Efficient and robust Levenberg–Marquardt Algorithm based on damping parameters for parameter inversion in underground metal target detection

The Levenberg–Marquardt (LM) algorithm has been widely used to solve nonlinear least-squares problems in underground target detection. However, the LM algorithm has an unsatisfactory performance of convergence due to the influence of noise in the environment. Therefore, a new modified LM (NMLM) algo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & geosciences Ročník 176; s. 105354
Hlavní autoři: Wang, Xiaofen, Wang, Peng, Zhang, Xiaotong, Wan, Yadong, Liu, Wen, Shi, Haodong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2023
Témata:
ISSN:0098-3004, 1873-7803
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Levenberg–Marquardt (LM) algorithm has been widely used to solve nonlinear least-squares problems in underground target detection. However, the LM algorithm has an unsatisfactory performance of convergence due to the influence of noise in the environment. Therefore, a new modified LM (NMLM) algorithm has been proposed in this paper to improve its accuracy and efficiency of parameter estimation with low SNR. The NMLM algorithm can also converge globally under certain conditions and converge quadratically under the error-bound condition, which updates based on the gain ratio and determines the damping factor based on the gradient value. An experimental investigation has been conducted under different SNRs and the amount of data, and the results indicate the new algorithm can accurately and quickly estimate the parameters of underground metal targets under the lower SNRs and smaller amounts of data. More specifically, the estimation accuracy of position, principal axes polarizability, and orientation of the metal target can be increased by up to 1.6 cm, 0.00013, and 2.31 degree, respectively. This paper also verifies that the new algorithm finds the optimal solution for standard numerical problems with low errors and a finite number of iterations. •A new LM algorithm is proposed to improve the accuracy and convergence of the result.•The performances are analyzed by comparing conventional and NMLM algorithms.•The performance of the NMLM algorithm on the common optimization problem is analyzed.
AbstractList The Levenberg–Marquardt (LM) algorithm has been widely used to solve nonlinear least-squares problems in underground target detection. However, the LM algorithm has an unsatisfactory performance of convergence due to the influence of noise in the environment. Therefore, a new modified LM (NMLM) algorithm has been proposed in this paper to improve its accuracy and efficiency of parameter estimation with low SNR. The NMLM algorithm can also converge globally under certain conditions and converge quadratically under the error-bound condition, which updates based on the gain ratio and determines the damping factor based on the gradient value. An experimental investigation has been conducted under different SNRs and the amount of data, and the results indicate the new algorithm can accurately and quickly estimate the parameters of underground metal targets under the lower SNRs and smaller amounts of data. More specifically, the estimation accuracy of position, principal axes polarizability, and orientation of the metal target can be increased by up to 1.6 cm, 0.00013, and 2.31 degree, respectively. This paper also verifies that the new algorithm finds the optimal solution for standard numerical problems with low errors and a finite number of iterations. •A new LM algorithm is proposed to improve the accuracy and convergence of the result.•The performances are analyzed by comparing conventional and NMLM algorithms.•The performance of the NMLM algorithm on the common optimization problem is analyzed.
The Levenberg-Marquardt (LM) algorithm has been widely used to solve nonlinear least-squares problems in underground target detection. However, the LM algorithm has an unsatisfactory performance of convergence due to the influence of noise in the environment. Therefore, a new modified LM (NMLM) algorithm has been proposed in this paper to improve its accuracy and efficiency of parameter estimation with low SNR. The NMLM algorithm can also converge globally under certain conditions and converge quadratically under the error-bound condition, which updates based on the gain ratio and determines the damping factor based on the gradient value. An experimental investigation has been conducted under different SNRs and the amount of data, and the results indicate the new algorithm can accurately and quickly estimate the parameters of underground metal targets under the lower SNRs and smaller amounts of data. More specifically, the estimation accuracy of position, principal axes polarizability, and orientation of the metal target can be increased by up to 1.6 cm, 0.00013, and 2.31 degree, respectively. This paper also verifies that the new algorithm finds the optimal solution for standard numerical problems with low errors and a finite number of iterations.
ArticleNumber 105354
Author Wan, Yadong
Wang, Peng
Shi, Haodong
Wang, Xiaofen
Zhang, Xiaotong
Liu, Wen
Author_xml – sequence: 1
  givenname: Xiaofen
  orcidid: 0000-0003-0903-2044
  surname: Wang
  fullname: Wang, Xiaofen
  email: b20200343@xs.ustb.edu.cn
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
– sequence: 2
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  email: wangp503@chinaunicom.cn
  organization: China Unicom Smart City Research Institute, 9th South Capital Gymnasium Road, Haidian District, Beijing, 100033, China
– sequence: 3
  givenname: Xiaotong
  surname: Zhang
  fullname: Zhang, Xiaotong
  email: zxt@ies.ustb.edu.cn
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
– sequence: 4
  givenname: Yadong
  surname: Wan
  fullname: Wan, Yadong
  email: wyd@ustb.edu.cn
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
– sequence: 5
  givenname: Wen
  surname: Liu
  fullname: Liu, Wen
  email: g20208815@xs.ustb.edu.cn
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
– sequence: 6
  givenname: Haodong
  surname: Shi
  fullname: Shi, Haodong
  email: g20208825@xs.ustb.edu.cn
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing, 100083, China
BookMark eNqFkb1uFDEQxy0UJC4hT5DGJc0eXns_7IIiisKHdIgmqa1Ze3bxade-2N6T6HgCGt6QJ8HHISFRQDWa8f83kn9zSS588EjITc22Nau71_utgQnDljMuyqQVbfOMbGrZi6qXTFyQDWNKVoKx5gW5TGnPGONcthvy7X4cnXHoMwVvaQzDmjLd4RH9gHH68fX7R4hPK0Sb6e08hejy54UOkNDS4KmF5eD8RA8QYcGMMdExxD8tdf5Yhq5Enaert2VnDKXS8gwzzRAnzNSWrMkl9ZI8H2FOeP27XpHHt_cPd--r3ad3H-5udxWIVuVKSNubBkD2KASoWolhZANXOJixVahsA9wK1XSi60TLoW-FkVKOHTZNzXsQV-TVee8hhqcVU9aLSwbnGTyGNWkuRcNrxUVdouIcNTGkFHHUh-gWiF90zfTJvt7rX_b1yb4-2y-U-osyLsPpizmCm__DvjmzWAwcHUadThcyaF0smrQN7p_8Tz8op5o
CitedBy_id crossref_primary_10_1007_s00521_023_09228_y
crossref_primary_10_1061_JBENF2_BEENG_6883
crossref_primary_10_3390_app15116310
crossref_primary_10_1109_LRA_2025_3575639
crossref_primary_10_1364_OE_561846
crossref_primary_10_1016_j_matcom_2024_09_012
crossref_primary_10_3390_fractalfract8090539
crossref_primary_10_1016_j_rineng_2025_106579
crossref_primary_10_1016_j_softx_2024_101812
crossref_primary_10_1007_s41207_024_00659_0
crossref_primary_10_1007_s41315_025_00464_0
crossref_primary_10_1016_j_aml_2025_109722
crossref_primary_10_1016_j_jsv_2023_118218
crossref_primary_10_1080_1023666X_2025_2491030
Cites_doi 10.1093/comjnl/3.3.175
10.1016/j.measurement.2020.108330
10.1109/JSEN.2017.2676460
10.1109/ACCESS.2020.3008176
10.1090/qam/10666
10.1137/0111030
10.1109/JSEN.2019.2944752
10.1007/s10957-020-01666-1
10.1109/TIM.2019.2917236
10.1109/TNN.2010.2045657
10.3390/drones6010011
10.1109/JSEN.2022.3175502
10.1093/gji/ggaa483
10.1007/s10915-017-0488-6
10.1109/ACCESS.2021.3049308
10.3390/rs13122343
10.1016/j.ndteint.2021.102571
10.1080/10556788.2016.1179737
10.1007/s00607-004-0083-1
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cageo.2023.105354
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
ExternalDocumentID 10_1016_j_cageo_2023_105354
S0098300423000584
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a359t-38d7c4aa87e33a9193bf0b29ebcf59e9d4a2d3946366352a753c888f6e44127a3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000991430400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3004
IngestDate Sun Sep 28 07:51:44 EDT 2025
Sat Nov 29 07:26:19 EST 2025
Tue Nov 18 22:17:26 EST 2025
Fri Feb 23 02:37:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Damping parameter
Underground target detection
Parameter inversion
Levenberg–Marquardt
Electromagnetic induction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a359t-38d7c4aa87e33a9193bf0b29ebcf59e9d4a2d3946366352a753c888f6e44127a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0903-2044
PQID 2834219231
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834219231
crossref_primary_10_1016_j_cageo_2023_105354
crossref_citationtrail_10_1016_j_cageo_2023_105354
elsevier_sciencedirect_doi_10_1016_j_cageo_2023_105354
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Computers & geosciences
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Umar, Sulaiman, Mamat (b19) 2021
Xie, Lai, Dérobert (b24) 2021; 168
Stewart (b15) 1990
Bergou, Diouane, Kungurtsev (b3) 2020; 185
Fan (b5) 2003
Yu, Zhang, Wei (b26) 2020; 70
Hampton, Fletcher (b8) 2022; 125
Tao, Yin, Zhang (b18) 2017; 17
Powell (b13) 1975
Wan, Li, Wang (b20) 2021; 9
Fan, Yuan (b7) 2005; 74
Marquardt (b11) 1963; 11
Zheng, Li, Xing (b29) 2022; 6
Fan, Yuan (b6) 2001
Chen, Zhang, Zhu (b4) 2019; 69
Wang, Wang, Zhang (b22) 2022; 22
Suratgar, Tavakoli, Hoseinabadi (b17) 2005; 6
Alrumaih (b1) 2018
Sun, Akhtar, Song (b16) 2020
Zhao, Fan (b28) 2018; 74
Wilamowski, Yu (b23) 2010; 21
Zhao, Fan (b27) 2016; 31
Rosenbrock (b14) 1960; 3
Mu, Xie, Zhang (b12) 2021; 13
Wan, Wang, Wang (b21) 2020; 8
Ambruš, Vasić, Bilas (b2) 2019; 20
Levenberg (b10) 1944; 2
Yamashita, Fukushima (b25) 2001
Kolster, Døssing (b9) 2021; 224
Fan (10.1016/j.cageo.2023.105354_b5) 2003
Powell (10.1016/j.cageo.2023.105354_b13) 1975
Wan (10.1016/j.cageo.2023.105354_b21) 2020; 8
Xie (10.1016/j.cageo.2023.105354_b24) 2021; 168
Wan (10.1016/j.cageo.2023.105354_b20) 2021; 9
Wilamowski (10.1016/j.cageo.2023.105354_b23) 2010; 21
Bergou (10.1016/j.cageo.2023.105354_b3) 2020; 185
Umar (10.1016/j.cageo.2023.105354_b19) 2021
Sun (10.1016/j.cageo.2023.105354_b16) 2020
Fan (10.1016/j.cageo.2023.105354_b7) 2005; 74
Zhao (10.1016/j.cageo.2023.105354_b27) 2016; 31
Zhao (10.1016/j.cageo.2023.105354_b28) 2018; 74
Kolster (10.1016/j.cageo.2023.105354_b9) 2021; 224
Yu (10.1016/j.cageo.2023.105354_b26) 2020; 70
Wang (10.1016/j.cageo.2023.105354_b22) 2022; 22
Hampton (10.1016/j.cageo.2023.105354_b8) 2022; 125
Zheng (10.1016/j.cageo.2023.105354_b29) 2022; 6
Fan (10.1016/j.cageo.2023.105354_b6) 2001
Levenberg (10.1016/j.cageo.2023.105354_b10) 1944; 2
Stewart (10.1016/j.cageo.2023.105354_b15) 1990
Tao (10.1016/j.cageo.2023.105354_b18) 2017; 17
Mu (10.1016/j.cageo.2023.105354_b12) 2021; 13
Suratgar (10.1016/j.cageo.2023.105354_b17) 2005; 6
Ambruš (10.1016/j.cageo.2023.105354_b2) 2019; 20
Marquardt (10.1016/j.cageo.2023.105354_b11) 1963; 11
Yamashita (10.1016/j.cageo.2023.105354_b25) 2001
Alrumaih (10.1016/j.cageo.2023.105354_b1) 2018
Chen (10.1016/j.cageo.2023.105354_b4) 2019; 69
Rosenbrock (10.1016/j.cageo.2023.105354_b14) 1960; 3
References_xml – volume: 13
  start-page: 2343
  year: 2021
  ident: b12
  article-title: The joint UAV-borne magnetic detection system and cart-mounted time domain electromagnetic system for UXO detection
  publication-title: Remote Sens.
– volume: 17
  start-page: 2703
  year: 2017
  end-page: 2712
  ident: b18
  article-title: A very-low-frequency electromagnetic inductive sensor system for workpiece recognition using the magnetic polarizability tensor
  publication-title: IEEE Sens. J.
– start-page: 1
  year: 2001
  end-page: 11
  ident: b6
  article-title: On the Convergence of a New Levenberg-Marquardt Method
– volume: 74
  start-page: 23
  year: 2005
  end-page: 39
  ident: b7
  article-title: On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption
  publication-title: Computing
– volume: 22
  start-page: 13835
  year: 2022
  end-page: 13852
  ident: b22
  article-title: Target electromagnetic detection method in underground environment: A review
  publication-title: IEEE Sens. J.
– volume: 6
  start-page: 11
  year: 2022
  ident: b29
  article-title: Processing and interpretation of UAV magnetic data: A workflow based on improved variational mode decomposition and Levenberg–Marquardt algorithm
  publication-title: Drones
– start-page: 1
  year: 2018
  end-page: 6
  ident: b1
  article-title: The construction of a robotic vehicle metal detector as a tool for searching archaeology sites
  publication-title: ICCAIS
– volume: 6
  start-page: 46
  year: 2005
  end-page: 48
  ident: b17
  article-title: Modified Levenberg-Marquardt method for neural networks training
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 74
  start-page: 1146
  year: 2018
  end-page: 1162
  ident: b28
  article-title: On a new updating rule of the Levenberg–Marquardt parameter
  publication-title: J. Sci. Comput.
– volume: 20
  start-page: 968
  year: 2019
  end-page: 979
  ident: b2
  article-title: Comparative study of planar coil EMI sensors for inversion-based detection of buried objects
  publication-title: IEEE Sens. J.
– volume: 8
  start-page: 126401
  year: 2020
  end-page: 126413
  ident: b21
  article-title: A comparative study of inversion optimization algorithms for underground metal target detection
  publication-title: IEEE Access
– start-page: 12018
  year: 2021
  ident: b19
  article-title: On damping parameters of Levenberg-Marquardt algorithm for nonlinear least square problems
  publication-title: Journal of Physics: Conference Series, Vol. 1734
– start-page: 1
  year: 1975
  end-page: 27
  ident: b13
  article-title: Convergence properties of a class of minimization algorithms
  publication-title: Nonlinear Programming 2
– volume: 224
  start-page: 468
  year: 2021
  end-page: 486
  ident: b9
  article-title: Scalar magnetic difference inversion applied to UAV-based UXO detection
  publication-title: Geophys. J. Int.
– year: 1990
  ident: b15
  article-title: Matrix perturbation theory
– volume: 185
  start-page: 927
  year: 2020
  end-page: 944
  ident: b3
  article-title: Convergence and complexity analysis of a Levenberg–Marquardt algorithm for inverse problems
  publication-title: J. Optim. Theory Appl.
– volume: 9
  start-page: 7384
  year: 2021
  end-page: 7401
  ident: b20
  article-title: Robust and efficient classification for underground metal target using dimensionality reduction and machine learning
  publication-title: IEEE Access
– volume: 31
  start-page: 805
  year: 2016
  end-page: 814
  ident: b27
  article-title: Global complexity bound of the Levenberg–Marquardt method
  publication-title: Optim. Methods Softw.
– volume: 21
  start-page: 930
  year: 2010
  end-page: 937
  ident: b23
  article-title: Improved computation for Levenberg–Marquardt training
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 168
  year: 2021
  ident: b24
  article-title: GPR-based depth measurement of buried objects based on constrained least-square (CLS) fitting method of reflections
  publication-title: Measurement
– volume: 125
  year: 2022
  ident: b8
  article-title: A comparison of non-linear optimisation algorithms for recovering the conductivity depth profile of an electrically conductive block using eddy current inspection
  publication-title: NDT E Int.
– start-page: 625
  year: 2003
  end-page: 636
  ident: b5
  article-title: A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations
  publication-title: J. Comput. Math.
– start-page: 239
  year: 2001
  end-page: 249
  ident: b25
  article-title: On the rate of convergence of the Levenberg-Marquardt method
  publication-title: Topics in Numerical Analysis
– start-page: 626
  year: 2020
  end-page: 643
  ident: b16
  article-title: Simultaneous detection and tracking with motion modelling for multiple object tracking
  publication-title: ECCV
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: b11
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 3
  start-page: 175
  year: 1960
  end-page: 184
  ident: b14
  article-title: An automatic method for finding the greatest or least value of a function
  publication-title: Comput. J.
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  ident: b10
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
– volume: 70
  start-page: 1
  year: 2020
  end-page: 11
  ident: b26
  article-title: A distributed phase measurement method of frequency-domain electromagnetic detection
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 69
  start-page: 1728
  year: 2019
  end-page: 1736
  ident: b4
  article-title: Accurate measurement of characteristic response for unexploded ordnance with transient electromagnetic system
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 3
  start-page: 175
  issue: 3
  year: 1960
  ident: 10.1016/j.cageo.2023.105354_b14
  article-title: An automatic method for finding the greatest or least value of a function
  publication-title: Comput. J.
  doi: 10.1093/comjnl/3.3.175
– volume: 168
  year: 2021
  ident: 10.1016/j.cageo.2023.105354_b24
  article-title: GPR-based depth measurement of buried objects based on constrained least-square (CLS) fitting method of reflections
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108330
– volume: 17
  start-page: 2703
  issue: 9
  year: 2017
  ident: 10.1016/j.cageo.2023.105354_b18
  article-title: A very-low-frequency electromagnetic inductive sensor system for workpiece recognition using the magnetic polarizability tensor
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2676460
– volume: 8
  start-page: 126401
  year: 2020
  ident: 10.1016/j.cageo.2023.105354_b21
  article-title: A comparative study of inversion optimization algorithms for underground metal target detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008176
– volume: 2
  start-page: 164
  issue: 2
  year: 1944
  ident: 10.1016/j.cageo.2023.105354_b10
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– start-page: 12018
  year: 2021
  ident: 10.1016/j.cageo.2023.105354_b19
  article-title: On damping parameters of Levenberg-Marquardt algorithm for nonlinear least square problems
– start-page: 625
  year: 2003
  ident: 10.1016/j.cageo.2023.105354_b5
  article-title: A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations
  publication-title: J. Comput. Math.
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  ident: 10.1016/j.cageo.2023.105354_b11
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– start-page: 1
  year: 1975
  ident: 10.1016/j.cageo.2023.105354_b13
  article-title: Convergence properties of a class of minimization algorithms
– volume: 20
  start-page: 968
  issue: 2
  year: 2019
  ident: 10.1016/j.cageo.2023.105354_b2
  article-title: Comparative study of planar coil EMI sensors for inversion-based detection of buried objects
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2944752
– start-page: 1
  year: 2001
  ident: 10.1016/j.cageo.2023.105354_b6
– volume: 6
  start-page: 46
  issue: 1
  year: 2005
  ident: 10.1016/j.cageo.2023.105354_b17
  article-title: Modified Levenberg-Marquardt method for neural networks training
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 185
  start-page: 927
  issue: 3
  year: 2020
  ident: 10.1016/j.cageo.2023.105354_b3
  article-title: Convergence and complexity analysis of a Levenberg–Marquardt algorithm for inverse problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-020-01666-1
– start-page: 239
  year: 2001
  ident: 10.1016/j.cageo.2023.105354_b25
  article-title: On the rate of convergence of the Levenberg-Marquardt method
– volume: 69
  start-page: 1728
  issue: 4
  year: 2019
  ident: 10.1016/j.cageo.2023.105354_b4
  article-title: Accurate measurement of characteristic response for unexploded ordnance with transient electromagnetic system
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2917236
– volume: 21
  start-page: 930
  issue: 6
  year: 2010
  ident: 10.1016/j.cageo.2023.105354_b23
  article-title: Improved computation for Levenberg–Marquardt training
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNN.2010.2045657
– start-page: 1
  year: 2018
  ident: 10.1016/j.cageo.2023.105354_b1
  article-title: The construction of a robotic vehicle metal detector as a tool for searching archaeology sites
– volume: 70
  start-page: 1
  year: 2020
  ident: 10.1016/j.cageo.2023.105354_b26
  article-title: A distributed phase measurement method of frequency-domain electromagnetic detection
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 6
  start-page: 11
  issue: 1
  year: 2022
  ident: 10.1016/j.cageo.2023.105354_b29
  article-title: Processing and interpretation of UAV magnetic data: A workflow based on improved variational mode decomposition and Levenberg–Marquardt algorithm
  publication-title: Drones
  doi: 10.3390/drones6010011
– volume: 22
  start-page: 13835
  issue: 14
  year: 2022
  ident: 10.1016/j.cageo.2023.105354_b22
  article-title: Target electromagnetic detection method in underground environment: A review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3175502
– year: 1990
  ident: 10.1016/j.cageo.2023.105354_b15
– volume: 224
  start-page: 468
  issue: 1
  year: 2021
  ident: 10.1016/j.cageo.2023.105354_b9
  article-title: Scalar magnetic difference inversion applied to UAV-based UXO detection
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa483
– volume: 74
  start-page: 1146
  issue: 2
  year: 2018
  ident: 10.1016/j.cageo.2023.105354_b28
  article-title: On a new updating rule of the Levenberg–Marquardt parameter
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0488-6
– volume: 9
  start-page: 7384
  year: 2021
  ident: 10.1016/j.cageo.2023.105354_b20
  article-title: Robust and efficient classification for underground metal target using dimensionality reduction and machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049308
– start-page: 626
  year: 2020
  ident: 10.1016/j.cageo.2023.105354_b16
  article-title: Simultaneous detection and tracking with motion modelling for multiple object tracking
– volume: 13
  start-page: 2343
  issue: 12
  year: 2021
  ident: 10.1016/j.cageo.2023.105354_b12
  article-title: The joint UAV-borne magnetic detection system and cart-mounted time domain electromagnetic system for UXO detection
  publication-title: Remote Sens.
  doi: 10.3390/rs13122343
– volume: 125
  year: 2022
  ident: 10.1016/j.cageo.2023.105354_b8
  article-title: A comparison of non-linear optimisation algorithms for recovering the conductivity depth profile of an electrically conductive block using eddy current inspection
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2021.102571
– volume: 31
  start-page: 805
  issue: 4
  year: 2016
  ident: 10.1016/j.cageo.2023.105354_b27
  article-title: Global complexity bound of the Levenberg–Marquardt method
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2016.1179737
– volume: 74
  start-page: 23
  issue: 1
  year: 2005
  ident: 10.1016/j.cageo.2023.105354_b7
  article-title: On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption
  publication-title: Computing
  doi: 10.1007/s00607-004-0083-1
SSID ssj0002285
Score 2.4562252
Snippet The Levenberg–Marquardt (LM) algorithm has been widely used to solve nonlinear least-squares problems in underground target detection. However, the LM...
The Levenberg-Marquardt (LM) algorithm has been widely used to solve nonlinear least-squares problems in underground target detection. However, the LM...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105354
SubjectTerms algorithms
computers
Damping parameter
Electromagnetic induction
least squares
Levenberg–Marquardt
metals
Parameter inversion
solutions
Underground target detection
Title Efficient and robust Levenberg–Marquardt Algorithm based on damping parameters for parameter inversion in underground metal target detection
URI https://dx.doi.org/10.1016/j.cageo.2023.105354
https://www.proquest.com/docview/2834219231
Volume 176
WOSCitedRecordID wos000991430400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKByQ2iKcYBpCR2JWgjp2HvaxQeQlGsxhEd5GTOJ2O2mRI02pmxxew4Uf4Jr6Eex3H6QxQMQs2UeI6TtR74vvwvceEPJdZKvxs6HtqP8doVRB6ia9CD7noAvB-eDrMzWYT0cGBmEzkYa_3o62FWc-johBnZ_L0v4oa2kDYWDp7BXG7QaEBzkHocASxw_GfBD82pBAudbxMVst68AGJmkwql01u4B9V9QXhUQ9G82lZzerjxQBVWobLB5lamDoqJAZfYMKMYW3oLgezYt0E2jBegnVoFZaHwPPgZ0xfN_nlg0zXJtOr2DSB230klgZ1U23ZNLtcxs82hD2ZqTLvKtXa5kNtle1muBv7ghU73ehslIvK2kYb2WDcZcG62VoKDxnBLszW0eZ8u4_0NP4fVUETlTgBN39qqjwZf9n1vki8fUkhujTFNgPuJDaDxDhI3AxyjeywKJCiT3ZG78aT9077MyaClqcV371lujI5hb-9y9-soUt2gTF2jm6TW9ZLoaMGXXdITxd3yY03Zhfo83vkm8MYBYzRBmPUYezn1-8OXdShixp00bKgFl20QxcFdHWX1KELzugGuqhBF23QRR267pNPr8dHr956dmMPT_FA1h4XWZT6SolIc64k-BBJPkyY1EmaB1LLzFcs4xK57MAeZgpc6lQIkYcajHcWKf6A9Iuy0A8JBQs2SYdpmIU5zC4KeuHCOSgxJZnPOd8lrP2D49Sy3uPmK_N4i3B3yQt302lD-rK9e9hKLrafTGOPxoDF7Tc-a-Ucw6yOS3Wq0OVqGYPR7zPjfD262rvskZvdp_SY9OtqpZ-Q6-m6ni2rpxasvwAykMpZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+robust+Levenberg%E2%80%93Marquardt+Algorithm+based+on+damping+parameters+for+parameter+inversion+in+underground+metal+target+detection&rft.jtitle=Computers+%26+geosciences&rft.au=Wang%2C+Xiaofen&rft.au=Wang%2C+Peng&rft.au=Zhang%2C+Xiaotong&rft.au=Wan%2C+Yadong&rft.date=2023-07-01&rft.issn=0098-3004&rft.volume=176&rft.spage=105354&rft_id=info:doi/10.1016%2Fj.cageo.2023.105354&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2023_105354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon