A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and Prophet
It is challenging to predict the production performance of unconventional reservoirs because of the sediment heterogeneity, intricate flow channels, and complex fluid phase behavior. The traditional oil production prediction methods (e.g., decline curve analysis and reservoir simulation modeling for...
Uloženo v:
| Vydáno v: | Computers & geosciences Ročník 164; s. 105126 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.07.2022
|
| Témata: | |
| ISSN: | 0098-3004 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is challenging to predict the production performance of unconventional reservoirs because of the sediment heterogeneity, intricate flow channels, and complex fluid phase behavior. The traditional oil production prediction methods (e.g., decline curve analysis and reservoir simulation modeling forecasting) are subjective. This paper presents a machine learning-based time series forecasting method, which considers the existing data as time series and extracts the salient characteristics of historical data to predict values of a future time sequence. We used time series forecasting because of the historical fluctuations in production well and reservoir operations. Three algorithms were studied and compared to address the limitations of traditional production forecasting: Auto-Regressive Integrated Moving Averages (ARIMA), Long-Short-Term Memory (LSTM) network, and Prophet. This study starts with the representative oil production data from a well located in an unconventional reservoir in the Denver-Julesburg (DJ) Basin. 70% of the data was used for model training, whereas the remaining 30% of data was used to evaluate the performance of the above-mentioned methods. Then, the decline curve analysis and reservoir simulation modeling forecasting were applied for comparison. The advantages of the machine-learning models include a simple workflow, no prior assumption about the reservoir type, fast prediction, and reliable performance prediction for a typical fluctuating declining curve. More importantly, the ‘Prophet’ model captures production fluctuation caused by winter impact, which can attract the operator's attention and prevent potential failures. This has rarely been explored and discussed by previous studies. The application of ARIMA, LSTM, and Prophet methods to 65 wells in the DJ Basin show that ARIMA and LSTM perform better than Prophet—probably because not all oil production data include seasonal influences. Furthermore, the wells in the nearby pads can be studied using the same parameter values in ARIMA and LSTM for predicting oil prediction in a transferred learning framework. Specifically, we observed that ARIMA is robust in predicting the oil production rate of wells across the DJ Basin.
•ARIMA and LSTM models perform better than Prophet in oil rate prediction.•Prophet model captures production fluctuation caused by seasonality.•R-squared is not an appropriate metric to evaluate non-linear regression models.•The oil rate of wells in nearby pads can be studied using the same parameter values in ARIMA and LSTM.•ARIMA is robust in predicting the oil rate of wells across the unconventional reservoirs. |
|---|---|
| AbstractList | It is challenging to predict the production performance of unconventional reservoirs because of the sediment heterogeneity, intricate flow channels, and complex fluid phase behavior. The traditional oil production prediction methods (e.g., decline curve analysis and reservoir simulation modeling forecasting) are subjective. This paper presents a machine learning-based time series forecasting method, which considers the existing data as time series and extracts the salient characteristics of historical data to predict values of a future time sequence. We used time series forecasting because of the historical fluctuations in production well and reservoir operations. Three algorithms were studied and compared to address the limitations of traditional production forecasting: Auto-Regressive Integrated Moving Averages (ARIMA), Long-Short-Term Memory (LSTM) network, and Prophet. This study starts with the representative oil production data from a well located in an unconventional reservoir in the Denver-Julesburg (DJ) Basin. 70% of the data was used for model training, whereas the remaining 30% of data was used to evaluate the performance of the above-mentioned methods. Then, the decline curve analysis and reservoir simulation modeling forecasting were applied for comparison. The advantages of the machine-learning models include a simple workflow, no prior assumption about the reservoir type, fast prediction, and reliable performance prediction for a typical fluctuating declining curve. More importantly, the ‘Prophet’ model captures production fluctuation caused by winter impact, which can attract the operator's attention and prevent potential failures. This has rarely been explored and discussed by previous studies. The application of ARIMA, LSTM, and Prophet methods to 65 wells in the DJ Basin show that ARIMA and LSTM perform better than Prophet—probably because not all oil production data include seasonal influences. Furthermore, the wells in the nearby pads can be studied using the same parameter values in ARIMA and LSTM for predicting oil prediction in a transferred learning framework. Specifically, we observed that ARIMA is robust in predicting the oil production rate of wells across the DJ Basin.
