Wetting-induced collapse of loess: Tracing microstructural evolution

Loess is a silt-dominated, clastic yellow-to-yellowish brown aeolian sediment with high porosity and low density. The metastable microstructure of loess makes it highly susceptible to collapse, which plays a major role in landform evolution, geohazard development and engineering damages, particularl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering geology Ročník 340; s. 107673
Hlavní autoři: Wang, Yuanyuan, Li, Yanrong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2024
Témata:
ISSN:0013-7952
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Loess is a silt-dominated, clastic yellow-to-yellowish brown aeolian sediment with high porosity and low density. The metastable microstructure of loess makes it highly susceptible to collapse, which plays a major role in landform evolution, geohazard development and engineering damages, particularly the widespread occurrences of settlement, deformation and cracking of civil engineering structures. Differing from the existing investigations based on pre- and post-collapse comparison, the present study is to report the microstructural changes during the collapse process and to determine how each microstructural constitutive element participates in this process. A series of laboratory tests was conducted on undisturbed loess specimens to simulate and capture snapshots of microstructure at five representative points during the entire collapse process. Results show that the loess microstructure becomes more homogeneous as the outstanding macropores are crushed into smaller (meso- and mini-pores) pores, the number of pores is dramatically increased, and the pore throats become narrower. The pore shapes have no obvious changes and remain elongated and rough-edged morphology from the point of view of statistic. Regarding solids, the pre-collapse unstable point-to-point contacts tend to transform into relatively stable edge (edge-edge or point-edge) type contacts, whilst coarse particles tend to reorient along the horizonal direction. XRD, SEM and EDS analysis indicates that these changes in the nature and distribution of pores and particles result from (1) the breakage and disintegration of moderately to highly weathered particles, (2) the disintegration of the matrix due to the swelling of clay minerals and the dissolution of calcium carbonates, (3) the consequential modifications of the microscopic forces which lead to slipping, rotation and therefore dislocation of particles, and (4) the collapse of mesoscale force chains along particles, reforming on smaller scales with larger numbers, shorter lengths and horizontal alignments. [Display omitted] •Systematic experimental microstructural study of wetting-driven loess collapse.•Tracing collapse mechanism with microstructure and roles of its elements.•Loess collapse results essentially from crushing of its macropores (> 32 μm).•Matrix changes with fragmentation, dissolution and swelling of the solids.•Particle force chains break as particles disintegrate, dislocate and/or rotate.
AbstractList Loess is a silt-dominated, clastic yellow-to-yellowish brown aeolian sediment with high porosity and low density. The metastable microstructure of loess makes it highly susceptible to collapse, which plays a major role in landform evolution, geohazard development and engineering damages, particularly the widespread occurrences of settlement, deformation and cracking of civil engineering structures. Differing from the existing investigations based on pre- and post-collapse comparison, the present study is to report the microstructural changes during the collapse process and to determine how each microstructural constitutive element participates in this process. A series of laboratory tests was conducted on undisturbed loess specimens to simulate and capture snapshots of microstructure at five representative points during the entire collapse process. Results show that the loess microstructure becomes more homogeneous as the outstanding macropores are crushed into smaller (meso- and mini-pores) pores, the number of pores is dramatically increased, and the pore throats become narrower. The pore shapes have no obvious changes and remain elongated and rough-edged morphology from the point of view of statistic. Regarding solids, the pre-collapse unstable point-to-point contacts tend to transform into relatively stable edge (edge-edge or point-edge) type contacts, whilst coarse particles tend to reorient along the horizonal direction. XRD, SEM and EDS analysis indicates that these changes in the nature and distribution of pores and particles result from (1) the breakage and disintegration of moderately to highly weathered particles, (2) the disintegration of the matrix due to the swelling of clay minerals and the dissolution of calcium carbonates, (3) the consequential modifications of the microscopic forces which lead to slipping, rotation and therefore dislocation of particles, and (4) the collapse of mesoscale force chains along particles, reforming on smaller scales with larger numbers, shorter lengths and horizontal alignments.
