A density-based clustering algorithm for earthquake zoning

A possibility of applying the density-based clustering algorithm Rough-DBSCAN for earthquake zoning is considered in the paper. By using density-based clustering for earthquake zoning it is possible to recognize nonconvex shapes, what gives much more realistic results. Special attention is thereby p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences Jg. 110; S. 90 - 95
1. Verfasser: Scitovski, Sanja
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2018
Schlagworte:
ISSN:0098-3004, 1873-7803
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A possibility of applying the density-based clustering algorithm Rough-DBSCAN for earthquake zoning is considered in the paper. By using density-based clustering for earthquake zoning it is possible to recognize nonconvex shapes, what gives much more realistic results. Special attention is thereby paid to the problem of determining the corresponding value of the parameter ɛ in the algorithm. The size of the parameter ɛ significantly influences the recognizing number and configuration of earthquake zones. A method for selecting the parameter ɛ in the case of big data is also proposed. The method is applied to the problem of earthquake data zoning in a wider area of the Republic of Croatia. •Density-based clustering algorithm for earthquake zoning.•There is the possibility to recognize nonconvex shapes.•Defining of the parameter ɛ in the case of big data is proposed.
AbstractList A possibility of applying the density-based clustering algorithm Rough-DBSCAN for earthquake zoning is considered in the paper. By using density-based clustering for earthquake zoning it is possible to recognize nonconvex shapes, what gives much more realistic results. Special attention is thereby paid to the problem of determining the corresponding value of the parameter ɛ in the algorithm. The size of the parameter ɛ significantly influences the recognizing number and configuration of earthquake zones. A method for selecting the parameter ɛ in the case of big data is also proposed. The method is applied to the problem of earthquake data zoning in a wider area of the Republic of Croatia. •Density-based clustering algorithm for earthquake zoning.•There is the possibility to recognize nonconvex shapes.•Defining of the parameter ɛ in the case of big data is proposed.
A possibility of applying the density-based clustering algorithm Rough-DBSCAN for earthquake zoning is considered in the paper. By using density-based clustering for earthquake zoning it is possible to recognize nonconvex shapes, what gives much more realistic results. Special attention is thereby paid to the problem of determining the corresponding value of the parameter ɛ in the algorithm. The size of the parameter ɛ significantly influences the recognizing number and configuration of earthquake zones. A method for selecting the parameter ɛ in the case of big data is also proposed. The method is applied to the problem of earthquake data zoning in a wider area of the Republic of Croatia.
Author Scitovski, Sanja
Author_xml – sequence: 1
  givenname: Sanja
  surname: Scitovski
  fullname: Scitovski, Sanja
  email: sscitov@unios.hr
  organization: University of Osijek, Trg Sv. Trojstva 3, HR-31 000 Osijek, Croatia
BookMark eNqFkD1PwzAURS1UJNrCL2DJyJLw7Dixg8RQVXxJSCwwW47z0rqkcWu7SOXXk1ImBpju8O550j0TMupdj4RcUsgo0PJ6lRm9QJcxoCIDmQHlJ2RMpchTISEfkTFAJdMcgJ-RSQgrAGBMFmNyM0sa7ION-7TWAZvEdLsQ0dt-kehu4byNy3XSOp-g9nG53el3TD5dP9zPyWmru4AXPzklb_d3r_PH9Pnl4Wk-e051XlQxbcu2qCWrmWAtMjSlKZloBWoqGNWFEVgVRoKsGK91Q3lZA2fcNI3JWVNUJp-Sq-PfjXfbHYao1jYY7Drdo9sFxYYxBR8YPlTzY9V4F4LHVm28XWu_VxTUwZRaqW9T6mBKgVSDqYGqflHGRh2t66PXtvuHvT2yOBj4sOhVMBZ7g431aKJqnP2T_wL7EYeq
CitedBy_id crossref_primary_10_1007_s12040_023_02070_9
crossref_primary_10_3390_land13040470
crossref_primary_10_1109_TBDATA_2020_3029559
crossref_primary_10_3390_s19183926
crossref_primary_10_1016_j_enbuild_2018_10_011
crossref_primary_10_3389_feart_2024_1343874
crossref_primary_10_1007_s10462_025_11229_3
crossref_primary_10_59717_j_xinn_geo_2025_100145
crossref_primary_10_1016_j_cageo_2020_104665
crossref_primary_10_1016_j_soildyn_2024_108950
crossref_primary_10_1016_j_cageo_2021_104736
crossref_primary_10_1016_j_future_2020_08_031
crossref_primary_10_29382_eqs_2021_0030
crossref_primary_10_1007_s11069_021_04878_4
crossref_primary_10_1007_s11600_025_01645_y
crossref_primary_10_3390_min14111089
crossref_primary_10_1007_s13369_021_06032_5
crossref_primary_10_1016_j_cageo_2019_04_012
crossref_primary_10_1016_j_jtrangeo_2021_103037
crossref_primary_10_1016_j_trc_2024_104759
crossref_primary_10_3390_app9142863
crossref_primary_10_1007_s10950_021_10044_x
crossref_primary_10_1007_s10100_017_0506_7
crossref_primary_10_1088_1755_1315_456_1_012087
crossref_primary_10_1007_s12145_022_00793_9
crossref_primary_10_1007_s10651_023_00594_3
crossref_primary_10_1016_j_tecto_2021_228756
crossref_primary_10_1007_s12583_021_1444_9
crossref_primary_10_1016_j_apgeog_2022_102719
crossref_primary_10_1007_s00521_022_08085_5
crossref_primary_10_1371_journal_pone_0331555
Cites_doi 10.1016/j.patrec.2011.06.003
10.1007/s11590-011-0389-9
10.1016/j.ins.2015.02.011
10.1007/s00521-010-0373-9
10.1016/j.procs.2013.05.200
10.1016/j.patrec.2009.08.008
10.1016/j.eswa.2011.01.135
10.17535/crorr.2014.0010
10.1080/19475705.2012.731659
10.1007/s10898-012-0020-3
10.1007/s10898-017-0510-4
10.1016/j.cageo.2013.06.010
10.1016/j.datak.2006.01.013
10.5194/npg-17-293-2010
10.3390/e17075000
10.1023/A:1026484815539
10.1016/j.cageo.2014.09.003
10.1016/j.eswa.2010.05.050
10.1111/j.1365-3121.1996.tb00728.x
10.1007/s12145-017-0295-5
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cageo.2017.08.014
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
EndPage 95
ExternalDocumentID 10_1016_j_cageo_2017_08_014
S0098300417305927
GeographicLocations Croatia
GeographicLocations_xml – name: Croatia
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a359t-f6f5b82b272fe2ec6c627f7ea1721a5c7e95c808924bad146b0424cddc32d59c3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416186100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3004
IngestDate Thu Oct 02 07:03:45 EDT 2025
Tue Nov 18 20:47:30 EST 2025
Sat Nov 29 03:42:11 EST 2025
Fri Feb 23 02:34:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rough-DBSCAN
Big data
Earthquake zoning
Density-based clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a359t-f6f5b82b272fe2ec6c627f7ea1721a5c7e95c808924bad146b0424cddc32d59c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000544244
PQPubID 24069
PageCount 6
ParticipantIDs proquest_miscellaneous_2000544244
crossref_primary_10_1016_j_cageo_2017_08_014
crossref_citationtrail_10_1016_j_cageo_2017_08_014
elsevier_sciencedirect_doi_10_1016_j_cageo_2017_08_014
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers & geosciences
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sabo, Scitovski, Vazler (bib20) 2013; 7
Markušić, Herak (bib12) 1998; 18
Cho, Tiampo, Mckinnon, Vallejos, Klein, Dominguez (bib5) 2010; 17
Morales-Esteban, Martínez-Álvarez, Troncoso, Justo, Rubio-Escudero (bib16) 2010; 37
Asencio-Cortés, Scitovski, Scitovski, Martinez-Álvarez (bib2) 2017
Scitovski, Scitovski (bib23) 2013; 59
Andrade, Ramos, Madeira, Sachetto, Ferreira, Rocha (bib1) 2013; 18
Bezdek, Keller, Krisnapuram, Pal (bib3) 2005
Parvez (bib17) 2013; 4
Ester, Krieogel, Sander (bib6) 1996
Birant, Kut (bib4) 2007; 60
Reyes, Cárdenas (bib18) 2010; 19
Sabo, Scitovski (bib19) 2015; 305
Morales-Esteban, Martínez-Álvarez, Scitovski, Scitovski (bib15) 2014; 73
Kogan (bib11) 2007
Vendramin, Campello, Hruschka (bib27) 2009
Martínez-Álvarez, Morales-Esteban, Reyes, Gutiérrez-Avilés, Escudero (bib13) 2015; 17
Karami, Johansson (bib10) 2014; 91
Viswanath, Babu (bib28) 2009; 30
Jiang, Li, Yi, Wang, Hu (bib9) 2011; 38
Grbić, Nyarko, Scitovski (bib7) 2013; 57
Scitovski, Šarlija (bib24) 2014; 5
Scitovski (bib22) 2017; 68
Mimaroglu, Aksehirli (bib14) 2011; 32
Zaki, Meira (bib29) 2014
Herak, Herak, Markušić (bib8) 1996; 8
Theodoridis, Koutroumbas (bib26) 2009
Morales-Esteban (10.1016/j.cageo.2017.08.014_bib15) 2014; 73
Bezdek (10.1016/j.cageo.2017.08.014_bib3) 2005
Parvez (10.1016/j.cageo.2017.08.014_bib17) 2013; 4
Scitovski (10.1016/j.cageo.2017.08.014_bib22) 2017; 68
Birant (10.1016/j.cageo.2017.08.014_bib4) 2007; 60
Reyes (10.1016/j.cageo.2017.08.014_bib18) 2010; 19
Theodoridis (10.1016/j.cageo.2017.08.014_bib26) 2009
Grbić (10.1016/j.cageo.2017.08.014_bib7) 2013; 57
Ester (10.1016/j.cageo.2017.08.014_bib6) 1996
Martínez-Álvarez (10.1016/j.cageo.2017.08.014_bib13) 2015; 17
Scitovski (10.1016/j.cageo.2017.08.014_bib23) 2013; 59
Jiang (10.1016/j.cageo.2017.08.014_bib9) 2011; 38
Mimaroglu (10.1016/j.cageo.2017.08.014_bib14) 2011; 32
Kogan (10.1016/j.cageo.2017.08.014_bib11) 2007
Cho (10.1016/j.cageo.2017.08.014_bib5) 2010; 17
Herak (10.1016/j.cageo.2017.08.014_bib8) 1996; 8
Karami (10.1016/j.cageo.2017.08.014_bib10) 2014; 91
Morales-Esteban (10.1016/j.cageo.2017.08.014_bib16) 2010; 37
Scitovski (10.1016/j.cageo.2017.08.014_bib24) 2014; 5
Sabo (10.1016/j.cageo.2017.08.014_bib19) 2015; 305
Sabo (10.1016/j.cageo.2017.08.014_bib20) 2013; 7
Asencio-Cortés (10.1016/j.cageo.2017.08.014_bib2) 2017
Markušić (10.1016/j.cageo.2017.08.014_bib12) 1998; 18
Andrade (10.1016/j.cageo.2017.08.014_bib1) 2013; 18
Vendramin (10.1016/j.cageo.2017.08.014_bib27) 2009
Zaki (10.1016/j.cageo.2017.08.014_bib29) 2014
Viswanath (10.1016/j.cageo.2017.08.014_bib28) 2009; 30
References_xml – volume: 18
  start-page: 369
  year: 2013
  end-page: 378
  ident: bib1
  article-title: G-DBSCAN: a GPU accelerated algorithm for density-based clustering
  publication-title: Procedia Comput. Sci.
– volume: 8
  start-page: 86
  year: 1996
  end-page: 94
  ident: bib8
  article-title: Revision of the earthquake catalogue and seismicity of Croatia, 1908–1992
  publication-title: Terra Nova
– volume: 18
  start-page: 269
  year: 1998
  end-page: 285
  ident: bib12
  article-title: Seismic zoning of Croatia
  publication-title: Nat. Hazards
– volume: 91
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib10
  article-title: Choosing
  publication-title: Int. J. Comput. Appl.
– start-page: 733
  year: 2009
  end-page: 744
  ident: bib27
  article-title: On the comparison of relative clustering validity criteria
  publication-title: Proceedings of the SIAM International Conference on Data Mining, SDM 2009, April 30 – May 2, 2009
– volume: 19
  start-page: 1081
  year: 2010
  end-page: 1087
  ident: bib18
  article-title: A Chilean seismic regionalization through a Kohonen neural network
  publication-title: Neural Comput. Appl.
– volume: 38
  start-page: 9373
  year: 2011
  end-page: 9381
  ident: bib9
  article-title: A new hybrid method based on partitioning-based
  publication-title: Expert Syst. Appl.
– volume: 60
  start-page: 208
  year: 2007
  end-page: 221
  ident: bib4
  article-title: ST-DBSCAN: an algorithm for clustering spatial-temporal data
  publication-title: Data & Knowl. Eng.
– volume: 37
  start-page: 8333
  year: 2010
  end-page: 8342
  ident: bib16
  article-title: Pattern recognition to forecast seismic time series
  publication-title: Expert Syst. Appl.
– year: 2009
  ident: bib26
  article-title: Pattern Recognition
– volume: 73
  start-page: 132
  year: 2014
  end-page: 141
  ident: bib15
  article-title: A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning
  publication-title: Comput. Geosci.
– volume: 17
  start-page: 5000
  year: 2015
  end-page: 5021
  ident: bib13
  article-title: A novel method for seismogenic zoning based on triclustering: application to the Iberian Peninsula
  publication-title: Entropy
– volume: 7
  start-page: 5
  year: 2013
  end-page: 22
  ident: bib20
  article-title: One-dimensional center-based
  publication-title: Optim. Lett.
– start-page: 226
  year: 1996
  end-page: 231
  ident: bib6
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland
– year: 2007
  ident: bib11
  article-title: Introduction to Clustering Large and High-dimensional Data
– volume: 30
  start-page: 1477
  year: 2009
  end-page: 1488
  ident: bib28
  article-title: : a fast hybrid density based clustering method for large data sets
  publication-title: Pattern Recognit. Lett.
– year: 2005
  ident: bib3
  article-title: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing
– volume: 4
  start-page: 299
  year: 2013
  end-page: 319
  ident: bib17
  article-title: New approaches for seismic hazard studies in the indian subcontinent
  publication-title: Nat. Hazards Risk
– volume: 68
  start-page: 713
  year: 2017
  end-page: 727
  ident: bib22
  article-title: A new global optimization method for a symmetric Lipschitz continuous function and application to searching for a globally optimal partition of a one-dimensional set
  publication-title: J. Glob. Optim.
– volume: 59
  start-page: 124
  year: 2013
  end-page: 131
  ident: bib23
  article-title: A fast partitioning algorithm and its application to earthquake investigation
  publication-title: Comput. Geosci.
– volume: 305
  start-page: 208
  year: 2015
  end-page: 218
  ident: bib19
  article-title: An approach to cluster separability in a partition
  publication-title: Inf. Sci.
– year: 2017
  ident: bib2
  article-title: Temporal analysis of Croatian seismogenic zones to improve earthquake magnitude prediction
  publication-title: Earth Sci. Inf.
– volume: 5
  start-page: 235
  year: 2014
  end-page: 245
  ident: bib24
  article-title: Cluster analysis in retail segmentation for credit scoring
  publication-title: Croat. Oper. Res. Rev.
– volume: 57
  start-page: 1193
  year: 2013
  end-page: 1212
  ident: bib7
  article-title: A modification of the DIRECT method for Lipschitz global optimization for a symmetric function
  publication-title: J. Glob. Optim.
– volume: 32
  start-page: 1572
  year: 2011
  end-page: 1580
  ident: bib14
  article-title: Improving
  publication-title: Pattern Recognit. Lett.
– volume: 17
  start-page: 293
  year: 2010
  end-page: 302
  ident: bib5
  article-title: A simple metric to quantify seismicity clustering
  publication-title: Nonlin. Process. Geophys.
– year: 2014
  ident: bib29
  article-title: Data Mining and Analysis: Fundamental Concepts and Algorithms
– volume: 32
  start-page: 1572
  year: 2011
  ident: 10.1016/j.cageo.2017.08.014_bib14
  article-title: Improving DBSCAN's execution time by using a pruning technique on bit vectors
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.06.003
– volume: 7
  start-page: 5
  year: 2013
  ident: 10.1016/j.cageo.2017.08.014_bib20
  article-title: One-dimensional center-based l1-clustering method
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-011-0389-9
– volume: 305
  start-page: 208
  year: 2015
  ident: 10.1016/j.cageo.2017.08.014_bib19
  article-title: An approach to cluster separability in a partition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.02.011
– volume: 19
  start-page: 1081
  year: 2010
  ident: 10.1016/j.cageo.2017.08.014_bib18
  article-title: A Chilean seismic regionalization through a Kohonen neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0373-9
– volume: 18
  start-page: 369
  year: 2013
  ident: 10.1016/j.cageo.2017.08.014_bib1
  article-title: G-DBSCAN: a GPU accelerated algorithm for density-based clustering
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.05.200
– year: 2009
  ident: 10.1016/j.cageo.2017.08.014_bib26
– volume: 30
  start-page: 1477
  year: 2009
  ident: 10.1016/j.cageo.2017.08.014_bib28
  article-title: Rough-DBSCAN: a fast hybrid density based clustering method for large data sets
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.08.008
– volume: 38
  start-page: 9373
  year: 2011
  ident: 10.1016/j.cageo.2017.08.014_bib9
  article-title: A new hybrid method based on partitioning-based DBSCAN and ant clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.135
– year: 2014
  ident: 10.1016/j.cageo.2017.08.014_bib29
– start-page: 226
  year: 1996
  ident: 10.1016/j.cageo.2017.08.014_bib6
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 5
  start-page: 235
  year: 2014
  ident: 10.1016/j.cageo.2017.08.014_bib24
  article-title: Cluster analysis in retail segmentation for credit scoring
  publication-title: Croat. Oper. Res. Rev.
  doi: 10.17535/crorr.2014.0010
– volume: 4
  start-page: 299
  year: 2013
  ident: 10.1016/j.cageo.2017.08.014_bib17
  article-title: New approaches for seismic hazard studies in the indian subcontinent
  publication-title: Nat. Hazards Risk
  doi: 10.1080/19475705.2012.731659
– volume: 57
  start-page: 1193
  year: 2013
  ident: 10.1016/j.cageo.2017.08.014_bib7
  article-title: A modification of the DIRECT method for Lipschitz global optimization for a symmetric function
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-0020-3
– volume: 91
  start-page: 1
  year: 2014
  ident: 10.1016/j.cageo.2017.08.014_bib10
  article-title: Choosing DBSCAN parameters automatically using differential evolution
  publication-title: Int. J. Comput. Appl.
– start-page: 733
  year: 2009
  ident: 10.1016/j.cageo.2017.08.014_bib27
  article-title: On the comparison of relative clustering validity criteria
– year: 2007
  ident: 10.1016/j.cageo.2017.08.014_bib11
– volume: 68
  start-page: 713
  year: 2017
  ident: 10.1016/j.cageo.2017.08.014_bib22
  article-title: A new global optimization method for a symmetric Lipschitz continuous function and application to searching for a globally optimal partition of a one-dimensional set
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-017-0510-4
– volume: 59
  start-page: 124
  year: 2013
  ident: 10.1016/j.cageo.2017.08.014_bib23
  article-title: A fast partitioning algorithm and its application to earthquake investigation
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2013.06.010
– volume: 60
  start-page: 208
  year: 2007
  ident: 10.1016/j.cageo.2017.08.014_bib4
  article-title: ST-DBSCAN: an algorithm for clustering spatial-temporal data
  publication-title: Data & Knowl. Eng.
  doi: 10.1016/j.datak.2006.01.013
– volume: 17
  start-page: 293
  year: 2010
  ident: 10.1016/j.cageo.2017.08.014_bib5
  article-title: A simple metric to quantify seismicity clustering
  publication-title: Nonlin. Process. Geophys.
  doi: 10.5194/npg-17-293-2010
– volume: 17
  start-page: 5000
  year: 2015
  ident: 10.1016/j.cageo.2017.08.014_bib13
  article-title: A novel method for seismogenic zoning based on triclustering: application to the Iberian Peninsula
  publication-title: Entropy
  doi: 10.3390/e17075000
– volume: 18
  start-page: 269
  year: 1998
  ident: 10.1016/j.cageo.2017.08.014_bib12
  article-title: Seismic zoning of Croatia
  publication-title: Nat. Hazards
  doi: 10.1023/A:1026484815539
– year: 2005
  ident: 10.1016/j.cageo.2017.08.014_bib3
– volume: 73
  start-page: 132
  year: 2014
  ident: 10.1016/j.cageo.2017.08.014_bib15
  article-title: A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.09.003
– volume: 37
  start-page: 8333
  year: 2010
  ident: 10.1016/j.cageo.2017.08.014_bib16
  article-title: Pattern recognition to forecast seismic time series
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.05.050
– volume: 8
  start-page: 86
  year: 1996
  ident: 10.1016/j.cageo.2017.08.014_bib8
  article-title: Revision of the earthquake catalogue and seismicity of Croatia, 1908–1992
  publication-title: Terra Nova
  doi: 10.1111/j.1365-3121.1996.tb00728.x
– year: 2017
  ident: 10.1016/j.cageo.2017.08.014_bib2
  article-title: Temporal analysis of Croatian seismogenic zones to improve earthquake magnitude prediction
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-017-0295-5
SSID ssj0002285
Score 2.378732
Snippet A possibility of applying the density-based clustering algorithm Rough-DBSCAN for earthquake zoning is considered in the paper. By using density-based...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 90
SubjectTerms algorithms
Big data
Croatia
Density-based clustering
Earthquake zoning
earthquakes
Rough-DBSCAN
zoning
Title A density-based clustering algorithm for earthquake zoning
URI https://dx.doi.org/10.1016/j.cageo.2017.08.014
https://www.proquest.com/docview/2000544244
Volume 110
WOSCitedRecordID wos000416186100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6Ck0IvpU1bmr5QoDd3oVp7X72Zkr4OIZAUfBP7khPHkRNbDkl_fWcfku2EmubQizCLd5H1jWd2VjPfh9AH652-ZgwrLg3uS0ux1rnC0pU5UbnVxNogNsEPD8VwKI-SZN08yAnwqhI3N_Lyv0INYwC2b519ANztojAAnwF0uALscP0n4Add64vS61vsI5TtmsnCkyGEZsTJaDo7q08vItE3TD69Wqhz1_0dDmVXN6qN2sM82MbIJc7LZcUhOIV6ep1Ur49VNVarBwi5WDlASE5RCuyJt9acYio2jW4tKnqmABlFMe-53ngKMIa0ehS6KnMeuFFji-g60fWdANSWBTYVZ-MiLFL4RQqvkumVyrcJp1J00Pbgx8HwZxttCRG04UX1P6Jhlgo1fPfu5W-7jztxOGwuTp6iJykryAYRzWdoy1W76NG3oLp8-xx9HmRrmGZLTLMW0wwwzZaYZhHTF-jX14OTL99xEr3AqkdljUtWUi2IJpyUjjjDDCO85E75XF1Rw52kRnwSkDdrZSHOaf_y2lhresRSaXovUaeaVu4VymBIUt1nTjHfL9yXBP6QMie6NMpwxvYQaR5GYRIjvBcmmRQbgNhDH9tJl5EQZfPXWfOUi2Soca9WgN1snrjfYFKAx_OvsVTlpou5F06FPMM3aL5-2L28QY-X9v8WderZwr1DO-a6PpvP3ifD-gPcyHm0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+density-based+clustering+algorithm+for+earthquake+zoning&rft.jtitle=Computers+%26+geosciences&rft.au=Scitovski%2C+Sanja&rft.date=2018-01-01&rft.issn=0098-3004&rft.volume=110&rft.spage=90&rft.epage=95&rft_id=info:doi/10.1016%2Fj.cageo.2017.08.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2017_08_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon