Three‐Dimensional Steady‐State Hydraulic Tomography Analysis With Integration of Cross‐Hole Flowmeter Data at a Highly Heterogeneous Site

Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research Vol. 59; no. 6
Main Authors: Luo, Ning, Zhao, Zhanfeng, Illman, Walter A., Zha, Yuanyuan, Mok, Chin Man W., Yeh, T.‐C. Jim
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01.06.2023
Wiley
Subjects:
ISSN:0043-1397, 1944-7973
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization results in predicting groundwater flow and solute transport. To overcome this issue, this study integrates cross‐hole flowmeter measurements with HT analysis of steady‐state pumping/injection test data for the three‐dimensional (3‐D) characterization of hydraulic conductivity (K) at a highly heterogeneous glaciofluvial deposit site, which has not been previously attempted. Geostatistical inverse analyses of cross‐hole flowmeter data are conducted to yield preliminary estimates of K distribution, which are then utilized as initial K fields for steady‐state HT analysis of head data. Four cases combining three data types (geological information, cross‐hole flowmeter measurements, and steady‐state head data) for inverse modeling are performed. Model calibration and validation results from all cases are compared qualitatively and quantitatively to evaluate their performances. Results from this study show that (a) geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing vertical distributions of K at well locations and major high/low K zones between wells, (b) cross‐hole flowmeter data carry non‐redundant information of K heterogeneity compared to geological information and steady‐state head data, and (c) integration of flowmeter data improves characterization results in terms of revealing K heterogeneity details and predicting independent hydraulic test data. Therefore, this study demonstrates the usefulness of cross‐hole flowmeter data in augmenting HT surveys for improved K characterization in 3‐D. Key Points Geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing heterogeneity patterns of hydraulic conductivity Cross‐hole flowmeter data carry non‐redundant information compared to structural information and head response data Integration of cross‐hole flowmeter data with steady‐state hydraulic tomography analysis improves characterization results
AbstractList Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization results in predicting groundwater flow and solute transport. To overcome this issue, this study integrates cross‐hole flowmeter measurements with HT analysis of steady‐state pumping/injection test data for the three‐dimensional (3‐D) characterization of hydraulic conductivity (K) at a highly heterogeneous glaciofluvial deposit site, which has not been previously attempted. Geostatistical inverse analyses of cross‐hole flowmeter data are conducted to yield preliminary estimates of K distribution, which are then utilized as initial K fields for steady‐state HT analysis of head data. Four cases combining three data types (geological information, cross‐hole flowmeter measurements, and steady‐state head data) for inverse modeling are performed. Model calibration and validation results from all cases are compared qualitatively and quantitatively to evaluate their performances. Results from this study show that (a) geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing vertical distributions of K at well locations and major high/low K zones between wells, (b) cross‐hole flowmeter data carry non‐redundant information of K heterogeneity compared to geological information and steady‐state head data, and (c) integration of flowmeter data improves characterization results in terms of revealing K heterogeneity details and predicting independent hydraulic test data. Therefore, this study demonstrates the usefulness of cross‐hole flowmeter data in augmenting HT surveys for improved K characterization in 3‐D. Key Points Geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing heterogeneity patterns of hydraulic conductivity Cross‐hole flowmeter data carry non‐redundant information compared to structural information and head response data Integration of cross‐hole flowmeter data with steady‐state hydraulic tomography analysis improves characterization results
Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization results in predicting groundwater flow and solute transport. To overcome this issue, this study integrates cross‐hole flowmeter measurements with HT analysis of steady‐state pumping/injection test data for the three‐dimensional (3‐D) characterization of hydraulic conductivity (K) at a highly heterogeneous glaciofluvial deposit site, which has not been previously attempted. Geostatistical inverse analyses of cross‐hole flowmeter data are conducted to yield preliminary estimates of K distribution, which are then utilized as initial K fields for steady‐state HT analysis of head data. Four cases combining three data types (geological information, cross‐hole flowmeter measurements, and steady‐state head data) for inverse modeling are performed. Model calibration and validation results from all cases are compared qualitatively and quantitatively to evaluate their performances. Results from this study show that (a) geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing vertical distributions of K at well locations and major high/low K zones between wells, (b) cross‐hole flowmeter data carry non‐redundant information of K heterogeneity compared to geological information and steady‐state head data, and (c) integration of flowmeter data improves characterization results in terms of revealing K heterogeneity details and predicting independent hydraulic test data. Therefore, this study demonstrates the usefulness of cross‐hole flowmeter data in augmenting HT surveys for improved K characterization in 3‐D.