Loess is a silt-dominated, clastic yellow-to-yellowish brown aeolian sediment with high porosity and low density. The metastable microstructure of loess makes it highly susceptible to collapse, which plays a major role in landform evolution, geohazard development and engineering damages, particularly the widespread occurrences of settlement, deformation and cracking of civil engineering structures. Differing from the existing investigations based on pre- and post-collapse comparison, the present study is to report the microstructural changes during the collapse process and to determine how each microstructural constitutive element participates in this process. A series of laboratory tests was conducted on undisturbed loess specimens to simulate and capture snapshots of microstructure at five representative points during the entire collapse process. Results show that the loess microstructure becomes more homogeneous as the outstanding macropores are crushed into smaller (meso- and mini-pores) pores, the number of pores is dramatically increased, and the pore throats become narrower. The pore shapes have no obvious changes and remain elongated and rough-edged morphology from the point of view of statistic. Regarding solids, the pre-collapse unstable point-to-point contacts tend to transform into relatively stable edge (edge-edge or point-edge) type contacts, whilst coarse particles tend to reorient along the horizonal direction. XRD, SEM and EDS analysis indicates that these changes in the nature and distribution of pores and particles result from (1) the breakage and disintegration of moderately to highly weathered particles, (2) the disintegration of the matrix due to the swelling of clay minerals and the dissolution of calcium carbonates, (3) the consequential modifications of the microscopic forces which lead to slipping, rotation and therefore dislocation of particles, and (4) the collapse of mesoscale force chains along particles, reforming on smaller scales with larger numbers, shorter lengths and horizontal alignments. [Display omitted] •Systematic experimental microstructural study of wetting-driven loess collapse.•Tracing collapse mechanism with microstructure and roles of its elements.•Loess collapse results essentially from crushing of its macropores (> 32 μm).•Matrix changes with fragmentation, dissolution and swelling of the solids.•Particle force chains break as particles disintegrate, dislocate and/or rotate.
ArticleNumber 107673
Author Wang, Yuanyuan
Li, Yanrong
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Wang
  fullname: Wang, Yuanyuan
– sequence: 2
  givenname: Yanrong
  surname: Li
  fullname: Li, Yanrong
  email: liyanrong@tyut.edu.cn
BookMark eNqFkD1PwzAQhj0UiRb4BwwZWVL8maQdkFD5lCqxFDFaV-dSuUrtYjuV-PckChMDTKc7vc_p1TMjE-cdEnLN6JxRVtzu5-h2O_RzTrnsT2VRigmZUspEXi4UPyezGPfDSmk5JQ8fmJJ1u9y6ujNYZ8a3LRwjZr7JWo8xLrNNANNHsoM1wccUOpO6AG2GJ992yXp3Sc4aaCNe_cwL8v70uFm95Ou359fV_ToHUfCUF4obhAJ4VYEEahgvlAHZyGqrUGKjgBVKSo7bBpisKNYLarhppFCUowBxQW7Gv8fgPzuMSR9sNNgXdui7qAVTohSVFKyPLsfoUDkGbLSxCYayKYBtNaN60KX3etSlB1161NXD8hd8DPYA4es_7G7EsHdwshh0NBZdb9UGNEnX3v794BvWrItL
CitedBy_id crossref_primary_10_1016_j_enggeo_2024_107742
crossref_primary_10_1016_j_still_2025_106548
crossref_primary_10_1016_j_enggeo_2024_107837
crossref_primary_10_1016_j_jseaes_2025_106726
crossref_primary_10_1007_s10706_025_03288_8
crossref_primary_10_1016_j_enggeo_2025_108350
crossref_primary_10_1016_j_enggeo_2024_107892
Cites_doi 10.1061/(ASCE)GT.1943-5606.0002025
10.1016/j.jrmge.2015.12.002
10.2136/sssaj1973.03615995003700020033x
10.1016/j.enggeo.2023.107213
10.1016/j.enggeo.2008.12.002
10.1016/1040-6182(94)90036-1
10.1016/j.catena.2020.104585
10.1038/nature03805
10.1103/PhysRevE.72.041307
10.1139/cgj-2015-0285
10.1016/j.earscirev.2023.104665
