Handbook of Biometrics for Forensic Science

This comprehensive handbook addresses the sophisticated forensic threats and challenges that have arisen in the modern digital age, and reviews the new computing solutions that have been proposed to tackle them. These include identity-related scenarios which cannot be solved with traditional approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tistarelli, Massimo, Champod, Christophe
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Cham Springer Nature 2017
Springer
Springer International Publishing AG
Springer International Publishing
Ausgabe:1
Schriftenreihe:Advances in Computer Vision and Pattern Recognition
Schlagworte:
ISBN:9783319506739, 3319506730, 3319506714, 9783319506715
ISSN:2191-6586, 2191-6594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This comprehensive handbook addresses the sophisticated forensic threats and challenges that have arisen in the modern digital age, and reviews the new computing solutions that have been proposed to tackle them. These include identity-related scenarios which cannot be solved with traditional approaches, such as attacks on security systems and the identification of abnormal/dangerous behaviors from remote cameras. Features: provides an in-depth analysis of the state of the art, together with a broad review of the available technologies and their potential applications; discusses potential future developments in the adoption of advanced technologies for the automated or semi-automated analysis of forensic traces; presents a particular focus on the acquisition and processing of data from real-world forensic cases; offers an holistic perspective, integrating work from different research institutions and combining viewpoints from both biometric technologies and forensic science.
AbstractList This comprehensive handbook addresses the sophisticated forensic threats and challenges that have arisen in the modern digital age, and reviews the new computing solutions that have been proposed to tackle them. These include identity-related scenarios which cannot be solved with traditional approaches, such as attacks on security systems and the identification of abnormal/dangerous behaviors from remote cameras. Features: provides an in-depth analysis of the state of the art, together with a broad review of the available technologies and their potential applications; discusses potential future developments in the adoption of advanced technologies for the automated or semi-automated analysis of forensic traces; presents a particular focus on the acquisition and processing of data from real-world forensic cases; offers an holistic perspective, integrating work from different research institutions and combining viewpoints from both biometric technologies and forensic science.
Author Tistarelli, Massimo
Champod, Christophe
Author_xml – sequence: 1
  fullname: Tistarelli, Massimo
– sequence: 2
  fullname: Champod, Christophe
BackLink https://cir.nii.ac.jp/crid/1130000795931101184$$DView record in CiNii
BookMark eNpdkFtLxDAQheMVV90f4FsRQUSqM82kaR518QaCD4qvIZtNtVqTtVn175tuRdCXDDnznWHmbLN1H7xjbA_hBAHkqZJVznOOKhdQSp6rFTZOGk_KUlCrbFSgwrwUitb-9dZ_e1W5wbYLwFIJJajcZCMlkVRRAmyxcYwvAIBSUiVoxI6vjZ9NQ3jNQp2dN-HNLbrGxqwOXXYZOudjY7N72zhv3S7bqE0b3fin7rDHy4uHyXV-e3d1Mzm7zQ0vC17lhS1Kg4WdYZW-ThpQSNO6qGbOGrBTSzVCDdO0nXQWiKzjM0EkSTlhreI77GgYbOKr-4rPoV1E_dm6fs-o_5yd2NOBjfOu8U-u0wOFoPtQe1pznXi9NOjecTg45l14_3BxoZeDrfOLzrT64nxCUilOIpEHA-mbRtumfxF5ig9kypYjAmJFCdsfMGuiaROm34IPT52ZP0ctSAlJnH8D7kmCag
ContentType eBook
Book
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID I4C
RYH
DEWEY 006
DOI 10.1007/978-3-319-50673-9
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
Engineering
EISBN 9783319506739
3319506730
EISSN 2191-6594
Edition 1
1st ed. 2017 edition.
Editor Tistarelli, Massimo
Editor_xml – sequence: 1
  fullname: Tistarelli, Massimo
ExternalDocumentID 9783319506739
333104
EBC4799345
BB24594680
5495743
GroupedDBID 0D6
0DA
38.
AABBV
AALVI
ABARN
ABHTH
ABMNI
ABQPQ
ABQUB
ACBPT
ACDJR
ACLGV
ADCXD
ADVEM
AEJLV
AEKFX
AERYV
AETDV
AEZAY
AFOJC
AGIGN
AGYGE
AHUFE
AHWGJ
AIODD
AJFER
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BATQV
BBABE
CRSEL
CZZ
DNKAV
GEOUK
I4C
IEZ
MYL
SBO
SWYDZ
TPJZQ
Z83
RYH
EDHSY
ID FETCH-LOGICAL-a36238-2c26a12cd18238e7a0914bf28deca0cbc4f10f0b9547ec044ce3d544749e5cc93
ISBN 9783319506739
3319506730
3319506714
9783319506715
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417093100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2191-6586
IngestDate Mon Nov 17 05:35:10 EST 2025
Tue Nov 04 06:37:18 EST 2025
Wed Dec 10 11:48:05 EST 2025
Thu Jun 26 23:02:22 EDT 2025
Sun May 11 05:59:08 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2016959546
LCCallNum_Ident Q
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a36238-2c26a12cd18238e7a0914bf28deca0cbc4f10f0b9547ec044ce3d544749e5cc93
Notes Includes bibliographical references and index
OCLC 971492600
PQID EBC4799345
PageCount 361
ParticipantIDs askewsholts_vlebooks_9783319506739
springer_books_10_1007_978_3_319_50673_9
proquest_ebookcentral_EBC4799345
nii_cinii_1130000795931101184
casalini_monographs_5495743
PublicationCentury 2000
PublicationDate 2017
c2017
2017-02-01
PublicationDateYYYYMMDD 2017-01-01
2017-02-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Netherlands
– name: Cham
PublicationSeriesTitle Advances in Computer Vision and Pattern Recognition
PublicationSeriesTitleAlternate Advs Comp. Vision, Pattern Recognition
PublicationYear 2017
Publisher Springer Nature
Springer
Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer Nature
– name: Springer
– name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kang, Sing Bing
RelatedPersons_xml – sequence: 1
  givenname: Sing Bing
  surname: Kang
  fullname: Kang, Sing Bing
  organization: Microsoft Research, Microsoft (United States), Redmond, USA
SSID ssj0001774854
ssib023166760
ssib006652368
Score 2.0021164
Snippet This comprehensive handbook addresses the sophisticated forensic threats and challenges that have arisen in the modern digital age, and reviews the new...
SourceID askewsholts
springer
proquest
nii
casalini
SourceType Aggregation Database
Publisher
SubjectTerms Biometrics
Civil Law
Computer Science
Criminal Law and Criminal Procedure Law
Forensic Science
Special computer methods
TableOfContents 10.3.1 Scoring Method -- 10.3.2 Direct Method -- 10.4 Performance Evaluation -- 10.4.1 Performance Characteristics and Metrics -- 10.4.1.1 Performance Characteristics-Tippett Plots -- 10.4.1.2 Performance Metrics -- Performance Metric 1-Probabilities of Misleading Evidence (PMEH0 and PMEH1) -- Performance Metric 2-Equal Proportion Probability (EPP) -- Performance Metric 3-Log-Likelihood-Ratio Cost (Cllr) -- 10.4.2 Evaluation of Case-Specific Strength of Evidence -- 10.5 Conclusion -- References -- 11 On Using Soft Biometrics in Forensic Investigation -- Abstract -- 11.1 Introduction -- 11.2 Forensic Case Work as It Is Performed Today -- 11.2.1 Forensic Image Analysis at Present -- 11.2.2 Presentation of Findings in Court -- 11.2.3 Directions of Further Research -- 11.3 A Software Platform to Support Forensic Investigations: BioFoV -- 11.3.1 User Interface -- 11.3.2 Modules -- 11.3.2.1 Camera Calibration -- 11.3.2.2 Event Detection -- 11.3.2.3 Re-Projected Image Plane Measurements -- 11.3.2.4 Feature Extraction-Face Detection Example -- 11.3.3 How to Get BioFoV -- 11.4 Applications of 3D Markerless Motion Capture in Forensic Gait Analysis -- 11.4.1 Accurate 3D Imaging of Human Gait and Bodily Dimensions -- 11.4.2 Using Gait Kinematics and Random Forests for Recognition -- 11.4.3 3D Surveillance and Future Perspectives in Gait Recognition -- 11.5 Extraction of Soft Biometrics from Facial Images -- 11.5.1 Extracting Gender from Face Images -- 11.5.2 Age Classification from Facial Images -- 11.5.3 Ethnicity Classification from Facial Images -- 11.5.4 Experimental Analysis on Extracting Facial Soft Biometrics from Videos -- 11.5.4.1 Static Image-Based Approach -- 11.5.4.2 Spatiotemporal-Based Approach -- 11.5.4.3 Experiments on Gender Recognition -- 11.5.4.4 Experiments on Age Estimation
Intro -- Preface -- Contents -- 1 Biometric Technologies for Forensic Science and Policing: State of the Art -- Abstract -- 1.1 A Short Historical Introduction and Forensic Context -- 1.2 Recent Developments of Biometric Technologies in Forensic Science -- 1.3 Challenges -- 1.4 Conclusions -- Acknowledgements -- References -- Analysis of Fingerprints and Fingermarks -- 2 Capture and Analysis of Latent Marks -- Abstract -- 2.1 Introduction -- 2.2 Fingerprint Characteristics -- 2.3 Conventional Latent Mark Acquisition Techniques -- 2.4 Contact-Less Latent Mark Acquisition Techniques -- 2.5 Latent Mark Analysis Process -- 2.6 Legal Challenges of Applying New Techniques in the Latent Mark Processing -- 2.7 Summary -- References -- 3 Automated Fingerprint Identification Systems: From Fingerprints to Fingermarks -- Abstract -- 3.1 Introduction -- 3.1.1 History -- 3.1.2 AFIS Functionalities -- 3.1.3 Fingerprint Identification Accuracy -- 3.2 Automated Fingerprint/Mark Technology -- 3.2.1 Fingerprints -- 3.2.2 Fingermarks -- 3.3 Segmentation -- 3.4 Enhancement -- 3.5 Forensic Applications -- 3.5.1 Applications Using fingerprints -- 3.5.1.1 Identity Management Within Criminal Justice Systems -- 3.5.1.2 Forensic Identification of Missing Persons -- 3.5.2 Application Using Fingermarks -- 3.5.2.1 Forensic Intelligence -- 3.5.2.2 Forensic Investigation -- 3.5.2.3 Forensic Evaluation -- 3.5.3 Current Challenges -- 3.5.3.1 Automation and Transparency -- 3.5.3.2 Scalability and Interoperability -- 3.5.3.3 Forensic Fingermark Processes -- 3.6 Conclusion -- References -- 4 Challenges for Fingerprint Recognition-Spoofing, Skin Diseases, and Environmental Effects -- Abstract -- 4.1 Spoofing and Anti-spoofing -- 4.1.1 Perspiration -- 4.1.2 Spectroscopic Characteristics -- 4.1.3 Ultrasonic Technology -- 4.1.4 Physical Characteristics: Temperature
4.1.5 Physical Characteristics: Hot and Cold Stimulus -- 4.1.6 Physical Characteristics: Pressure Stimulus -- 4.1.7 Physical Characteristics: Electrical Properties -- 4.1.8 Physical Characteristics: Pulse -- 4.1.9 Physiological Basics of Heart Activity -- 4.1.10 Physical Characteristics: Blood Oxygenation -- 4.1.11 Fingerprint Spoof Preparation -- 4.2 Skin Diseases -- 4.3 Environmental Distortions -- 4.3.1 Phenomena Influencing Fingerprint Acquisition -- 4.3.2 Methods for Generation of Synthetic Fingerprints -- 4.4 Conclusion -- Acknowledgments -- References -- 5 Altered Fingerprint Detection -- 5.1 Introduction -- 5.2 Background of Fingerprint Alterations -- 5.2.1 Obliteration -- 5.2.2 Distortion -- 5.2.3 Imitation -- 5.3 Related Work -- 5.3.1 Orientation Field Analysis -- 5.3.2 Minutiae Distribution Analysis -- 5.4 Recent Algorithms for Fingerprint Alteration Detection -- 5.4.1 Preprocessing -- 5.4.2 Singular Point Density Analysis -- 5.4.3 Minutia Orientation Analysis -- 5.4.4 Orientation Difference Map -- 5.4.5 Orientation Density Map -- 5.5 Evaluation and Results -- 5.6 Conclusion -- References -- Face and Video Analysis -- 6 Face Sketch Recognition via Data-Driven Synthesis -- 6.1 Introduction -- 6.2 Related Work -- 6.3 Sparse Representation Supported Candidate Selection Methods -- 6.3.1 Sparse Feature Selection Based Face Sketch Synthesis -- 6.3.2 Sparse Representation Based Greedy Search for Face Sketch Synthesis -- 6.4 Graphical Representation Based Reconstruction Models -- 6.4.1 Transductive Face Sketch Synthesis -- 6.4.2 Multiple Representation Based Face Sketch Synthesis -- 6.5 Experimental Results -- 6.6 Conclusion -- References -- 7 Recent Developments in Video-Based Face Recognition -- 7.1 Introduction -- 7.2 Sparse Coding-Based Methods -- 7.3 Manifold-Based Methods -- 7.4 Probabilistic Methods -- 7.5 Geometrical Model-Based Methods
11.5.4.5 Experiments on Ethnicity Classification (Asian Versus Non-Asian) -- 11.5.4.6 Discussion -- 11.6 Conclusions -- References -- 12 Locating People in Surveillance Video Using Soft Biometric Traits -- 12.1 Introduction -- 12.2 Prior Work -- 12.3 Modelling Traits -- 12.4 Locating People Using a Region-Based Approach -- 12.4.1 Search Query Formulation -- 12.4.2 Searching for a Target -- 12.4.3 Assessing Clothing Type -- 12.5 Searching Using a Channel Representation -- 12.5.1 Generating an Avatar -- 12.5.2 Searching for a Target -- 12.5.3 Compensating for Scale -- 12.6 Database and Evaluation Protocol -- 12.6.1 Data -- 12.6.2 Evaluation Protocol -- 12.7 Results -- 12.7.1 Computational Efficiency and Scalability -- 12.8 Conclusions and Future Work -- References -- 13 Contact-Free Heartbeat Signal for Human Identification and Forensics -- Abstract -- 13.1 Introduction -- 13.2 Measurement of Heartbeat Signal -- 13.2.1 Contact-Based Measurement of Heartbeat Signal -- 13.2.2 Contact-Free Measurement of Heartbeat Signal -- 13.2.2.1 Motion for Contact-Free Extraction of Heartbeat Signal -- 13.2.2.2 Color for Contact-Free Extraction of Heartbeat Signal -- 13.3 Using Heartbeat Signal for Identification Purposes -- 13.3.1 Human Identification Using Contact-Based Heartbeat Signal -- 13.3.2 Human Identification Using Contact-Free Heartbeat Signal -- 13.4 Discussions and Conclusions -- References -- Statistical Analysis of Forensic Biometric Data -- 14 From Biometric Scores to Forensic Likelihood Ratios -- 14.1 Likelihood Ratio Framework for Evidence Evaluation -- 14.1.1 Challenges in LR-Based Evidence Evaluation -- 14.2 Case Assessment and Interpretation Methodology -- 14.3 Evidence Evaluation with Likelihood Ratios -- 14.4 Interpreting Biometric System Scores with Likelihood Ratios -- 14.5 LR Computation Methods from Biometric Scores
7.6 Dynamical Model-Based Methods -- 7.7 Conclusion and Future Directions -- References -- 8 Face Recognition Technologies for Evidential Evaluation of Video Traces -- 8.1 Introduction -- 8.2 Automatic Face Recognition -- 8.2.1 Face Detection -- 8.2.2 Feature Extraction -- 8.2.3 Matching -- 8.3 Face Recognition from Videos Traces -- 8.4 Handling Uncontrollable Factors Present in Videos -- 8.4.1 Approaches for Handling Pose Variations -- 8.4.2 Approaches for Handling Occlusion Variations -- 8.4.3 Approaches for Handling Illumination Variations -- 8.4.4 Approaches for Handling Low Image Quality Variations -- 8.5 Future Trends -- 8.5.1 Combining with Other Biometric Traits -- 8.5.2 Contending with the Face Ageing Issue -- 8.5.3 Different Imaging Modalities -- 8.5.4 Other Issues in Forensic Tasks -- 8.6 Summary -- References -- 9 Human Factors in Forensic Face Identification -- Abstract -- 9.1 Introduction -- 9.1.1 The Problem -- 9.2 Characteristics of Human Face Recognition Relevant for Forensics -- 9.2.1 Familiarity -- 9.2.2 Image and Demographic Factors -- 9.2.2.1 Stimulus Factors -- 9.2.2.2 Subject Factors -- 9.2.2.3 Interactive Factors -- 9.3 Are Facial Image Comparison "Experts" More Accurate at Facial Image Comparison Than Untrained People? -- 9.4 Can Computer-Based Face Identification Systems Address Weaknesses of the Forensic Examiner and the Forensic Examination Process? -- 9.4.1 Unfamiliar Face Recognition Tasks for Machines -- 9.4.2 Measuring Human Performance for Comparison with Machines -- 9.4.3 Measuring Human Performance for Comparison with Machines -- 9.5 Discussion and Future Directions -- References -- Human Motion, Speech and Behavioral Analysis -- 10 Biometric Evidence in Forensic Automatic Speaker Recognition -- Abstract -- 10.1 Introduction -- 10.2 Biometric Evidence in FASR -- 10.3 Calculation of Likelihood Ratio (LR)
14.5.1 Generating Training Scores
Title Handbook of Biometrics for Forensic Science
URI http://digital.casalini.it/9783319506739
https://cir.nii.ac.jp/crid/1130000795931101184
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4799345
http://link.springer.com/10.1007/978-3-319-50673-9
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319506739&uid=none
WOSCitedRecordID wos000417093100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB6abQvNKX0R54UpPRSCwdbDsq4btikUkh7SkpuQJRmWNt6w3ob033dkW7Z3eyg99GDhFYslZmTPN9LMNwDvCSlzLoxMBHEiYRLfuRJ9sMTljGdor6yzui02Ia6uittb-aVnCG7acgKirovHR3n_X1WNfahsnzr7D-oeHoodeI9KxxbVju0OIh5-hjI_tfVdHv-1WfWefL-lW_CXD1Q3573BG_x1jx7XnpOzy9vBF-RuNTnxv7vvAnJGCoLpLkEmdnYJwi7hlvdIqa8Bm4sun_KPb-k0fMKnOvm_0kSOhmMI55vPCeOS5UW6B3siRx_46eXi-uvncbMLQWbBfYmtYcyOlHEyh3Dk3LP-bo25D_u6-Y5ffbQIm8ZDCN1onzmKiKBeLre8g50D7RYn3BzAzOeOvIQnrn4Fz7s6n79ew3lQTbyq4lE1MaolDqqJe9W8gW8fFzcXn5K-SkWi0fijuSCG5DojxqKrRgsnNEIwVlaksM7o1JSGVVlapaXkTDiTMmYctZwxwaTjxkj6Fmb1qnaHEGvNnXGkREwlma1yyVIED67S1DKdpjaCdxM5qIcf7Yl6oyaCpDKC4yAehWu7Yz5vFEdXGOFiBKcoMWWWvs38YSZK3LNTIw5EZ5NFEAdZqvbpfZCwWswvmEA0y3gEH4KMVTd-4L7GeSiqcCaqnYqSR38Z7RhejKv1BGab9U93Cs_Mw2bZrM_6ZfQbcfBG_A
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Handbook+of+biometrics+for+forensic+science&rft.au=Tistarelli%2C+Massimo&rft.au=Champod%2C+Christophe&rft.date=2017-01-01&rft.pub=Springer&rft.isbn=9783319506715&rft_id=info:doi/10.1007%2F978-3-319-50673-9&rft.externalDocID=BB24594680
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97833195%2F9783319506739.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-319-50673-9