Abstract Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization results in predicting groundwater flow and solute transport. To overcome this issue, this study integrates cross‐hole flowmeter measurements with HT analysis of steady‐state pumping/injection test data for the three‐dimensional (3‐D) characterization of hydraulic conductivity (K) at a highly heterogeneous glaciofluvial deposit site, which has not been previously attempted. Geostatistical inverse analyses of cross‐hole flowmeter data are conducted to yield preliminary estimates of K distribution, which are then utilized as initial K fields for steady‐state HT analysis of head data. Four cases combining three data types (geological information, cross‐hole flowmeter measurements, and steady‐state head data) for inverse modeling are performed. Model calibration and validation results from all cases are compared qualitatively and quantitatively to evaluate their performances. Results from this study show that (a) geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing vertical distributions of K at well locations and major high/low K zones between wells, (b) cross‐hole flowmeter data carry non‐redundant information of K heterogeneity compared to geological information and steady‐state head data, and (c) integration of flowmeter data improves characterization results in terms of revealing K heterogeneity details and predicting independent hydraulic test data. Therefore, this study demonstrates the usefulness of cross‐hole flowmeter data in augmenting HT surveys for improved K characterization in 3‐D.
Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization results in predicting groundwater flow and solute transport. To overcome this issue, this study integrates cross‐hole flowmeter measurements with HT analysis of steady‐state pumping/injection test data for the three‐dimensional (3‐D) characterization of hydraulic conductivity ( K ) at a highly heterogeneous glaciofluvial deposit site, which has not been previously attempted. Geostatistical inverse analyses of cross‐hole flowmeter data are conducted to yield preliminary estimates of K distribution, which are then utilized as initial K fields for steady‐state HT analysis of head data. Four cases combining three data types (geological information, cross‐hole flowmeter measurements, and steady‐state head data) for inverse modeling are performed. Model calibration and validation results from all cases are compared qualitatively and quantitatively to evaluate their performances. Results from this study show that (a) geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing vertical distributions of K at well locations and major high/low K zones between wells, (b) cross‐hole flowmeter data carry non‐redundant information of K heterogeneity compared to geological information and steady‐state head data, and (c) integration of flowmeter data improves characterization results in terms of revealing K heterogeneity details and predicting independent hydraulic test data. Therefore, this study demonstrates the usefulness of cross‐hole flowmeter data in augmenting HT surveys for improved K characterization in 3‐D. Geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing heterogeneity patterns of hydraulic conductivity Cross‐hole flowmeter data carry non‐redundant information compared to structural information and head response data Integration of cross‐hole flowmeter data with steady‐state hydraulic tomography analysis improves characterization results
Author Yeh, T.‐C. Jim
Illman, Walter A.
Zhao, Zhanfeng
Luo, Ning
Zha, Yuanyuan
Mok, Chin Man W.
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0001-5736-9405
  surname: Luo
  fullname: Luo, Ning
  email: n2luo@uwaterloo.ca
  organization: University of Waterloo
– sequence: 2
  givenname: Zhanfeng
  orcidid: 0000-0003-1489-1038
  surname: Zhao
  fullname: Zhao, Zhanfeng
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Walter A.
  orcidid: 0000-0001-8950-0324
  surname: Illman
  fullname: Illman, Walter A.
  organization: University of Waterloo
– sequence: 4
  givenname: Yuanyuan
  orcidid: 0000-0003-4323-0730
  surname: Zha
  fullname: Zha, Yuanyuan
  organization: Wuhan University
– sequence: 5
  givenname: Chin Man W.
  orcidid: 0000-0001-8607-5887
  surname: Mok
  fullname: Mok, Chin Man W.
  organization: GSI Environmental Inc
– sequence: 6
  givenname: T.‐C. Jim
  orcidid: 0000-0003-0826-5268
  surname: Yeh
  fullname: Yeh, T.‐C. Jim
  organization: University of Arizona
BookMark eNp9kd-KEzEYxQdZwe7qnQ8Q8MYLq_k3yeRy6bpOYUFoK70cvpn5pk1JJzVJWebON9Bn9EmctiKyoBAInPzOSfKd6-yq9z1m2WtG3zPKzQdOOV8vqJDjepZNmJFyqo0WV9mEUimmTBj9IruOcUcpk7nSk-z7ahsQf377cWf32Efre3BkmRDaYRSXCRKScmgDHJ1tyMrv_SbAYTuQ2xEcoo1kbdOWzPuE40Ea_cR3ZBZ8jKO_9A7JvfOPe0wYyB0kIJAIkNJutm4g5Un2G-zRHyNZ2oQvs-cduIivfu832Zf7j6tZOX34_Gk-u32YgsiNnrZaKSq7HHJNi5oKA12NUNcdkxTA1AXkLauVKgoFpulMlzeyQWqUVgKgLcRNNr_kth521SHYPYSh8mCrs-DDpoKQbOOw4lLSVvMWme5kzpqiaVnLtMCcmoZrOWa9vWQdgv96xJiqvY0NOgfnf1W8kMZQqqge0TdP0J0_hnGUJ4qbgimVs5F6d6Ga0xwDdn8eyGh1arr6u-kR50_wxqZzFymAdf8yiYvp0Toc_ntBtV7MFlwppcUvosrABg
