A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and Prophet
It is challenging to predict the production performance of unconventional reservoirs because of the sediment heterogeneity, intricate flow channels, and complex fluid phase behavior. The traditional oil production prediction methods (e.g., decline curve analysis and reservoir simulation modeling for...
Gespeichert in:
| Veröffentlicht in: | Computers & geosciences Jg. 164; S. 105126 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.07.2022
|
| Schlagworte: | |
| ISSN: | 0098-3004 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!