10.1061/(ASCE)GM.1943-5622.0002609
10.1016/j.gete.2019.100177
10.1016/j.enggeo.2017.11.025
10.1016/j.quaint.2016.09.058
10.1016/j.earscirev.2019.102947
10.1007/s12665-019-8331-z
10.1016/0169-1317(89)90040-9
10.1016/j.enggeo.2018.12.024
10.1016/0013-7952(94)90045-0
10.1016/j.catena.2021.105206
10.1016/0013-7952(88)90024-5
10.1016/j.quaint.2005.12.002
10.1007/s10064-014-0694-5
10.1016/j.catena.2022.106273
10.1016/0013-7952(88)90029-4
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.enggeo.2024.107673
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enggeo_2024_107673
S0013795224002734
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACNCT
ACRLP
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSZ
T5K
TN5
VH1
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABUFD
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-a362t-652cea6a288a4a0c1265ca4f48b5e4ef5a165442ebfa1480ed90c2cf43502e3a3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001295736800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-7952
IngestDate Sat Sep 27 19:04:06 EDT 2025
Sat Nov 29 05:53:14 EST 2025
Tue Nov 18 22:42:47 EST 2025
Sat Dec 14 16:15:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Structural evolution
Metastable microstructure
Material alteration
Hydroconsolidation model
Force chain
Language English
License This is an open access article under the CC BY-NC license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a362t-652cea6a288a4a0c1265ca4f48b5e4ef5a165442ebfa1480ed90c2cf43502e3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.enggeo.2024.107673
PQID 3153738431
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153738431
crossref_citationtrail_10_1016_j_enggeo_2024_107673
crossref_primary_10_1016_j_enggeo_2024_107673
elsevier_sciencedirect_doi_10_1016_j_enggeo_2024_107673
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Engineering geology
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Li, Li, Song, Hong, Wang, Sun (bb0070) 2019; 249
Lu, Zhang (bb0095) 2019; 145
Yuan, Wang (bb0195) 2009; 105
Gao (bb0040) 1988; 25
Handy (bb0050) 1973; 37
Standardization Administration of China (SAC), Ministry of Construction (bb0145) 2004
Wei, Fan, Fu, Yu (bb0180) 2023; 23
Grabowska-Olszewska (bb0045) 1989; 4
Rogers, Dijkstra, Smalley (bb0125) 1994; 37
Wei, Fan, Yuan, Wei, Yu (bb0165) 2019; 78
Zhang, Li, Wang, Beroya-Eitner (bb0080) 2022; 214
Derbyshire, Mellors (bb0025) 1988; 25
Wei, Fan, Zhou, Deng, Wu, Wei (bb0175) 2023; 323
Milodowski, Northmore, Kemp (bb0105) 2015; 74
Smalley, Mavlyanova, Rakhmatullaev, Shermatov, Machalettc, O’Hara Dhand, Jefferson (bb0140) 2006; 152–153
Rogers (bb0120) 1995
Li, Shi, Aydin, Beroya-Eitner, Gao (bb0075) 2020; 201
Santamarina (bb0130) 2003
Sun (bb0150) 2005
ASTM (bb0015) 2006
Liu, Liu, Ma, Wang, Bai, Zheng, Yin, Zhang (bb0090) 2016; 53
Peters, Muthuswamy, Wibowo, Tordesillas (bb0115) 2005; 72
Li, Vanapalli, Li (bb0065) 2016; 8
Yu, Fan, Dijkstra, Wei, Deng (bb0190) 2021; 201
Shao, Zhang, Tan (bb0135) 2018; 233
Assadi-Langroudi, Ng’ambi, Smalley (bb0010) 2018; 469
Zheng (bb0205) 1982
Delage, Tessier (bb0020) 2021; 27
Wei, Fan, Yu, Deng, Wei (bb0170) 2020; 192
Lei (bb0060) 1987; 5
Zhang, Fan, Li, He, Guo (bb0200) 2022; 2022
Fan, Wei, Yu, Deng, Yu (bb0030) 2022; 49
Yang (bb0185) 1988; 7
Wang, Li, Li, Hong, Yao, Lei, Zhang (bb0160) 2020; 9
Osipov, Sokolov (bb0110) 1995
Assadi-Langroudi (bb0005) 2014
Majmudar, Behringer (bb0100) 2005; 435
Sun, Xin, Liu, Jin (bb0155) 2009; S1
Gao (bb0035) 1981; 7
Li, Wang, Aydin (bb0085) 2024; 249
Klukanova, Sajgalik (bb0055) 1994; 24
Derbyshire (10.1016/j.enggeo.2024.107673_bb0025) 1988; 25
Peters (10.1016/j.enggeo.2024.107673_bb0115) 2005; 72
Standardization Administration of China (SAC), Ministry of Construction (10.1016/j.enggeo.2024.107673_bb0145) 2004
Sun (10.1016/j.enggeo.2024.107673_bb0155) 2009; S1
Rogers (10.1016/j.enggeo.2024.107673_bb0125) 1994; 37
Yu (10.1016/j.enggeo.2024.107673_bb0190) 2021; 201
Yuan (10.1016/j.enggeo.2024.107673_bb0195) 2009; 105
Smalley (10.1016/j.enggeo.2024.107673_bb0140) 2006; 152–153
ASTM (10.1016/j.enggeo.2024.107673_bb0015) 2006
Handy (10.1016/j.enggeo.2024.107673_bb0050) 1973; 37
Zheng (10.1016/j.enggeo.2024.107673_bb0205) 1982
Li (10.1016/j.enggeo.2024.107673_bb0065) 2016; 8
Wang (10.1016/j.enggeo.2024.107673_bb0160) 2020; 9
Li (10.1016/j.enggeo.2024.107673_bb0070) 2019; 249
Shao (10.1016/j.enggeo.2024.107673_bb0135) 2018; 233
Majmudar (10.1016/j.enggeo.2024.107673_bb0100) 2005; 435
Delage (10.1016/j.enggeo.2024.107673_bb0020) 2021; 27
Osipov (10.1016/j.enggeo.2024.107673_bb0110) 1995
Zhang (10.1016/j.enggeo.2024.107673_bb0200) 2022; 2022
Assadi-Langroudi (10.1016/j.enggeo.2024.107673_bb0005) 2014
Assadi-Langroudi (10.1016/j.enggeo.2024.107673_bb0010) 2018; 469
Fan (10.1016/j.enggeo.2024.107673_bb0030) 2022; 49
Wei (10.1016/j.enggeo.2024.107673_bb0175) 2023; 323
Klukanova (10.1016/j.enggeo.2024.107673_bb0055) 1994; 24
Lu (10.1016/j.enggeo.2024.107673_bb0095) 2019; 145
Gao (10.1016/j.enggeo.2024.107673_bb0040) 1988; 25
Yang (10.1016/j.enggeo.2024.107673_bb0185) 1988; 7
Zhang (10.1016/j.enggeo.2024.107673_bb0080) 2022; 214
Li (10.1016/j.enggeo.2024.107673_bb0085) 2024; 249
Wei (10.1016/j.enggeo.2024.107673_bb0170) 2020; 192
Wei (10.1016/j.enggeo.2024.107673_bb0180) 2023; 23
Liu (10.1016/j.enggeo.2024.107673_bb0090) 2016; 53
Rogers (10.1016/j.enggeo.2024.107673_bb0120) 1995
Grabowska-Olszewska (10.1016/j.enggeo.2024.107673_bb0045) 1989; 4
Santamarina (10.1016/j.enggeo.2024.107673_bb0130) 2003
Lei (10.1016/j.enggeo.2024.107673_bb0060) 1987; 5
Li (10.1016/j.enggeo.2024.107673_bb0075) 2020; 201
Gao (10.1016/j.enggeo.2024.107673_bb0035) 1981; 7
Wei (10.1016/j.enggeo.2024.107673_bb0165) 2019; 78
Sun (10.1016/j.enggeo.2024.107673_bb0150) 2005
Milodowski (10.1016/j.enggeo.2024.107673_bb0105) 2015; 74
References_xml – year: 2005
  ident: bb0150
  article-title: Loess
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 11
  ident: bb0200
  article-title: Water-induced disintegration behaviour of Malan loess
  publication-title: Earth Surf. Process. Landf.
– volume: 7
  start-page: 962
  year: 1981
  end-page: 974
  ident: bb0035
  article-title: Classification of microstructure of loess in China and their collapsibility
  publication-title: Sci. Sinica
– volume: 25
  start-page: 135
  year: 1988
  end-page: 175
  ident: bb0025
  article-title: Geological and geotechnical characteristics of some loess and loessic soils from China and Britain: a comparison
  publication-title: Eng. Geol.
– volume: 214
  year: 2022
  ident: bb0080
  article-title: A model for the formation and evolution of structure of initial loess deposits
  publication-title: Catena
– volume: 8
  start-page: 256
  year: 2016
  end-page: 274
  ident: bb0065
  article-title: Review of collapse triggering mechanism of collapsible soils due to wetting
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 49
  start-page: 13
  year: 2022
  ident: bb0030
  article-title: Research progress and prospect of loess collapsible mechanism in micro-level
  publication-title: Hydrogeol. Eng. Geol.
– volume: 152–153
  start-page: 59
  year: 2006
  end-page: 69
  ident: bb0140
  article-title: The formation of loess deposits in the Tashkent region and parts of Central Asia; and problems with irrigation, hydrocollapse and soil erosion
  publication-title: Quat. Int.
– volume: 27
  year: 2021
  ident: bb0020
  article-title: Macroscopic effects of nano and microscopic phenomena in clayey soils and clay rocks
  publication-title: Geomech. Energy Env.
– volume: 201
  year: 2020
  ident: bb0075
  article-title: Loess genesis and worldwide distribution
  publication-title: Earth Sci. Rev.
– volume: 4
  start-page: 327
  year: 1989
  end-page: 336
  ident: bb0045
  article-title: Skeletal microstructure of loesses – its significance for engineering-geological and geotechnical studies
  publication-title: Appl. Clay Sci.
– volume: 72
  year: 2005
  ident: bb0115
  article-title: Characterization of force chains in granular material
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
– volume: 7
  start-page: 756
  year: 1988
  end-page: 766
  ident: bb0185
  article-title: Study on collapsible mechanism of loess soils
  publication-title: Chi. Sci.
– year: 2014
  ident: bb0005
  article-title: Micromechanics of Collapse in Loess
– volume: 78
  start-page: 333
  year: 2019
  end-page: 348
  ident: bb0165
  article-title: Three-dimensional pore network characterization of loess and paleosol stratigraphy from south Jingyang plateau, China
  publication-title: Environ. Earth Sci.
– volume: 323
  year: 2023
  ident: bb0175
  article-title: Quantification of the spatial-temporal evolution of loess microstructure from the Dongzhi tableland during shearing
  publication-title: Eng. Geol.
– volume: 25
  start-page: 235
  year: 1988
  end-page: 245
  ident: bb0040
  article-title: Formation and development of the structure of collapsing loess in China
  publication-title: Eng. Geol.
– start-page: 1
  year: 1995
  end-page: 17
  ident: bb0120
  article-title: Types and distribution of collapsible soil
  publication-title: Genesis and Properties of Collapsible Soils
– volume: 233
  start-page: 11
  year: 2018
  end-page: 22
  ident: bb0135
  article-title: Collapse behavior and microstructural alteration of remolded loess under graded wetting tests
  publication-title: Eng. Geol.
– volume: 24
  start-page: 35
  year: 1994
  end-page: 39
  ident: bb0055
  article-title: Changes in loess fabric caused by collapse: an experimental study
  publication-title: Quat. Int.
– volume: 37
  start-page: 83
  year: 1994
  end-page: 113
  ident: bb0125
  article-title: Hydroconsolidation and subsidence of loess: studies from China, Russia, North America and Europe
  publication-title: Eng. Geol.
– volume: 192
  year: 2020
  ident: bb0170
  article-title: Characterization and evolution of three-dimensional microstructure of Malan loess
  publication-title: Catena
– volume: 23
  start-page: 06022036
  year: 2023
  ident: bb0180
  article-title: Experimental investigation of the hydration swelling effect of clay minerals on loess collapsibility
  publication-title: Int. J. Geomech.
– volume: 249
  start-page: 77
  year: 2019
  end-page: 88
  ident: bb0070
  article-title: Characterization of the mechanisms underlying loess collapsibility for land-creation project in Shaanxi Province, China—a study from a micro perspective
  publication-title: Eng. Geol.
– year: 2003
  ident: bb0130
  article-title: Soil behavior at the microscale: Particle forces
  publication-title: Soil Behavior and Soft Ground Construction
– volume: 9
  year: 2020
  ident: bb0160
  article-title: Characterization of the collapsible mechanisms of Malan loess on the Chinese Loess Plateau and their effects on eroded loess landforms
  publication-title: Ecol. Risk Assess.
– volume: S1
  start-page: 5
  year: 2009
  ident: bb0155
  article-title: Skeleton and force chain network in static granular material
  publication-title: Rock Soil Mech.
– volume: 53
  start-page: 673
  year: 2016
  end-page: 686
  ident: bb0090
  article-title: Collapsibility, composition, and microstructure of loess in China
  publication-title: Can. Geotech. J.
– year: 2004
  ident: bb0145
  article-title: China National Standards GB50025–2004: Standard for Building Construction in Collapsible Loess Regions
– volume: 201
  year: 2021
  ident: bb0190
  article-title: Heterogeneous evolution of pore structure during loess collapse: Insights from X-ray micro-computed tomography
  publication-title: Catena
– volume: 105
  start-page: 119
  year: 2009
  end-page: 123
  ident: bb0195
  article-title: Collapsibility and seismic settlement of loess
  publication-title: Eng. Geol.
– year: 2006
  ident: bb0015
  article-title: Annual Book of ASTM Standards
– volume: 74
  start-page: 1187
  year: 2015
  ident: bb0105
  article-title: The mineralogy and fabric of‘Brickearths’ (loess) in Kent, UK and their relationship to engineering behaviour
  publication-title: Bull. Eng. Geol. Environ.
– volume: 249
  year: 2024
  ident: bb0085
  article-title: Loess structure: Evolution and a scale-based classification
  publication-title: Earth Sci. Rev.
– start-page: 49
  year: 1995
  end-page: 63
  ident: bb0110
  article-title: Factors and mechanism of loess collapsibility
  publication-title: Genesis and Properties of Collapsible Soils
– volume: 5
  start-page: 15
  year: 1987
  end-page: 18
  ident: bb0060
  article-title: Size of loess pores in relation to collapsibility
  publication-title: Hydrogeol. Eng. Geol.
– volume: 469
  start-page: 20
  year: 2018
  end-page: 29
  ident: bb0010
  article-title: Loess as a collapsible soil: some basic particle packing aspects
  publication-title: Quat. Int.
– volume: 145
  start-page: 04019006
  year: 2019
  ident: bb0095
  article-title: Soil sorptive potential: concept, theory, and verification
  publication-title: Geotech. Geoenviron. Eng.
– volume: 37
  start-page: 281
  year: 1973
  end-page: 284
  ident: bb0050
  article-title: Collapsible loess in Lowa
  publication-title: Soil Sci. Soc. Am. J.
– year: 1982
  ident: bb0205
  article-title: Collapsibility of Chinese Loess
– volume: 435
  start-page: 1079
  year: 2005
  end-page: 1082
  ident: bb0100
  article-title: Contact force measurements and stress-induced anisotropy in granular materials
  publication-title: Nature
– year: 2003
  ident: 10.1016/j.enggeo.2024.107673_bb0130
  article-title: Soil behavior at the microscale: Particle forces
– volume: 145
  start-page: 04019006
  issue: 4
  year: 2019
  ident: 10.1016/j.enggeo.2024.107673_bb0095
  article-title: Soil sorptive potential: concept, theory, and verification
  publication-title: Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0002025
– start-page: 1
  year: 1995
  ident: 10.1016/j.enggeo.2024.107673_bb0120
  article-title: Types and distribution of collapsible soil
– volume: 8
  start-page: 256
  year: 2016
  ident: 10.1016/j.enggeo.2024.107673_bb0065
  article-title: Review of collapse triggering mechanism of collapsible soils due to wetting
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2015.12.002
– volume: 37
  start-page: 281
  issue: 2
  year: 1973
  ident: 10.1016/j.enggeo.2024.107673_bb0050
  article-title: Collapsible loess in Lowa
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1973.03615995003700020033x
– year: 2004
  ident: 10.1016/j.enggeo.2024.107673_bb0145
– volume: 323
  year: 2023
  ident: 10.1016/j.enggeo.2024.107673_bb0175
  article-title: Quantification of the spatial-temporal evolution of loess microstructure from the Dongzhi tableland during shearing
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2023.107213
– volume: 105
  start-page: 119
  year: 2009
  ident: 10.1016/j.enggeo.2024.107673_bb0195
  article-title: Collapsibility and seismic settlement of loess
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2008.12.002
– volume: 7
  start-page: 962
  year: 1981
  ident: 10.1016/j.enggeo.2024.107673_bb0035
  article-title: Classification of microstructure of loess in China and their collapsibility
  publication-title: Sci. Sinica
– volume: 24
  start-page: 35
  year: 1994
  ident: 10.1016/j.enggeo.2024.107673_bb0055
  article-title: Changes in loess fabric caused by collapse: an experimental study
  publication-title: Quat. Int.
  doi: 10.1016/1040-6182(94)90036-1
– volume: 192
  year: 2020
  ident: 10.1016/j.enggeo.2024.107673_bb0170
  article-title: Characterization and evolution of three-dimensional microstructure of Malan loess
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104585
– volume: 49
  start-page: 13
  issue: 5
  year: 2022
  ident: 10.1016/j.enggeo.2024.107673_bb0030
  article-title: Research progress and prospect of loess collapsible mechanism in micro-level
  publication-title: Hydrogeol. Eng. Geol.
– volume: 435
  start-page: 1079
  year: 2005
  ident: 10.1016/j.enggeo.2024.107673_bb0100
  article-title: Contact force measurements and stress-induced anisotropy in granular materials
  publication-title: Nature
  doi: 10.1038/nature03805
– volume: 72
  year: 2005
  ident: 10.1016/j.enggeo.2024.107673_bb0115
  article-title: Characterization of force chains in granular material
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.72.041307
– volume: 53
  start-page: 673
  year: 2016
  ident: 10.1016/j.enggeo.2024.107673_bb0090
  article-title: Collapsibility, composition, and microstructure of loess in China
  publication-title: Can. Geotech. J.
  doi: 10.1139/cgj-2015-0285
– volume: 249
  year: 2024
  ident: 10.1016/j.enggeo.2024.107673_bb0085
  article-title: Loess structure: Evolution and a scale-based classification
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2023.104665
– volume: 23
  start-page: 06022036
  issue: 1
  year: 2023
  ident: 10.1016/j.enggeo.2024.107673_bb0180
  article-title: Experimental investigation of the hydration swelling effect of clay minerals on loess collapsibility
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0002609
– volume: 27
  year: 2021
  ident: 10.1016/j.enggeo.2024.107673_bb0020
  article-title: Macroscopic effects of nano and microscopic phenomena in clayey soils and clay rocks
  publication-title: Geomech. Energy Env.
  doi: 10.1016/j.gete.2019.100177
– year: 2005
  ident: 10.1016/j.enggeo.2024.107673_bb0150
– volume: S1
  start-page: 5
  year: 2009
  ident: 10.1016/j.enggeo.2024.107673_bb0155
  article-title: Skeleton and force chain network in static granular material
  publication-title: Rock Soil Mech.
– year: 2006
  ident: 10.1016/j.enggeo.2024.107673_bb0015
– volume: 233
  start-page: 11
  year: 2018
  ident: 10.1016/j.enggeo.2024.107673_bb0135
  article-title: Collapse behavior and microstructural alteration of remolded loess under graded wetting tests
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2017.11.025
– year: 2014
  ident: 10.1016/j.enggeo.2024.107673_bb0005
– start-page: 49
  year: 1995
  ident: 10.1016/j.enggeo.2024.107673_bb0110
  article-title: Factors and mechanism of loess collapsibility
– volume: 7
  start-page: 756
  year: 1988
  ident: 10.1016/j.enggeo.2024.107673_bb0185
  article-title: Study on collapsible mechanism of loess soils
  publication-title: Chi. Sci.
– volume: 469
  start-page: 20
  year: 2018
  ident: 10.1016/j.enggeo.2024.107673_bb0010
  article-title: Loess as a collapsible soil: some basic particle packing aspects
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2016.09.058
– year: 1982
  ident: 10.1016/j.enggeo.2024.107673_bb0205
– volume: 5
  start-page: 15
  year: 1987
  ident: 10.1016/j.enggeo.2024.107673_bb0060
  article-title: Size of loess pores in relation to collapsibility
  publication-title: Hydrogeol. Eng. Geol.
– volume: 201
  year: 2020
  ident: 10.1016/j.enggeo.2024.107673_bb0075
  article-title: Loess genesis and worldwide distribution
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.102947
– volume: 78
  start-page: 333
  year: 2019
  ident: 10.1016/j.enggeo.2024.107673_bb0165
  article-title: Three-dimensional pore network characterization of loess and paleosol stratigraphy from south Jingyang plateau, China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8331-z
– volume: 4
  start-page: 327
  issue: 4
  year: 1989
  ident: 10.1016/j.enggeo.2024.107673_bb0045
  article-title: Skeletal microstructure of loesses – its significance for engineering-geological and geotechnical studies
  publication-title: Appl. Clay Sci.
  doi: 10.1016/0169-1317(89)90040-9
– volume: 249
  start-page: 77
  year: 2019
  ident: 10.1016/j.enggeo.2024.107673_bb0070
  article-title: Characterization of the mechanisms underlying loess collapsibility for land-creation project in Shaanxi Province, China—a study from a micro perspective
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.12.024
– volume: 37
  start-page: 83
  year: 1994
  ident: 10.1016/j.enggeo.2024.107673_bb0125
  article-title: Hydroconsolidation and subsidence of loess: studies from China, Russia, North America and Europe
  publication-title: Eng. Geol.
  doi: 10.1016/0013-7952(94)90045-0
– volume: 201
  year: 2021
  ident: 10.1016/j.enggeo.2024.107673_bb0190
  article-title: Heterogeneous evolution of pore structure during loess collapse: Insights from X-ray micro-computed tomography
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105206
– volume: 25
  start-page: 135
  year: 1988
  ident: 10.1016/j.enggeo.2024.107673_bb0025
  article-title: Geological and geotechnical characteristics of some loess and loessic soils from China and Britain: a comparison
  publication-title: Eng. Geol.
  doi: 10.1016/0013-7952(88)90024-5
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.enggeo.2024.107673_bb0200
  article-title: Water-induced disintegration behaviour of Malan loess
  publication-title: Earth Surf. Process. Landf.
– volume: 9
  year: 2020
  ident: 10.1016/j.enggeo.2024.107673_bb0160
  article-title: Characterization of the collapsible mechanisms of Malan loess on the Chinese Loess Plateau and their effects on eroded loess landforms
  publication-title: Ecol. Risk Assess.
– volume: 152–153
  start-page: 59
  issue: 3
  year: 2006
  ident: 10.1016/j.enggeo.2024.107673_bb0140
  article-title: The formation of loess deposits in the Tashkent region and parts of Central Asia; and problems with irrigation, hydrocollapse and soil erosion
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2005.12.002
– volume: 74
  start-page: 1187
  year: 2015
  ident: 10.1016/j.enggeo.2024.107673_bb0105
  article-title: The mineralogy and fabric of‘Brickearths’ (loess) in Kent, UK and their relationship to engineering behaviour
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-014-0694-5
– volume: 214
  year: 2022
  ident: 10.1016/j.enggeo.2024.107673_bb0080
  article-title: A model for the formation and evolution of structure of initial loess deposits
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106273
– volume: 25
  start-page: 235
  year: 1988
  ident: 10.1016/j.enggeo.2024.107673_bb0040
  article-title: Formation and development of the structure of collapsing loess in China
  publication-title: Eng. Geol.
  doi: 10.1016/0013-7952(88)90029-4
SSID ssj0013007
Score 2.481528
Snippet Loess is a silt-dominated, clastic yellow-to-yellowish brown aeolian sediment with high porosity and low density. The metastable microstructure of loess makes...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107673
SubjectTerms calcium
clay
deformation
Force chain
Hydroconsolidation model
landforms
loess
macropores
Material alteration
Metastable microstructure
microstructure
porosity
Structural evolution
Title Wetting-induced collapse of loess: Tracing microstructural evolution
URI https://dx.doi.org/10.1016/j.enggeo.2024.107673
https://www.proquest.com/docview/3153738431
Volume 340
WOSCitedRecordID wos001295736800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  issn: 0013-7952
  databaseCode: AIEXJ
  dateStart: 19950501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0013007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF-09UEfxE-sX0TwTVZy-5FsfCtaUZEiWPX6tMxtJkdLTY67Xumf7-xH7tocUhV8CWHJbpb5LbOzszO_YewlNEbUFQjuRO64AjQcTC05qAJ9BTipQ5br98_l_r4Zj6svqdThIpQTKNvWnJ9Xs_8KNbUR2D519i_gXg1KDfROoNOTYKfnHwH_A0MoM6fD9tJf7gekZ9Flf9KRYgse9Tk47yT46ePxIods4N_AszS3Sx77NWfhqykO_PBRVxwuSaksL8T3hCCBQ2jnXdoak2dBqFWMWnJ3baS8RBU6krys9CUVKiPl0oY6jp6B49fYTqch1VIoaiyLWL1kQHT9NXCc0sg-rNWz7lxn26LUFemq7d2Pe-NP69uhPKbB91PpUyJD3N7mv35ncgw232BRHNxht9NRINuNEN5l17C9x25dEPZ99m4AZtaDmXVNFsB8kyUoswGU2QrKB-zb-72Dtx94qnvBgcyJU15o4RAKEMaAgtyNRKEdqEaZiUaFjQafgqYEThqg02yOdZU74RqyfHOBEuRDttV2LT5iWe7qSmAjQAqnilqTvQ2NHlHDxNSVmeww2YvGukQK72uTnNg--u_YRoFaL1AbBbrD-KrXLJKiXPF92UvdJsMuGmyWFsoVPV_0IFnSe_4yC1rslgsraasupSH79_E_j_6E3Vyv-6dsiyDCZ-yGOzs9Wsyfp1X3C4uLgXM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wetting-induced+collapse+of+loess%3A+Tracing+microstructural+evolution&rft.jtitle=Engineering+geology&rft.au=Wang%2C+Yuanyuan&rft.au=Li%2C+Yanrong&rft.date=2024-10-01&rft.pub=Elsevier+B.V&rft.issn=0013-7952&rft.volume=340&rft_id=info:doi/10.1016%2Fj.enggeo.2024.107673&rft.externalDocID=S0013795224002734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7952&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7952&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7952&client=summon