CitedBy_id crossref_primary_10_3390_s24030815
crossref_primary_10_1111_gwat_70016
crossref_primary_10_1029_2023WR036035
crossref_primary_10_1111_gwat_13348
crossref_primary_10_1016_j_jhydrol_2024_130709
crossref_primary_10_3390_jmse12030522
Cites_doi 10.1029/2001WR000338
10.1111/j.1745-6584.2010.00761.x
10.1029/2001wr001176
10.1002/2015WR017191
10.1111/j.1745-6584.1993.tb00597.x
10.1023/B:MATG.0000016232.71993.bd
10.1016/j.jappgeo.2003.06.004
10.1029/2011WR010616
10.1002/2016WR019185
10.1016/j.jhydrol.2021.126700
10.1111/j.1745-6584.2008.00541.x
10.1111/j.1745-6584.1998.tb02843.x
10.1016/S0022-1694(99)00119-5
10.1029/2004wr003717
10.1029/2012WR012216
10.1029/TR036i001p00095
10.1029/TR027i004p00526
10.1016/j.jhydrol.2022.127971
10.1029/WR022i013p02069
10.1029/2011WR010429
10.1111/j.1745-6584.2010.00729.x
10.1029/2009WR007745
10.1111/gwat.12960
10.1029/2008WR007180
10.1029/2010wr009262
10.1029/WR025i007p01677
10.1111/j.1745-6584.1999.tb00988.x
10.1016/j.jhydrol.2022.127911
10.1016/j.jhydrol.2017.09.045
10.1002/wrcr.20519
10.1016/j.jhydrol.2020.125438
10.1002/2013WR014630
10.1016/j.jhydrol.2021.126939
10.1029/WR005i004p00856
10.1029/2000wr900114
10.1029/2004WR003790
10.1111/j.1745-6584.2012.00914.x
10.1029/2003wr002262
10.1029/2011WR011704
10.1111/gwat.12119
10.1111/j.1745-6584.1997.tb00104.x
10.1029/2007WR006715
10.1029/2006wr004932
10.1002/2014WR016552
10.1016/j.jhydrol.2018.02.024
10.1111/gwat.13039
10.1016/0022-1694(94)90148-1
10.1111/j.1745-6584.2000.tb00243.x
10.1029/93WR03104
10.1111/gwat.12421
10.1111/j.1745-6584.2007.00419.x
10.1111/gwmr.12193
10.1016/j.advwatres.2014.06.008
10.1016/S0022-1694(02)00092-6
10.1002/2015WR016910
10.1016/j.jhydrol.2022.128124
10.1029/95WR02869
10.1016/j.jhydrol.2016.12.004
10.1029/TR016i002p00519
10.1016/j.jhydrol.2007.05.011
10.1088/0266-5611/11/2/005
10.1016/j.jhydrol.2016.08.061
10.1002/2015WR017751
ContentType Journal Article
Copyright 2023. American Geophysical Union. All Rights Reserved.
Copyright John Wiley & Sons, Inc. 2023
Copyright_xml – notice: 2023. American Geophysical Union. All Rights Reserved.
– notice: Copyright John Wiley & Sons, Inc. 2023
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOA
DOI 10.1029/2022WR034034
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts

AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
Geology
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2440d72de17f451c8cd1d173e509c274
10_1029_2022WR034034
WRCR26667
Genre researchArticle
GrantInformation_xml – fundername: Environmental Security and Technology Certification Program
  funderid: ER201212
– fundername: Canada Foundation for Innovation
– fundername: Ontario Research Foundation
– fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a3597-d76604f5a5708b039afbeabbf140aa9b8a5d1b66886a9cf9f5c4ce096763aad83
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001000816100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Mon Oct 20 19:36:27 EDT 2025
Fri Sep 05 17:16:44 EDT 2025
Sat Oct 18 23:20:51 EDT 2025
Tue Nov 18 22:14:18 EST 2025
Sat Nov 29 07:03:21 EST 2025
Wed Jan 22 16:21:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3597-d76604f5a5708b039afbeabbf140aa9b8a5d1b66886a9cf9f5c4ce096763aad83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1489-1038
0000-0001-5736-9405
0000-0001-8607-5887
0000-0003-0826-5268
0000-0003-4323-0730
0000-0001-8950-0324
OpenAccessLink https://doaj.org/article/2440d72de17f451c8cd1d173e509c274
PQID 2829816651
PQPubID 105507
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_2440d72de17f451c8cd1d173e509c274
proquest_miscellaneous_2849900607
proquest_journals_2829816651
crossref_primary_10_1029_2022WR034034
crossref_citationtrail_10_1029_2022WR034034
wiley_primary_10_1029_2022WR034034_WRCR26667
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2009; 45
2009; 47
2011b; 47
2007; 341
2021; 601
2021; 603
2016; 542
2020; 58
2017; 554
2022; 610
1996; 32
1979
1993; 34
2017; 37
2013; 51
2004; 36
1969; 5
2002; 265
1993; 31
2014; 52
2014; 50
1994; 30
1989
2002; 38
2013; 49
2015; 51
1995; 11
2016; 54
2005; 41
2016; 52
2003; 39
1993
1999; 224
1946; 27
1989; 25
2022a; 612
1935; 16
2004; 55
2017; 53
2021; 59
1955; 36
2022b; 610
2000; 38
2010; 46
2000; 36
2018; 559
1986; 22
1994; 163
1997; 35
1999; 37
2020; 590
2008; 46
2012; 48
2011; 47
2011; 49
2007; 43
2014; 71
2011a; 47
2017; 544
1998; 36
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Molz F. J. (e_1_2_9_41_1) 1993; 34
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 163
  start-page: 347
  issue: 3–4
  year: 1994
  end-page: 371
  article-title: Borehole flowmeters: Field application and data analysis
  publication-title: Journal of Hydrology
– volume: 45
  issue: 2
  year: 2009
  article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis
  publication-title: Water Resources Research
– volume: 52
  start-page: 2141
  issue: 3
  year: 2016
  end-page: 2156
  article-title: Aquifer imaging with pressure waves—Evaluation of low‐impact characterization through sandbox experiments
  publication-title: Water Resources Research
– volume: 38
  start-page: 60‐1
  issue: 12
  year: 2002
  end-page: 60‐15
  article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities
  publication-title: Water Resources Research
– volume: 265
  start-page: 100
  issue: 1–4
  year: 2002
  end-page: 117
  article-title: Using flowmeter pulse tests to define hydraulic connections in the subsurface: A fractured shale example
  publication-title: Journal of Hydrology
– volume: 36
  start-page: 2095
  issue: 8
  year: 2000
  end-page: 2105
  article-title: Hydraulic tomography: Development of a new aquifer test method
  publication-title: Water Resources Research
– year: 1989
– volume: 16
  start-page: 519
  issue: 2
  year: 1935
  end-page: 524
  article-title: The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage
  publication-title: Eos, Transactions American Geophysical Union
– volume: 51
  start-page: 29
  issue: 1
  year: 2013
  end-page: 40
  article-title: Field study of subsurface heterogeneity with steady‐state hydraulic tomography
  publication-title: Ground Water
– volume: 46
  start-page: 193
  issue: 2
  year: 2008
  end-page: 201
  article-title: Three‐dimensional geostatistical inversion of flowmeter and pumping test data
  publication-title: Groundwater
– volume: 36
  start-page: 95
  issue: 1
  year: 1955
  end-page: 100
  article-title: Non‐steady radial flow in an infinite leaky aquifer
  publication-title: Eos, Transactions American Geophysical Union
– volume: 59
  start-page: 266
  issue: 2
  year: 2021
  end-page: 272
  article-title: A physically based approach for estimating hydraulic conductivity from HPT pressure and flowrate
  publication-title: Groundwater
– year: 1979
– volume: 610
  year: 2022
  article-title: Large‐scale three‐dimensional hydraulic tomography analyses of long‐term municipal wellfield operations
  publication-title: Journal of Hydrology
– volume: 37
  start-page: 305
  issue: 2
  year: 1999
  end-page: 315
  article-title: In‐well hydraulics of the electromagnetic borehole flowmeter
  publication-title: Groundwater
– volume: 48
  issue: 5
  year: 2012
  article-title: A field proof‐of‐concept of aquifer imaging using 3‐D transient hydraulic tomography with modular, temporarily‐emplaced equipment
  publication-title: Water Resources Research
– volume: 25
  start-page: 1677
  issue: 7
  year: 1989
  end-page: 1683
  article-title: The impeller meter for measuring aquifer permeability variations: Evaluation and comparison with other tests
  publication-title: Water Resources Research
– volume: 554
  start-page: 758
  year: 2017
  end-page: 779
  article-title: Comparative study of transient hydraulic tomography with varying parameterizations and zonations: Laboratory sandbox investigation
  publication-title: Journal of Hydrology
– volume: 51
  start-page: 4137
  issue: 6
  year: 2015
  end-page: 4155
  article-title: Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study
  publication-title: Water Resources Research
– volume: 55
  start-page: 39
  issue: 1–2
  year: 2004
  end-page: 59
  article-title: Borehole flowmeter applications in irregular and large‐diameter boreholes
  publication-title: Journal of Applied Geophysics
– volume: 41
  issue: 7
  year: 2005
  article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography
  publication-title: Water Resources Research
– volume: 27
  start-page: 526
  issue: 4
  year: 1946
  end-page: 534
  article-title: A generalized graphical method for evaluating formation constants and summarizing well field history
  publication-title: Eos, Transactions American Geophysical Union
– volume: 37
  start-page: 78
  issue: 1
  year: 2017
  end-page: 91
  article-title: Applying the HPT‐GWS for hydrostratigraphy, water quality and aquifer recharge investigations
  publication-title: Groundwater Monitoring & Remediation
– volume: 49
  start-page: 534
  issue: 4
  year: 2011
  end-page: 547
  article-title: Permeability profiles in granular aquifers using flowmeters in direct‐push wells
  publication-title: Groundwater
– volume: 11
  start-page: 353
  issue: 2
  year: 1995
  end-page: 360
  article-title: Identification of the permeability distribution in soil by hydraulic tomography
  publication-title: Inverse Problems
– volume: 22
  start-page: 2069
  issue: 13
  year: 1986
  end-page: 2082
  article-title: A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process
  publication-title: Water Resources Research
– volume: 47
  issue: 10
  year: 2011b