•ARIMA and LSTM models perform better than Prophet in oil rate prediction.•Prophet model captures production fluctuation caused by seasonality.•R-squared is not an appropriate metric to evaluate non-linear regression models.•The oil rate of wells in nearby pads can be studied using the same parameter values in ARIMA and LSTM.•ARIMA is robust in predicting the oil rate of wells across the unconventional reservoirs. It is challenging to predict the production performance of unconventional reservoirs because of the sediment heterogeneity, intricate flow channels, and complex fluid phase behavior. The traditional oil production prediction methods (e.g., decline curve analysis and reservoir simulation modeling forecasting) are subjective. This paper presents a machine learning-based time series forecasting method, which considers the existing data as time series and extracts the salient characteristics of historical data to predict values of a future time sequence. We used time series forecasting because of the historical fluctuations in production well and reservoir operations. Three algorithms were studied and compared to address the limitations of traditional production forecasting: Auto-Regressive Integrated Moving Averages (ARIMA), Long-Short-Term Memory (LSTM) network, and Prophet. This study starts with the representative oil production data from a well located in an unconventional reservoir in the Denver-Julesburg (DJ) Basin. 70% of the data was used for model training, whereas the remaining 30% of data was used to evaluate the performance of the above-mentioned methods. Then, the decline curve analysis and reservoir simulation modeling forecasting were applied for comparison. The advantages of the machine-learning models include a simple workflow, no prior assumption about the reservoir type, fast prediction, and reliable performance prediction for a typical fluctuating declining curve. More importantly, the ‘Prophet’ model captures production fluctuation caused by winter impact, which can attract the operator's attention and prevent potential failures. This has rarely been explored and discussed by previous studies. The application of ARIMA, LSTM, and Prophet methods to 65 wells in the DJ Basin show that ARIMA and LSTM perform better than Prophet—probably because not all oil production data include seasonal influences. Furthermore, the wells in the nearby pads can be studied using the same parameter values in ARIMA and LSTM for predicting oil prediction in a transferred learning framework. Specifically, we observed that ARIMA is robust in predicting the oil production rate of wells across the DJ Basin. |
| ArticleNumber | 105126 |
| Author | Kazemi, Hossein Ning, Yanrui Tahmasebi, Pejman |
| Author_xml | – sequence: 1 givenname: Yanrui orcidid: 0000-0002-2163-3451 surname: Ning fullname: Ning, Yanrui email: yning@mines.edu organization: Department of Petroleum Engineering, Colorado School of Mines, USA – sequence: 2 givenname: Hossein surname: Kazemi fullname: Kazemi, Hossein organization: Department of Petroleum Engineering, Colorado School of Mines, USA – sequence: 3 givenname: Pejman surname: Tahmasebi fullname: Tahmasebi, Pejman organization: Department of Petroleum Engineering, University of Wyoming, USA |
| BookMark | eNqFkLtOAzEQRV2ABAG-gMYlRRJs73ofSBQR4iUFgXjU1qx3Fhzt2sF2IuXvcQgVBVQjzZ0zmjkjsmedRUJOOZtyxovzxVTDO7qpYEKkjuSi2COHjNXVJGMsPyCjEBaMpbSSh8TMqHbDEjxEs0Y6gP4wFmmP4K2x7zTEVbuhnfM0mgFpQG8wUGd6uvSuXelonN3GqCHEBFzQ2fP9w2xM5y-vD2MKtqVP3i0_MB6T_Q76gCc_9Yi83Vy_Xt1N5o-391ez-QQyWccJLxpZalZkeSuqsm47RN7kkDWi5BWkrCmw05Br2TQFh7xKryDKvGwwYzVvsyNyttubDvxcYYhqMEFj34NFtwpKFKWUpRCFTKPZblR7F4LHTi29GcBvFGdqK1Mt1LdMtZWpdjITVf-itImwFRE9mP4f9nLHYjKwNuhV0AatxtYkhVG1zvzJfwGMP5Uc |
| CitedBy_id | crossref_primary_10_3390_designs8030040 crossref_primary_10_1016_j_pce_2025_104063 crossref_primary_10_1007_s12145_025_01745_9 crossref_primary_10_1016_j_iintel_2023_100037 crossref_primary_10_1007_s10462_024_10865_5 crossref_primary_10_1016_j_rineng_2024_103434 crossref_primary_10_32362_2500_316X_2024_12_3_93_103 crossref_primary_10_1007_s10489_024_06053_1 crossref_primary_10_1016_j_sasc_2023_200067 crossref_primary_10_2118_219774_PA crossref_primary_10_2118_223940_PA crossref_primary_10_1007_s10489_024_05468_0 crossref_primary_10_1016_j_jclepro_2024_142336 crossref_primary_10_1016_j_geoen_2025_214100 crossref_primary_10_1016_j_seps_2023_101658 crossref_primary_10_3390_automation5030021 crossref_primary_10_1016_j_fuel_2025_136847 crossref_primary_10_1109_ACCESS_2023_3291999 crossref_primary_10_30657_pea_2023_29_40 crossref_primary_10_1016_j_measurement_2022_112317 crossref_primary_10_1016_j_petsci_2024_11_001 crossref_primary_10_1016_j_energy_2023_128910 crossref_primary_10_3390_fi15080255 crossref_primary_10_1016_j_eswa_2023_122412 crossref_primary_10_3390_app13179827 crossref_primary_10_1016_j_ins_2024_121586 crossref_primary_10_1142_S0218126625503852 crossref_primary_10_3390_ijerph20021167 crossref_primary_10_2298_TSCI2304081T crossref_primary_10_1016_j_csite_2025_106356 crossref_primary_10_32604_cmc_2025_059869 crossref_primary_10_1016_j_oceaneng_2023_116137 crossref_primary_10_1186_s13677_023_00560_1 crossref_primary_10_12677_AAM_2022_1110774 crossref_primary_10_3390_su152416725 crossref_primary_10_1007_s11356_024_33335_5 crossref_primary_10_1016_j_heliyon_2022_e12239 crossref_primary_10_1016_j_sysarc_2024_103181 crossref_primary_10_1007_s13202_025_01939_3 crossref_primary_10_14254_2071_789X_2022_15_4_2 crossref_primary_10_1016_j_enbenv_2023_07_003 crossref_primary_10_1016_j_geoen_2024_213493 crossref_primary_10_3390_w16131827 crossref_primary_10_1007_s12599_024_00889_0 crossref_primary_10_1016_j_petlm_2024_11_001 crossref_primary_10_3390_en17143482 crossref_primary_10_1002_dug2_70060 crossref_primary_10_3390_su151813840 crossref_primary_10_4236_ti_2025_162005 crossref_primary_10_2118_225411_PA crossref_primary_10_3390_app131910858 crossref_primary_10_3390_en18020391 crossref_primary_10_1016_j_finr_2025_100006 crossref_primary_10_1016_j_atech_2025_100939 crossref_primary_10_1063_5_0224299 crossref_primary_10_54097_wd8c8r08 crossref_primary_10_1051_e3sconf_202562302017 crossref_primary_10_1016_j_geoen_2023_212407 crossref_primary_10_1016_j_apenergy_2023_122102 crossref_primary_10_1016_j_compchemeng_2025_109068 crossref_primary_10_3390_en17225674 crossref_primary_10_1016_j_geoen_2025_213855 crossref_primary_10_1007_s13349_024_00831_8 crossref_primary_10_1109_ACCESS_2023_3289076 crossref_primary_10_1016_j_agrformet_2023_109863 crossref_primary_10_1016_j_apr_2025_102533 crossref_primary_10_1016_j_rineng_2025_105703 crossref_primary_10_2118_226207_PA crossref_primary_10_1016_j_energy_2024_132823 crossref_primary_10_1016_j_apenergy_2024_122691 crossref_primary_10_1007_s41066_023_00422_w crossref_primary_10_1016_j_engappai_2025_111482 crossref_primary_10_3390_ijfs13030167 crossref_primary_10_3390_machines10111042 crossref_primary_10_3390_math12243896 crossref_primary_10_1016_j_jclepro_2024_144309 crossref_primary_10_3390_en16031027 crossref_primary_10_1016_j_eswa_2024_123955 crossref_primary_10_1016_j_jmsy_2023_02_017 crossref_primary_10_1016_j_clwas_2025_100378 crossref_primary_10_1016_j_engappai_2024_108007 crossref_primary_10_1016_j_est_2025_115534 crossref_primary_10_1007_s12517_023_11779_2 crossref_primary_10_1016_j_apenergy_2023_121032 crossref_primary_10_1007_s10479_025_06491_1 crossref_primary_10_1038_s41467_025_61660_x crossref_primary_10_1007_s10553_024_01693_y crossref_primary_10_1016_j_fss_2023_108657 crossref_primary_10_1007_s10462_024_10790_7 crossref_primary_10_3390_en18133584 crossref_primary_10_1061_JBENF2_BEENG_6710 crossref_primary_10_1007_s41066_023_00389_8 crossref_primary_10_3390_app122010617 crossref_primary_10_1029_2024JG008375 crossref_primary_10_1016_j_geoen_2025_213749 crossref_primary_10_32604_iasc_2023_035799 crossref_primary_10_1007_s10596_024_10298_7 crossref_primary_10_1016_j_geoen_2024_213603 crossref_primary_10_32362_2500_316X_2024_12_4_106_116 |
| Cites_doi | 10.1016/j.neucom.2016.01.106 10.1016/j.fuel.2019.116758 10.1080/00031305.2017.1380080 10.3354/cr030079 10.1186/1471-2210-10-6 10.1016/j.advwatres.2020.103619 10.1007/s10596-020-10005-2 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.cageo.2022.105126 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| ExternalDocumentID | 10_1016_j_cageo_2022_105126 S009830042200084X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACNNM ACRLP ACRPL ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSH SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI ADXHL AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG SSE ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a359t-16b57c0634d2879dfee1b4a3b2718ab57b6efca4c5bb61a48000ee547be3091d3 |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000802782400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-3004 |
| IngestDate | Sat Sep 27 22:19:15 EDT 2025 Sat Nov 29 07:23:37 EST 2025 Tue Nov 18 21:20:27 EST 2025 Sun Apr 06 06:53:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Time series forecasting Oil production prediction LSTM ARIMA Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a359t-16b57c0634d2879dfee1b4a3b2718ab57b6efca4c5bb61a48000ee547be3091d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2163-3451 |
| PQID | 2675572265 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2675572265 crossref_primary_10_1016_j_cageo_2022_105126 crossref_citationtrail_10_1016_j_cageo_2022_105126 elsevier_sciencedirect_doi_10_1016_j_cageo_2022_105126 |
| PublicationCentury | 2000 |
| PublicationDate | July 2022 2022-07-00 20220701 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & geosciences |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhao, Jiang, Li, Wang, Gao, Yu, Su (bib34) 2017 Hu (bib13) 2002 Ruse, Ahmadov, Liu, Mokhtari (bib24) 2021 Zhang, Lipton, Li, Smola (bib33) 2019 Duke (bib10) 2014 Kellogg, Chessum, Kwong (bib16) 2018 Sneed (bib26) 2017 Brownlee (bib7) 2017 Box, Jenkins, Reinsel, Ljung (bib6) 2015 Arps (bib2) 1945; 160 Jain (bib15) 2016 Salvi (bib25) 2019; 27 Brownlee (bib8) 2018 Eshel (bib11) 2003; 2 Olah (bib21) 2015 