A density-based clustering algorithm for earthquake zoning

A possibility of applying the density-based clustering algorithm Rough-DBSCAN for earthquake zoning is considered in the paper. By using density-based clustering for earthquake zoning it is possible to recognize nonconvex shapes, what gives much more realistic results. Special attention is thereby p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences Jg. 110; S. 90 - 95
1. Verfasser: Scitovski, Sanja
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2018
Schlagworte:
ISSN:0098-3004, 1873-7803
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A possibility of applying the density-based clustering algorithm Rough-DBSCAN for earthquake zoning is considered in the paper. By using density-based clustering for earthquake zoning it is possible to recognize nonconvex shapes, what gives much more realistic results. Special attention is thereby paid to the problem of determining the corresponding value of the parameter ɛ in the algorithm. The size of the parameter ɛ significantly influences the recognizing number and configuration of earthquake zones. A method for selecting the parameter ɛ in the case of big data is also proposed. The method is applied to the problem of earthquake data zoning in a wider area of the Republic of Croatia. •Density-based clustering algorithm for earthquake zoning.•There is the possibility to recognize nonconvex shapes.•Defining of the parameter ɛ in the case of big data is proposed.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0098-3004
1873-7803
DOI:10.1016/j.cageo.2017.08.014