shapes for DEM publication-title: Geomech. Geoeng. doi: 10.1080/17486020802253992 – volume: 356 start-page: 295 year: 2019 ident: 10.1016/j.enggeo.2021.106235_bb0270 article-title: Improved watershed analysis for segmenting contacting particles of coarse granular soils in volumetric images publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.08.028 – volume: 21 start-page: 163 issue: 4 year: 1987 ident: 10.1016/j.enggeo.2021.106235_bb0185 article-title: Marching cubes: a high resolution 3D surface construction algorithm publication-title: ACM SIGGRAPH Comput. Graph. doi: 10.1145/37402.37422 – start-page: 212 year: 2020 ident: 10.1016/j.enggeo.2021.106235_bb0325 article-title: DEM modelling of mini-triaxial test based on one-to-one mapping of sand particles publication-title: Geotèchnique – volume: 15 start-page: 315 year: 2013 ident: 10.1016/j.enggeo.2021.106235_bb0380 article-title: DEM investigation of particle anti-rotation effects on the micro-mechanical response of granular materials publication-title: Granul. Matter doi: 10.1007/s10035-013-0409-9 – volume: 43 start-page: 250 issue: 3 year: 1935 ident: 10.1016/j.enggeo.2021.106235_bb0290 article-title: Volume, Shape, and Roundness of Quartz Particles publication-title: J. Geol. doi: 10.1086/624298 – start-page: 356 year: 2017 ident: 10.1016/j.enggeo.2021.106235_bb0345 article-title: Robust variational auto-encoder for radar HRRP target recognition publication-title: Intell. Sci. Big Data Eng. doi: 10.1007/978-3-319-67777-4_31 – volume: 13 start-page: 583 issue: 6 year: 1991 ident: 10.1016/j.enggeo.2021.106235_bb0285 article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.87344 – volume: 106 start-page: 620 issue: 4 year: 1957 ident: 10.1016/j.enggeo.2021.106235_bb0120 article-title: Information Theory and Statistical Mechanics publication-title: Phys. Rev. doi: 10.1103/PhysRev.106.620 – start-page: 675 year: 2014 ident: 10.1016/j.enggeo.2021.106235_bib401 article-title: Caffe: convolutional architecture for fast feature embedding publication-title: Proceedings of the 22nd ACM International Conference on Multimedia, ACM doi: 10.1145/2647868.2654889 – volume: 30 start-page: 331 issue: 3 year: 1979 ident: 10.1016/j.enggeo.2021.106235_bb0045 article-title: A discrete numerical model for granular assemblies publication-title: Géotechnique doi: 10.1680/geot.1980.30.3.331 – volume: 5 start-page: 6 year: 2015 ident: 10.1016/j.enggeo.2021.106235_bb0365 article-title: Random generation of natural sand assembly using micro X-ray tomography and spherical harmonics publication-title: Geotèchnique Lett. doi: 10.1680/geolett.14.00082 – volume: 32 start-page: 1621 issue: 10 year: 2002 ident: 10.1016/j.enggeo.2021.106235_bb0075 article-title: Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: Application to aggregates used in concrete publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(02)00836-0 – volume: 291 start-page: 262 year: 2016 ident: 10.1016/j.enggeo.2021.106235_bb0375 article-title: Generation of a realistic 3D sand assembly using X-ray micro-computed tomography and spherical harmonic-based principal component analysis publication-title: Int. J. Numer. Anal. Methods Geomech. – year: 2008 ident: 10.1016/j.enggeo.2021.106235_bb0040 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.enggeo.2021.106235_bb0160 article-title: Using Synchrotron-based X-Ray microcomputed tomography to characterize water distribution in compacted Soils publication-title: Adv. Mater. Sci. Eng. – volume: 152 start-page: 48 issue: 1 year: 2013 ident: 10.1016/j.enggeo.2021.106235_bb0280 article-title: Some studies on morphology of the coarse-grained soils publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2012.10.001 – volume: 288 year: 2021 ident: 10.1016/j.enggeo.2021.106235_bb0135 article-title: How to classify sand types: a deep learning approach publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2021.106142 – volume: 281 start-page: 105989 year: 2021 ident: 10.1016/j.enggeo.2021.106235_bb0295 article-title: Novel approach to efficient slope reliability analysis in spatially variable soils publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105989 – volume: 54 start-page: 539 issue: 8 year: 2004 ident: 10.1016/j.enggeo.2021.106235_bb0235 article-title: Microstructure in shear band observed by microfocus X-ray computed tomography publication-title: Géotechnique doi: 10.1680/geot.2004.54.8.539 – volume: 555 start-page: 487 issue: 7697 year: 2018 ident: 10.1016/j.enggeo.2021.106235_bb0395 article-title: Image reconstruction by domain-transform manifold learning publication-title: Nature doi: 10.1038/nature25988 – volume: 21 start-page: 2 year: 1999 ident: 10.1016/j.enggeo.2021.106235_bb0360 article-title: Some cases in geotechnical engineering publication-title: Chin. J. Geotech. Eng. – volume: 177 start-page: 53 year: 2007 ident: 10.1016/j.enggeo.2021.106235_bb0050 article-title: Shape and size of micro-fine aggregates: X-ray microcomputed tomography versus laser diffraction publication-title: Powder Technol. doi: 