Learning Program Models from Generated Inputs

Recent advances in Machine Learning (ML) show that Neural Machine Translation (NMT) models can mock the program behavior when trained on input-output pairs. Such models can mock the functionality of existing programs and serve as quick-to-deploy reverse engineering tools. Still, the problem of autom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) S. 245 - 247
1. Verfasser: Mammadov, Tural
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.05.2023
Schlagworte:
ISSN:2574-1934
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in Machine Learning (ML) show that Neural Machine Translation (NMT) models can mock the program behavior when trained on input-output pairs. Such models can mock the functionality of existing programs and serve as quick-to-deploy reverse engineering tools. Still, the problem of automatically learning such predictive and reversible models from programs needs to be solved. This work introduces a generic approach for automated and reversible program behavior modeling. It achieves 94% of overall accuracy in the conversion of Markdown-to-HTML and HTML-to-Markdown markups.
ISSN:2574-1934
DOI:10.1109/ICSE-Companion58688.2023.00066