Direct transformation from Cartesian into geodetic coordinates on a triaxial ellipsoid

This paper1 presents two new direct symbolic-numerical algorithms for the transformation of Cartesian coordinates into geodetic coordinates considering the general case of a triaxial reference ellipsoid. The problem in both algorithms is reduced to finding a real positive root of a sixth degree poly...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & geosciences Ročník 142; s. 104551
Hlavní autoři: Diaz–Toca, Gema Maria, Marin, Leandro, Necula, Ioana
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2020
Témata:
ISSN:0098-3004, 1873-7803
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper1 presents two new direct symbolic-numerical algorithms for the transformation of Cartesian coordinates into geodetic coordinates considering the general case of a triaxial reference ellipsoid. The problem in both algorithms is reduced to finding a real positive root of a sixth degree polynomial. The first approach consists of algebraic manipulations of the equations describing the geometry of the problem and the second one uses Gröbner bases. In order to perform numerical tests and accurately compare efficiency and reliability, our algorithms together with the iterative methods presented by M. Ligas (2012) and J. Feltens (2009) have been implemented in C++. The numerical tests have been accomplished by considering 10 celestial bodies, referenced in the available literature. The obtained results show that our algorithms improve the aforementioned, up-to-date reference, iterative methods, in terms of both efficiency and accuracy. •Direct transformation of Cartesian coordinates into geodetic coordinates.•Triaxial reference ellipsoid.•Symbolic-numerical algorithms based on computing unique real positive roots.•Uniqueness of the positive real roots proved by Descartes' rule.•Improving the existing approaches in terms of both efficiency and accuracy.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0098-3004
1873-7803
DOI:10.1016/j.cageo.2020.104551