You, Ampomah, Sun (bib32) 2020; 264 Bai, Tahmasebi (bib3) 2021; 25 Mohammed, Naugler, Far (bib17) 2015 Bogacka (bib5) 2007 Srivastava (bib28) 2015 Bakshi, Uniacke, Korjani, Ershaghi (bib4) 2017 Chai, Draxler (bib9) 2014; 7 Ning (bib18) 2017 Gupta, Fuehrer, Jeyachandra (bib12) 2014 Ahmadi (bib1) 2016; 211 Noshi, Assem, Schubert (bib20) 2018 Taylor, Letham (bib30) 2018; 72 Willmott, Matsuura (bib31) 2005; 30 Noshi, Schubert (bib19) 2018 PennState (bib22) 2014 Prophet (bib23) 2017 Spiess, Neumeyer (bib27) 2010; 10 Tahmasebi, Kamrava, Bai, Sahimi (bib29) 2020; 142 Hu (10.1016/j.cageo.2022.105126_bib13) PennState (10.1016/j.cageo.2022.105126_bib22) Tahmasebi (10.1016/j.cageo.2022.105126_bib29) 2020; 142 Bai (10.1016/j.cageo.2022.105126_bib3) 2021; 25 Box (10.1016/j.cageo.2022.105126_bib6) 2015 Chai (10.1016/j.cageo.2022.105126_bib9) 2014; 7 Ruse (10.1016/j.cageo.2022.105126_bib24) 2021 Mohammed (10.1016/j.cageo.2022.105126_bib17) 2015 Taylor (10.1016/j.cageo.2022.105126_bib30) 2018; 72 Brownlee (10.1016/j.cageo.2022.105126_bib7) 2017 Sneed (10.1016/j.cageo.2022.105126_bib26) 2017 Srivastava (10.1016/j.cageo.2022.105126_bib28) Duke (10.1016/j.cageo.2022.105126_bib10) Kellogg (10.1016/j.cageo.2022.105126_bib16) 2018 Zhang (10.1016/j.cageo.2022.105126_bib33) Eshel (10.1016/j.cageo.2022.105126_bib11) 2003; 2 Bakshi (10.1016/j.cageo.2022.105126_bib4) 2017 Spiess (10.1016/j.cageo.2022.105126_bib27) 2010; 10 Gupta (10.1016/j.cageo.2022.105126_bib12) 2014 Prophet (10.1016/j.cageo.2022.105126_bib23) Ning (10.1016/j.cageo.2022.105126_bib18) 2017 Noshi (10.1016/j.cageo.2022.105126_bib19) 2018 Ahmadi (10.1016/j.cageo.2022.105126_bib1) 2016; 211 Bogacka (10.1016/j.cageo.2022.105126_bib5) 2007 You (10.1016/j.cageo.2022.105126_bib32) 2020; 264 Noshi (10.1016/j.cageo.2022.105126_bib20) 2018 Arps (10.1016/j.cageo.2022.105126_bib2) 1945; 160 Brownlee (10.1016/j.cageo.2022.105126_bib8) 2018 Willmott (10.1016/j.cageo.2022.105126_bib31) 2005; 30 Olah (10.1016/j.cageo.2022.105126_bib21) Zhao (10.1016/j.cageo.2022.105126_bib34) 2017 Salvi (10.1016/j.cageo.2022.105126_bib25) 2019; 27 Jain (10.1016/j.cageo.2022.105126_bib15) 2016 |
| References_xml | – year: 2017 ident: bib7 article-title: White Noise Time Series with Python – year: 2018 ident: bib16 article-title: Machine learning application for wellbore damage removal in the wilmington field publication-title: SPE Western Regional Meeting – year: 2015 ident: bib28 article-title: A complete tutorial on time series modeling in R. Analytics Vid – year: 2018 ident: bib19 article-title: The role of machine learning in drilling operations; a review publication-title: SPE/AAPG Eastern Regional Meeting – year: 2017 ident: bib23 – year: 2017 ident: bib18 article-title: Production Potential of Niobrara and Codell: Integrating Reservoir Simulation with 4D Seismic and Microseismic Interpretation – volume: 7 start-page: 1525 year: 2014 end-page: 1534 ident: bib9 article-title: Root mean square error (RMSE) or mean absolute error (MAE)? publication-title: Geosci. Model Dev. Discuss. (GMDD) – volume: 2 start-page: 68 year: 2003 end-page: 73 ident: bib11 article-title: The yule walker equations for the AR coefficients publication-title: Internet resource – year: 2014 ident: bib12 article-title: Production forecasting in unconventional resources using data mining and time series analysis publication-title: SPE/CSUR Unconventional Resources Conference–Canada – volume: 264 start-page: 116758 year: 2020 ident: bib32 article-title: Development and application of a machine learning based multi-objective optimization workflow for CO2-EOR projects publication-title: Fuel – year: 2007 ident: bib5 article-title: ACF and PACF of ARMA – year: 2018 ident: bib8 article-title: How to Develop LSTM Models for Time Series Forecasting – year: 2002 ident: bib13 article-title: ARMA model – year: 2021 ident: bib24 article-title: An integrated analytics and machine learning solution for predicting the anisotropic static geomechanical properties of the Tuscaloosa marine shale publication-title: SPE/AAPG/SEG Unconventional Resources Technology Conference. OnePetro – start-page: 863 year: 2017 end-page: 869 ident: bib26 article-title: Predicting ESP lifespan with machine learning publication-title: Unconventional Resources Technology Conference, Austin, Texas, 24-26 July 2017 – volume: 72 start-page: 37 year: 2018 end-page: 45 ident: bib30 article-title: Forecasting at scale publication-title: Am. Statistician – volume: 27 year: 2019 ident: bib25 article-title: Significance of ACF and PACF plots in time series analysis publication-title: Towards Daa Science – year: 2018 ident: bib20 article-title: The role of big data analytics in exploration and production: a review of benefits and applications publication-title: SPE International Heavy Oil Conference and Exhibition – year: 2019 ident: bib33 article-title: Dive into deep learning. Unpublished Draft – volume: 160 start-page: 228 year: 1945 end-page: 247 ident: bib2 article-title: Analysis of decline curves publication-title: Transactions of the AIME – year: 2016 ident: bib15 article-title: A Comprehensive Beginner's Guide to Create a Time Series Forecast – year: 2015 ident: bib21 article-title: Understanding LSTM networks – volume: 25 start-page: 285 year: 2021 end-page: 297 ident: bib3 article-title: Efficient and data-driven prediction of water breakthrough in subsurface systems using deep long short-term memory machine learning publication-title: Comput. Geosci. – year: 2017 ident: bib4 article-title: A novel adaptive non-linear regression method to predict shale oil well performance based on well completions and fracturing data publication-title: SPE Western Regional Meeting – volume: 211 start-page: 143 year: 2016 end-page: 149 ident: bib1 article-title: Toward reliable model for prediction drilling fluid density at wellbore conditions: a LSSVM model publication-title: Neurocomputing – year: 2014 ident: bib10 – year: 2017 ident: bib34 article-title: Study on the classification and formation mechanism of microscopic remaining oil in high water cut stage based on machine learning publication-title: Abu Dhabi International Petroleum Exhibition & Conference – year: 2014 ident: bib22 – volume: 142 start-page: 103619 year: 2020 ident: bib29 article-title: Machine learning in geo-and environmental sciences: from small to large scale publication-title: Adv. Water Resour. – volume: 10 start-page: 6 year: 2010 ident: bib27 article-title: An evaluation of R 2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach publication-title: BMC Pharmacol. – year: 2015 ident: bib6 article-title: Time Series Analysis: Forecasting and Control – volume: 30 start-page: 79 year: 2005 end-page: 82 ident: bib31 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. – start-page: 577 year: 2015 end-page: 602 ident: bib17 article-title: Emerging Business Intelligence Framework for a Clinical Laboratory through Big Data Analytics. Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology: Algorithms and Software Tools – year: 2016 ident: 10.1016/j.cageo.2022.105126_bib15 – volume: 27 year: 2019 ident: 10.1016/j.cageo.2022.105126_bib25 article-title: Significance of ACF and PACF plots in time series analysis – year: 2014 ident: 10.1016/j.cageo.2022.105126_bib12 article-title: Production forecasting in unconventional resources using data mining and time series analysis – year: 2018 ident: 10.1016/j.cageo.2022.105126_bib20 article-title: The role of big data analytics in exploration and production: a review of benefits and applications – year: 2007 ident: 10.1016/j.cageo.2022.105126_bib5 – ident: 10.1016/j.cageo.2022.105126_bib22 – volume: 211 start-page: 143 year: 2016 ident: 10.1016/j.cageo.2022.105126_bib1 article-title: Toward reliable model for prediction drilling fluid density at wellbore conditions: a LSSVM model publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.01.106 – year: 2018 ident: 10.1016/j.cageo.2022.105126_bib19 article-title: The role of machine learning in drilling operations; a review – ident: 10.1016/j.cageo.2022.105126_bib13 – volume: 264 start-page: 116758 year: 2020 ident: 10.1016/j.cageo.2022.105126_bib32 article-title: Development and application of a machine learning based multi-objective optimization workflow for CO2-EOR projects publication-title: Fuel doi: 10.1016/j.fuel.2019.116758 – year: 2017 ident: 10.1016/j.cageo.2022.105126_bib34 article-title: Study on the classification and formation mechanism of microscopic remaining oil in high water cut stage based on machine learning – volume: 72 start-page: 37 issue: 1 year: 2018 ident: 10.1016/j.cageo.2022.105126_bib30 article-title: Forecasting at scale publication-title: Am. Statistician doi: 10.1080/00031305.2017.1380080 – ident: 10.1016/j.cageo.2022.105126_bib23 – volume: 160 start-page: 228 year: 1945 ident: 10.1016/j.cageo.2022.105126_bib2 article-title: Analysis of decline curves – year: 2015 ident: 10.1016/j.cageo.2022.105126_bib6 – start-page: 863 year: 2017 ident: 10.1016/j.cageo.2022.105126_bib26 article-title: Predicting ESP lifespan with machine learning – ident: 10.1016/j.cageo.2022.105126_bib28 – year: 2018 ident: 10.1016/j.cageo.2022.105126_bib8 – year: 2021 ident: 10.1016/j.cageo.2022.105126_bib24 article-title: An integrated analytics and machine learning solution for predicting the anisotropic static geomechanical properties of the Tuscaloosa marine shale – ident: 10.1016/j.cageo.2022.105126_bib33 – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 10.1016/j.cageo.2022.105126_bib31 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. doi: 10.3354/cr030079 – year: 2017 ident: 10.1016/j.cageo.2022.105126_bib18 – volume: 10 start-page: 6 issue: 1 year: 2010 ident: 10.1016/j.cageo.2022.105126_bib27 article-title: An evaluation of R 2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach publication-title: BMC Pharmacol. doi: 10.1186/1471-2210-10-6 – volume: 7 start-page: 1525 issue: 1 year: 2014 ident: 10.1016/j.cageo.2022.105126_bib9 article-title: Root mean square error (RMSE) or mean absolute error (MAE)? publication-title: Geosci. Model Dev. Discuss. (GMDD) – ident: 10.1016/j.cageo.2022.105126_bib10 – ident: 10.1016/j.cageo.2022.105126_bib21 – year: 2017 ident: 10.1016/j.cageo.2022.105126_bib7 – volume: 142 start-page: 103619 year: 2020 ident: 10.1016/j.cageo.2022.105126_bib29 article-title: Machine learning in geo-and environmental sciences: from small to large scale publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103619 – year: 2018 ident: 10.1016/j.cageo.2022.105126_bib16 article-title: Machine learning application for wellbore damage removal in the wilmington field – volume: 2 start-page: 68 year: 2003 ident: 10.1016/j.cageo.2022.105126_bib11 article-title: The yule walker equations for the AR coefficients – volume: 25 start-page: 285 issue: 1 year: 2021 ident: 10.1016/j.cageo.2022.105126_bib3 article-title: Efficient and data-driven prediction of water breakthrough in subsurface systems using deep long short-term memory machine learning publication-title: Comput. Geosci. doi: 10.1007/s10596-020-10005-2 – year: 2017 ident: 10.1016/j.cageo.2022.105126_bib4 article-title: A novel adaptive non-linear regression method to predict shale oil well performance based on well completions and fracturing data – start-page: 577 year: 2015 ident: 10.1016/j.cageo.2022.105126_bib17 |
| SSID | ssj0002285 |
| Score | 2.6257076 |
| Snippet | It is challenging to predict the production performance of unconventional reservoirs because of the sediment heterogeneity, intricate flow channels, and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105126 |
| SubjectTerms | ARIMA artificial intelligence basins LSTM Machine learning neural networks Oil production prediction oils prediction sediments time series analysis Time series forecasting |
| Title | A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and Prophet |
| URI | https://dx.doi.org/10.1016/j.cageo.2022.105126 https://www.proquest.com/docview/2675572265 |
| Volume | 164 |
| WOSCitedRecordID | wos000802782400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0098-3004 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002285 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6FFCReEKdaLi0Sb8QoXu_64M1CBYpoVEFA4cnatdfBUexWOaqC-PHMXnbSiog-8GJZPlarzOfZmc033yD0MmBFJEuWeyxOhh6NC-IJ7pdeHrBAliENpRbT-fYpGo3iySQ56fV-u1qY83nUNPHFRXL2X00N18DYqnT2GuZuB4ULcA5GhyOYHY7_ZPjU8sqNonetyZLSdYeYGj1ZQy6savlKTUnpzlZzRdUqjJasui1zvnTV0Onno-NUZ_BfxseO73myUJIEW1v7rkXEUgNqKq1QZkdTHNkOKt95s1hXrbPnv2RtumfDki2rjhvMf9SwyorKMIlntYWy3aUgHaO19bxJ7Cl1ry3PG9IN3wmRnm-q56-4dbPDMIOUfaorNgl53T29LaJ9aXFrKYeOzTbL9CCZGiQzg9xAeyRiSdxHe-nR4eRju5ITEjOnuarm7lSrND_wylz-FtlcWuN14DK-i-7YjAOnBin3UE8299Gt97qj888HqErxBl6wxQt2eMEaLxgAgRVesMELBrzgDi94Ay9vsEbLACusDDAgBVukPERf3x2O337wbP8NjwcsWXl-KFiUQwxLC8irk6KU0heUB4JAQMPhnghlmXOaMyFCn1PIPYZSMhoJGUAYWgSPUL85beQ-wnmp-gpwCH1oQJM4EcGwgMiS0zBUtWLxASLut8tyK06veqTMsx12O0CD9qUzo82y-_HQGSWz8DdhYwYw2_3iC2fCDJyv-keNN_J0vcwIpNssggyGPb7eXJ6g291X8hT1V4u1fIZu5uerarl4bnH4B6SZpas |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+machine+learning+study+for+time+series+oil+production+forecasting%3A+ARIMA%2C+LSTM%2C+and+Prophet&rft.jtitle=Computers+%26+geosciences&rft.au=Ning%2C+Yanrui&rft.au=Kazemi%2C+Hossein&rft.au=Tahmasebi%2C+Pejman&rft.date=2022-07-01&rft.issn=0098-3004&rft.volume=164&rft.spage=105126&rft_id=info:doi/10.1016%2Fj.cageo.2022.105126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2022_105126 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |