Towards Autonomous Testing Agents via Conversational Large Language Models
Software testing is an important part of the development cycle, yet it requires specialized expertise and substantial developer effort to adequately test software. Recent discoveries of the capabilities of large language models (LLMs) suggest that they can be used as automated testing assistants, an...
Uloženo v:
| Vydáno v: | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] s. 1688 - 1693 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
11.09.2023
|
| Témata: | |
| ISSN: | 2643-1572 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Software testing is an important part of the development cycle, yet it requires specialized expertise and substantial developer effort to adequately test software. Recent discoveries of the capabilities of large language models (LLMs) suggest that they can be used as automated testing assistants, and thus provide helpful information and even drive the testing process. To highlight the potential of this technology, we present a taxonomy of LLM-based testing agents based on their level of autonomy, and describe how a greater level of autonomy can benefit developers in practice. An example use of LLMs as a testing assistant is provided to demonstrate how a conversational framework for testing can help developers. This also highlights how the often criticized "hallucination" of LLMs can be beneficial for testing. We identify other tangible benefits that LLM-driven testing agents can bestow, and also discuss potential limitations. |
|---|---|
| AbstractList | Software testing is an important part of the development cycle, yet it requires specialized expertise and substantial developer effort to adequately test software. Recent discoveries of the capabilities of large language models (LLMs) suggest that they can be used as automated testing assistants, and thus provide helpful information and even drive the testing process. To highlight the potential of this technology, we present a taxonomy of LLM-based testing agents based on their level of autonomy, and describe how a greater level of autonomy can benefit developers in practice. An example use of LLMs as a testing assistant is provided to demonstrate how a conversational framework for testing can help developers. This also highlights how the often criticized "hallucination" of LLMs can be beneficial for testing. We identify other tangible benefits that LLM-driven testing agents can bestow, and also discuss potential limitations. |
| Author | Feldt, Robert Yoon, Juyeon Kang, Sungmin Yoo, Shin |
| Author_xml | – sequence: 1 givenname: Robert surname: Feldt fullname: Feldt, Robert email: robert.feldt@chalmers.se organization: Chalmers University of Technology – sequence: 2 givenname: Sungmin surname: Kang fullname: Kang, Sungmin email: sungmin.kang@kaist.ac.kr organization: KAIST – sequence: 3 givenname: Juyeon surname: Yoon fullname: Yoon, Juyeon email: juyeon.yoon@kaist.ac.kr organization: KAIST – sequence: 4 givenname: Shin surname: Yoo fullname: Yoo, Shin email: shin.yoo@kaist.ac.kr organization: KAIST |
| BookMark | eNotj1FLwzAUhaMouM39An3oH-i8SZp0eSxjTqXig_V53DY3pdIl0rQT_70FhcM533k5cJbsygdPjN1x2HAO5qF43ysthNkIEHIDwLPtBVub3GylAimM0dklWwidyZSrXNywZYyfAGou-YK9VOEbBxuTYhqDD6cwxaSiOHa-TYqW_BiTc4fJLvgzDRHHLnjskxKHlmb37YQzvAZLfbxl1w77SOv_XLGPx321e0rLt8PzrihTlBrG1BFZWYNooEFbK3TKOjJNpmuOwupG5k3jnHV8Vo1mS0ZJgFwYTiRQoVyx-7_djoiOX0N3wuHnyEHMjzXIX6w8UYo |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ASE56229.2023.00148 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350329964 |
| EISSN | 2643-1572 |
| EndPage | 1693 |
| ExternalDocumentID | 10298360 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN 6J9 AAJGR AAWTH ABLEC ACREN ADYOE ADZIZ AFYQB ALMA_UNASSIGNED_HOLDINGS AMTXH BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-a360t-feed3b02c0cadb5af5dfe9c46b1a2d6c37ccffdf1df1ba98e953007291ee2a5a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001103357200135&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:32:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a360t-feed3b02c0cadb5af5dfe9c46b1a2d6c37ccffdf1df1ba98e953007291ee2a5a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10298360 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Sept.-11 |
| PublicationDateYYYYMMDD | 2023-09-11 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] |
| PublicationTitleAbbrev | ASE |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0051577 ssib057256115 |
| Score | 2.3876717 |
| Snippet | Software testing is an important part of the development cycle, yet it requires specialized expertise and substantial developer effort to adequately test... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1688 |
| SubjectTerms | artificial intelligence Automation Drives large language model machine learning Middleware Oral communication Software testing Taxonomy test automation Testing |
| Title | Towards Autonomous Testing Agents via Conversational Large Language Models |
| URI | https://ieeexplore.ieee.org/document/10298360 |
| WOSCitedRecordID | wos001103357200135&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na8MwDDVr2WGn7qNj3_iwa7Y4iZ34WErLGKUU1kFvxXHkURjpaJL-_klu2u2ywyCEkEuELPFsRe-JsccsRxx1GLykbxdgULjAQIKJBzKLLQKQsl5ndpJOp9lioWctWd1zYQDAN5_BEz36f_nF2jZUKsMMjzSRDjqsk6ZqR9baB49M8aNCHPa-iNNp2soMiVA_D95GCPURcVMiEjUVNPHn10AVjyfj3j8tOWX9H2Yenx0w54wdQXnOevvRDLzN1Av2OvftsBUfNDXRFvB8z-ckqFF-8AGxqSq-XRk-pJ7zTdUWBPmE2sLxvithcpqT9ln12ft4NB--BO3YhMCgRXXg0IQ4DyMbWlPk0jhZONA2UbkwUaFsnFrrXOEEXrnRGWgZewFxARAZaeJL1i3XJVwxrvC4EWojZZxDosFkCpxSLiHqgsO95TXrk2-WXztljOXeLTd_vL9lJ-R-6rcQ4o51600D9-zYbutVtXnw6_kNUdag9A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60Cnqqj4pv9-A1mk2yeRxLaakaS8EIvZXNZlYKkkqT9vc7s02rFw9CWEIuGXZn-HZn5_uGsfs4Rxw16Lykb-egUxhHQYCBBzL2NQJQqK3ObBqNRvFkkowbsrrlwgCALT6DB3q1d_nFXC8pVYYR7iVEOthlezIIPHdN19q4j4zwt0Jsd7-I1FHUCA0JN3nsvvUR7D1ip3gkayqo58-vlioWUQbtf9pyxDo_3Dw-3qLOMduB8oS1N80ZeBOrp-w5swWxFe8uayIu4AmfZySpUX7wLvGpKr6aKd6jqvNF1aQEeUqF4Tiuk5icOqV9Vh32PuhnvaHTNE5wFFpUOwZN8HPX065WRS6VkYWBRAdhLpRXhNqPtDamMAKfXCUxJNK3EuICwFNS-WesVc5LOGc8xAOHmygp_RyCBFQcgglDExB5weDu8oJ1aG6mX2ttjOlmWi7_-H7HDobZazpNn0YvV-yQloKqL4S4Zq16sYQbtq9X9axa3Nq1_QbfTqQ7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Towards+Autonomous+Testing+Agents+via+Conversational+Large+Language+Models&rft.au=Feldt%2C+Robert&rft.au=Kang%2C+Sungmin&rft.au=Yoon%2C+Juyeon&rft.au=Yoo%2C+Shin&rft.date=2023-09-11&rft.pub=IEEE&rft.eissn=2643-1572&rft.spage=1688&rft.epage=1693&rft_id=info:doi/10.1109%2FASE56229.2023.00148&rft.externalDocID=10298360 |