10.1016/j.powtec.2007.02.016 – volume: 203 start-page: 3 year: 2016 ident: 10.1016/j.enggeo.2021.106235_bb0170 article-title: Response surface methods for slope reliability analysis: review and comparison publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.09.003 – volume: 15 start-page: 315 year: 2011 ident: 10.1016/j.enggeo.2021.106235_bb0080 article-title: Deep Sparse Rectifier Neural Networks publication-title: J. Mach. Learn. Res. – volume: 254 start-page: 43 year: 2019 ident: 10.1016/j.enggeo.2021.106235_bb0245 article-title: Sphericity measures of sand grains publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2019.04.006 – volume: 51 start-page: 545 issue: 6 year: 2001 ident: 10.1016/j.enggeo.2021.106235_bb0025 article-title: Particle shape characterisation using fourier descriptor analysis publication-title: Geotechnique. doi: 10.1680/geot.2001.51.6.545 – volume: 1959 start-page: 574 issue: 148 year: 1959 ident: 10.1016/j.enggeo.2021.106235_bb0115 article-title: Receptive fields of single neurones in the cat’s striate cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1959.sp006308 – year: 2005 ident: 10.1016/j.enggeo.2021.106235_bb0195 – year: 2020 ident: 10.1016/j.enggeo.2021.106235_bb0260 article-title: Clone granular soils with mixed particle morphological characteristic by integrating spherical harmonics with Gaussian mixture model, expectation-maximization, and Dirichlet process publication-title: Acta Geotech. doi: 10.1007/s11440-020-00963-3 – volume: 91 start-page: 179 year: 2017 ident: 10.1016/j.enggeo.2021.106235_bb0065 article-title: Discrete element modeling of crushable sands conserving realistic particle shape effect publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2017.07.016 – year: 2007 ident: 10.1016/j.enggeo.2021.106235_bb0390 article-title: An image segmentation algorithm in image processing based on threshold segmentation – volume: 4 start-page: 324 issue: 4 year: 1983 ident: 10.1016/j.enggeo.2021.106235_bb0090 article-title: Finding the convex hull of a simple polygon publication-title: J. Algorithm. doi: 10.1016/0196-6774(83)90013-5 – volume: 184 start-page: 126 year: 2015 ident: 10.1016/j.enggeo.2021.106235_bb0370 article-title: Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2014.11.009 – year: 2020 ident: 10.1016/j.enggeo.2021.106235_bb0265 article-title: Realistic soil particle generation based on limited morphological information by probability-based spherical harmonics publication-title: Comput. Partic. Mech. – volume: 55 start-page: 109 issue: 1–2 year: 2003 ident: 10.1016/j.enggeo.2021.106235_bb0010 article-title: Hyperparameter design criteria for support vector classifiers publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00430-2 |
| SSID | ssj0013007 |
| Score | 2.486166 |
| Snippet | Nanjing sand, a type of greenish-grey schistous sand, is rich in weathered mica fragments, making it anisotropic and significantly differ from the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106235 |
| SubjectTerms | anisotropy Deep learning Gaussian random noise mica micro-computed tomography Micro-computed tomography imaging quartz Random particle generation sand Schistous sand Variational autoencoder |
| Title | Randomly generating three-dimensional realistic schistous sand particles using deep learning: Variational autoencoder implementation |
| URI | https://dx.doi.org/10.1016/j.enggeo.2021.106235 https://www.proquest.com/docview/2551957709 |
| Volume | 291 |
| WOSCitedRecordID | wos000678363000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013007 issn: 0013-7952 databaseCode: AIEXJ dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOEz-1MUBGQlwiT_lZ29wm1AmmqiDWQTlZbvI6UnVpaZtpSBz5w3lO4qSloI0Dl6S1nDTK99V-79nve4S8DHmYdLR2WShin4Uy5kyCBwxtZdA4JUJUirj2eL8vhkP5odX6YXNhLqc8y8TVlZz_V6ixDcE2qbP_AHd9U2zAzwg6HhF2PN4I-I86S2YX0--mOLJRTC7zoRYALDFK_qUKh4O24rTQaHbQvTXyAvnSWRaiAXarnJMXYYQEYG5rSxSp0Z_Qu7YRRJ2vZkYJ0whSpBd2K3qNtY34N5qH-FAbcfzToqawc5JqNklrjtVR7M-QNhH_rabTvBgyv-QZ-1qRvIpf-J7ZbOG762OyFzAuo40x2ZeeMz9Ed9UPIvbHkb4MOkwOITs_L7I4fa_q38xsdjW__14dn_V6atAdDl7NvzFTc8yszVcFWG6RHZ9HUrTJztG77vCkWYVyy3R7-4Q29bLYH7j9w38zbX6b5AvLZXCP7FYuBz0qcb1PWpA9IHfXQHlIflrS0IY0dIs0tCYNrUlDDWloTRpakIYa0lBLmtd0jTJ0jTJ0kzKPyNlxd_DmLavqczCNZs-K6bjDpZ9EI5HEMhTARSjwO0jgpmiB1MIdobeQJJ2xDsCLtccDHesxnjogAh48Ju1slsEeoTrxxgE6_yA4GI1ICX4kdOKCHKFLD7BPAvtqVVyJ15saKlNldylOVAmIMoCoEpB9wuqr5qV4yzX9uUVNVQZoaVgqZN01V76wICscn82im84AUVDosnsy4tyVT27Q54Dcaf4jT0l7tcjhGbkdX67S5eJ5xc9fS1W5kw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomly+generating+three-dimensional+realistic+schistous+sand+particles+using+deep+learning%3A+Variational+autoencoder+implementation&rft.jtitle=Engineering+geology&rft.au=Shi%2C+Jia-jie&rft.au=Zhang%2C+Wei&rft.au=Wang%2C+Wei&rft.au=Sun%2C+Yun-han&rft.date=2021-09-20&rft.issn=0013-7952&rft.volume=291+p.106235-&rft_id=info:doi/10.1016%2Fj.enggeo.2021.106235&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7952&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7952&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7952&client=summon |