  article-title: Three‐dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer‐aquitard system
  publication-title: Water Resources Research
– volume: 31
  start-page: 634
  issue: 4
  year: 1993
  end-page: 644
  article-title: A numerical model for water flow and chemical transport in variably saturated porous media
  publication-title: Ground Water
– year: 1993
– volume: 612
  year: 2022a
  article-title: Improved high‐resolution characterization of hydraulic conductivity through inverse modeling of HPT profiles and steady‐state hydraulic tomography: Field and synthetic studies
  publication-title: Journal of Hydrology
– volume: 51
  start-page: 3219
  issue: 5
  year: 2015
  end-page: 3237
  article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation
  publication-title: Water Resources Research
– volume: 54
  start-page: 793
  issue: 6
  year: 2016
  end-page: 804
  article-title: An application of hydraulic tomography to a large‐scale fractured granite site, Mizunami, Japan
  publication-title: Ground Water
– volume: 71
  start-page: 162
  year: 2014
  end-page: 176
  article-title: Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium
  publication-title: Advances in Water Resources
– volume: 559
  start-page: 392
  year: 2018
  end-page: 410
  article-title: Three‐dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site
  publication-title: Journal of Hydrology
– volume: 36
  start-page: 101
  issue: 1
  year: 2004
  end-page: 126
  article-title: An application of Bayesian inverse methods to vertical deconvolution of hydraulic conductivity in a heterogeneous aquifer at Oak Ridge National Laboratory
  publication-title: Mathematical Geology
– volume: 5
  start-page: 856
  issue: 4
  year: 1969
  end-page: 869
  article-title: A method of analyzing transient fluid flow in multilayered aquifers
  publication-title: Water Resources Research
– volume: 34
  issue: 01
  year: 1993
  article-title: Development and application of borehole flowmeters for environmental assessment
  publication-title: Log Analyst
– volume: 49
  start-page: 365
  issue: 3
  year: 2011
  end-page: 382
  article-title: Field study of hydrogeologic characterization methods in a heterogeneous aquifer
  publication-title: Ground Water
– volume: 39
  issue: 12
  year: 2003
  article-title: A travel time based hydraulic tomographic approach
  publication-title: Water Resources Research
– volume: 52
  start-page: 659
  issue: 5
  year: 2014
  end-page: 684
  article-title: Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks
  publication-title: Groundwater
– volume: 32
  start-page: 85
  issue: 1
  year: 1996
  end-page: 92
  article-title: An iterative stochastic inverse method: Conditional effective transmissivity and hydraulic head fields
  publication-title: Water Resources Research
– volume: 603
  year: 2021
  article-title: An inverse approach integrating flowmeter and pumping test data for three‐dimensional aquifer characterization
  publication-title: Journal of Hydrology
– volume: 590
  year: 2020
  article-title: Three‐dimensional hydraulic tomography analysis of long‐term municipal wellfield operations: Validation with synthetic flow and solute transport data
  publication-title: Journal of Hydrology
– volume: 610
  year: 2022b
  article-title: Integrating hydraulic profiling tool pressure logs and hydraulic tomography for improved high‐resolution characterization of subsurface heterogeneity
  publication-title: Journal of Hydrology
– volume: 35
  start-page: 443
  issue: 3
  year: 1997
  end-page: 450
  article-title: Borehole flowmeter application in fluvial sediments: Methodology, results, and assessment
  publication-title: Groundwater
– volume: 30
  start-page: 685
  issue: 3
  year: 1994
  end-page: 690
  article-title: Measuring distributions of hydraulic conductivity and specific storativity by the double flowmeter test
  publication-title: Water Resources Research
– volume: 601
  year: 2021
  article-title: The importance of fracture geometry and matrix data on transient hydraulic tomography in fractured rocks: Analyses of synthetic and laboratory rock block experiments
  publication-title: Journal of Hydrology
– volume: 542
  start-page: 156
  year: 2016
  end-page: 171
  article-title: On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study
  publication-title: Journal of Hydrology
– volume: 47
  start-page: 259
  issue: 2
  year: 2009
  end-page: 270
  article-title: A potential‐based inversion of unconfined steady‐state hydraulic tomography
  publication-title: Ground Water
– volume: 49
  start-page: 7311
  issue: 11
  year: 2013
  end-page: 7326
  article-title: Hydraulic conductivity imaging from 3‐D transient hydraulic tomography at several pumping/observation densities
  publication-title: Water Resources Research
– volume: 41
  issue: 9
  year: 2005
  article-title: Traditional analysis of aquifer tests: Comparing apples to oranges?
  publication-title: Water Resources Research
– volume: 544
  start-page: 640
  year: 2017
  end-page: 657
  article-title: On the importance of geological data for three‐dimensional steady‐state hydraulic tomography analysis at a highly heterogeneous aquifer‐aquitard system
  publication-title: Journal of Hydrology
– volume: 341
  start-page: 222
  issue: 3–4
  year: 2007
  end-page: 234
  article-title: Steady‐state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi‐method and multiscale validation of hydraulic conductivity tomograms
  publication-title: Journal of Hydrology
– volume: 45
  issue: 1
  year: 2009
  article-title: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan
  publication-title: Water Resources Research
– volume: 36
  start-page: 679
  issue: 4
  year: 1998
  end-page: 690
  article-title: Modeling a complex multi‐aquifer system: The Waterloo Moraine
  publication-title: Groundwater
– volume: 38
  start-page: 5‐1
  issue: 4
  year: 2002
  end-page: 5‐9
  article-title: Effectiveness of hydraulic tomography: Sandbox experiments
  publication-title: Water Resources Research
– volume: 46
  issue: 4
  year: 2010
  article-title: Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study
  publication-title: Water Resources Research
– volume: 43
  issue: 5
  year: 2007
  article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities
  publication-title: Water Resources Research
– volume: 53
  start-page: 2850
  issue: 4
  year: 2017
  end-page: 2876
  article-title: Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach
  publication-title: Water Resources Research
– volume: 48
  issue: 10
  year: 2012
  article-title: Transient hydraulic tomography in a fractured dolostone: Laboratory rock block experiments
  publication-title: Water Resources Research
– volume: 58
  start-page: 710
  issue: 5
  year: 2020
  end-page: 722
  article-title: Aquifer imaging with oscillatory hydraulic tomography: Application at the field scale
  publication-title: Groundwater
– volume: 47
  issue: 9
  year: 2011a
  article-title: Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments
  publication-title: Water Resources Research
– volume: 52
  start-page: 3
  issue: 1
  year: 2016
  end-page: 20
  article-title: The relative importance of head, flux, and prior information in hydraulic tomography analysis
  publication-title: Water Resources Research
– volume: 50
  start-page: 5428
  issue: 7
  year: 2014
  end-page: 5443
  article-title: Principal component geostatistical approach for large‐dimensional inverse problems
  publication-title: Water Resources Research
– volume: 38
  start-page: 510
  issue: 4
  year: 2000
  end-page: 521
  article-title: A field technique for estimating aquifer parameters using flow log data
  publication-title: Groundwater
– volume: 224
  start-page: 55
  issue: 1–2
  year: 1999
  end-page: 63
  article-title: Evaluation of flowmeter‐head loss effects in the flowmeter test
  publication-title: Journal of Hydrology
– volume: 47
  issue: 9
  year: 2011
  article-title: Joint estimation of transmissivity and storativity in a bedrock fracture
  publication-title: Water Resources Research
– ident: e_1_2_9_33_1
  doi: 10.1029/2001WR000338
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1745-6584.2010.00761.x
– ident: e_1_2_9_8_1
  doi: 10.1029/2001wr001176
– ident: e_1_2_9_50_1
  doi: 10.1002/2015WR017191
– ident: e_1_2_9_56_1
  doi: 10.1111/j.1745-6584.1993.tb00597.x
– ident: e_1_2_9_19_1
  doi: 10.1023/B:MATG.0000016232.71993.bd
– ident: e_1_2_9_43_1
  doi: 10.1016/j.jappgeo.2003.06.004
– ident: e_1_2_9_6_1
  doi: 10.1029/2011WR010616
– ident: e_1_2_9_57_1
  doi: 10.1002/2016WR019185
– ident: e_1_2_9_60_1
  doi: 10.1016/j.jhydrol.2021.126700
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1745-6584.2008.00541.x
– ident: e_1_2_9_37_1
  doi: 10.1111/j.1745-6584.1998.tb02843.x
– ident: e_1_2_9_46_1
  doi: 10.1016/S0022-1694(99)00119-5
– ident: e_1_2_9_52_1
  doi: 10.1029/2004wr003717
– ident: e_1_2_9_47_1
  doi: 10.1029/2012WR012216
– ident: e_1_2_9_21_1
  doi: 10.1029/TR036i001p00095
– ident: e_1_2_9_17_1
  doi: 10.1029/TR027i004p00526
– ident: e_1_2_9_64_1
  doi: 10.1016/j.jhydrol.2022.127971
– ident: e_1_2_9_48_1
  doi: 10.1029/WR022i013p02069
– ident: e_1_2_9_5_1
  doi: 10.1029/2011WR010429
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1745-6584.2010.00729.x
– ident: e_1_2_9_26_1
  doi: 10.1029/2009WR007745
– ident: e_1_2_9_15_1
  doi: 10.1111/gwat.12960
– ident: e_1_2_9_53_1
  doi: 10.1029/2008WR007180
– ident: e_1_2_9_30_1
– ident: e_1_2_9_16_1
  doi: 10.1029/2010wr009262
– ident: e_1_2_9_40_1
  doi: 10.1029/WR025i007p01677
– ident: e_1_2_9_18_1
  doi: 10.1111/j.1745-6584.1999.tb00988.x
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jhydrol.2022.127911
– ident: e_1_2_9_36_1
  doi: 10.1016/j.jhydrol.2017.09.045
– ident: e_1_2_9_14_1
  doi: 10.1002/wrcr.20519
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jhydrol.2020.125438
– ident: e_1_2_9_31_1
  doi: 10.1002/2013WR014630
– ident: e_1_2_9_3_1
  doi: 10.1016/j.jhydrol.2021.126939
– ident: e_1_2_9_27_1
  doi: 10.1029/WR005i004p00856
– ident: e_1_2_9_55_1
  doi: 10.1029/2000wr900114
– ident: e_1_2_9_68_1
  doi: 10.1029/2004WR003790
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1745-6584.2012.00914.x
– ident: e_1_2_9_11_1
  doi: 10.1029/2003wr002262
– ident: e_1_2_9_13_1
  doi: 10.1029/2011WR011704
– ident: e_1_2_9_22_1
  doi: 10.1111/gwat.12119
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1745-6584.1997.tb00104.x
– ident: e_1_2_9_25_1
  doi: 10.1029/2007WR006715
– ident: e_1_2_9_7_1
  doi: 10.1029/2006wr004932
– ident: e_1_2_9_23_1
  doi: 10.1002/2014WR016552
– ident: e_1_2_9_62_1
  doi: 10.1016/j.jhydrol.2018.02.024
– ident: e_1_2_9_10_1
  doi: 10.1111/gwat.13039
– ident: e_1_2_9_39_1
  doi: 10.1016/0022-1694(94)90148-1
– volume: 34
  issue: 01
  year: 1993
  ident: e_1_2_9_41_1
  article-title: Development and application of borehole flowmeters for environmental assessment
  publication-title: Log Analyst
– ident: e_1_2_9_42_1
  doi: 10.1111/j.1745-6584.2000.tb00243.x
– ident: e_1_2_9_28_1
  doi: 10.1029/93WR03104
– ident: e_1_2_9_58_1
  doi: 10.1111/gwat.12421
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1745-6584.2007.00419.x
– ident: e_1_2_9_38_1
  doi: 10.1111/gwmr.12193
– ident: e_1_2_9_59_1
  doi: 10.1016/j.advwatres.2014.06.008
– ident: e_1_2_9_51_1
  doi: 10.1016/S0022-1694(02)00092-6
– ident: e_1_2_9_66_1
  doi: 10.1002/2015WR016910
– ident: e_1_2_9_63_1
  doi: 10.1016/j.jhydrol.2022.128124
– ident: e_1_2_9_54_1
  doi: 10.1029/95WR02869
– ident: e_1_2_9_61_1
  doi: 10.1016/j.jhydrol.2016.12.004
– ident: e_1_2_9_49_1
  doi: 10.1029/TR016i002p00519
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jhydrol.2007.05.011
– ident: e_1_2_9_20_1
  doi: 10.1088/0266-5611/11/2/005
– ident: e_1_2_9_65_1
  doi: 10.1016/j.jhydrol.2016.08.061
– ident: e_1_2_9_67_1
  doi: 10.1002/2015WR017751
– ident: e_1_2_9_29_1
– ident: e_1_2_9_45_1
SSID ssj0014567
Score 2.462353
Snippet Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield...
Abstract Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
cross‐hole flowmeter survey
Drawdown
Estimates
Flowmeters
Geology
geostatistical interpretation
Geostatistics
Groundwater
Groundwater flow
Heterogeneity
Hydraulic conductivity
Hydraulic tests
Hydraulics
model calibration and validation
Pumping
Pumping tests
Solute transport
Solutes
steady‐state hydraulic tomography
subsurface heterogeneity
Tomography
water
SummonAdditionalLinks – databaseName: Wiley Online Library
  dbid: WIN
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQCgku_CPCLshIcIKIunHi5Ahdqu6lQqWoe4vGP2ErZRvUpKx64w3gGXkSZhIn6h5AQkg5RM6MlMQe-xvP-BvGXhqFMMAlMlSxUqEUYEKQGr1WosCJnQQx7opNqPk8PT_PPvoNNzoL0_FDDBtuZBntfE0GDrr2ZAPEkYle-3i1GEUSL5yChRRUwGB1Nh-CCIgNVB9gJqDj895R_e2h8rUVqSXuv4Y2DzFru-hM7_7v695jdzzc5O-68XGf3XCbB-xWfxq5xntfBf1i_5D9WGLHul_ff54S5X9H18Ep4dfusbGFpXy2t1vYlWvDl9Wl1-Q9swlfrZsLfuYZKFCfVwWf0Fej_qwqHZ-W1dUlZeDwU2iAQ8OBU6pJueczaq5wPLtqV_NPCIUfsc_TD8vJLPQFG0KI0DEJrUqSkSxiiNUo1aMog0I70LpALw4g0ynEVugkSdMEMlNkRWykcehE4SQHYNPoMTvaVBv3hHFEbalVhc0gs1KhdpolOtGmQHdUaBEH7HXfabnxbOZUVKPM26j6OMsPf3jAXg3SXzsWjz_Ivaf-H2SIe7ttqLZfcm_KOQKikVVj64QqZCxMaqywQkUOsZdBJz9gJ_3oyf2EUOcUsKYQbSwC9mJ4jKZM8Rlo_yzKoPtJBDkqYG_asfTXl81Xi8kC8VWinv6b-DG7jQ-iLuHthB012517xm6ab8263j5vbeg3Wfwdcw
  priority: 102
  providerName: Wiley-Blackwell
Title Three‐Dimensional Steady‐State Hydraulic Tomography Analysis With Integration of Cross‐Hole Flowmeter Data at a Highly Heterogeneous Site
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022WR034034
https://www.proquest.com/docview/2829816651
https://www.proquest.com/docview/2849900607
https://doaj.org/article/2440d72de17f451c8cd1d173e509c274
Volume 59
WOSCitedRecordID wos001000816100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQggSXFZ8i7LIyEpwgIk6cOD5CS9WVUIVKV91bNP6ItlK2QW26q972Hyy_kV_COHGq7gG4cEscOxrZ4_g9zeQNIW-1QBhgMx6KVIiQM9AhcIWs1UngpJYDi7tiE2Iyyc_P5be9Ul8uJ6yTB-4m7iMeP5ERsbFMlDxlOteGGSYSiyedRkrlvr6Ienoy5eMHCAtEH1t2GMenvEexdGw_nk-jhEcJv3MYtZr9d4DmPlxtz5vRY3LogSL91Bn4hNyzy6fkYf8f8Rqvff3yi-0zcjvDJbG_bn4OnVh_J7RBXaqu2WJjCyjpeGtWsKkWms7qSz-S9pokdL5oLuip147A8bQu6cAZjePHdWXpqKqvL13uDB1CAxQaCtQliVRbOnbNNXqirTdr-h1B7HNyNvoyG4xDX2ohhAQpRWhElkW8TCEVUa6iREKpLChVIv8CkCqH1DCVZXmegdSlLFPNtUX6g58nAJMnL8jBsl7al4Qi3sqNKI0EabjA0bnMVKZ0iUSSKZYG5H0_54X2OuSuHEZVtPHwWBb7KxSQd7vePzr9jT_0--yWb9fHqWa3DehLhfel4l--FJDjfvELv5XXhQs1u-BqygLyZvcYN6GLrEA7s9gHiaOTthEB-dA6zV-NLebTwRSRUSZe_Q-zj8gjfHvSJbAdk4NmtbGvyQN91SzWq5N2Y5yQ-8Pp6Owr3s1PJ78Bm3ETFQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9NADB7BgrRceCMCCwwSnCAi0zwmOUKXKhVLhUpR9xZ5HmErdRvUpqDe-AfwG_kl2Mkk6h5AQkg5RBNbSjL25HPs-czYMy0RBtgk8mUspR8J0D5ECqNWosCJbQRi0DabkJNJenqafXB9TmkvTMsP0f9wI89o1mtycPoh7dgGiCQTw_bBfBqEER6X2ZUIsQb1bpiPJ30aAdGB7FLMBHVc5Tvqv9rXvvBNaqj7L-DNfdTafHZGN_77hm-y6w5x8tetidxil-zqNjvsNiRv8Nw1Qj_b3WE_Zji39tf3n8fE-t8ydnCq-TU7HGyQKc93Zg3b5ULzWXXuNHlHbsLni_qMjx0JBerzquRDemzUz6ul5aNl9e2cinD4MdTAoebAqdpkueM5DVdo0rbabvhHRMN32afR29kw913PBh9CjE18I5MkiMoYYhmkKggzKJUFpUoM5AAylUJshEqSNE0g02VWxjrSFuMoXOcATBreYweramXvM47ALTWyNBlkJpKonWaJSpQuMSIVSsQee9HNWqEdoTn11VgWTWJ9kBX7L9xjz3vpLy2Rxx_k3pAB9DJEv90MVOvPhfPmAjFRYOTAWCHLKBY61UYYIUOL8EtjnO-xo858CrcmbArKWVOWNhYee9pfRm-mFA00bxZlMAIljhzpsZeNMf31Zov5dDhFiJXIB_8m_oQd5rP3J8XJePLuIbuGQmFb_3bEDur11j5iV_XXerFZP24c6jckUyGR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BiqAX3qiGAosEJ7DqjR9rHyEhSkUVVSFVerP2SSO5cZU4oNz4B_Ab-SXM2msrPYCEkHyw1jPW2p5Zf-MZfwPwWjKEATqJfBYz5keUS59HAqNWS4ET64jTftNsgk0m6fl5dur6nNp_YRp-iO6Dm_WMer22Dq6vlHFsA5YkE8P2_nwahBFuN2Evsn1kerA3nI7OTrpEAuID1iaZLdhxte94hqNd_WtvpZq8_xri3MWt9YtndO-_p3wf7jrMSd43RvIAbujlQ7jT_pK8xn3XCv1i-wh-zPDp6l_ffw4t73_D2UFs1a_a4mCNTcl4q1Z8UywkmZWXTpO09CZkvqguyLGjoUB9UhoysJeN-uOy0GRUlN8ubRkOGfKKE14RTmy9SbElYztcolHrcrMmnxEPP4az0cfZYOy7rg0-DzE68RVLkiAyMY9ZkIogzLgRmgthMJTjPBMpjxUVSZKmCc-kyUwsI6kxksKVjnOVhk-gtyyX-gAIQrdUMaMynqmIoXaaJSIR0mBMSgWNPXjbPrVcOkpz21mjyOvUej_Ld2-4B2866auGyuMPch-sAXQyloC7HihXX3LnzzmiokCxvtKUmSimMpWKKspCjQBMYqTvwWFrPrlbFda5zVrbPG1MPXjVHUZ_tkkaXt9ZlMEY1LLkMA_e1cb018nm8-lgiiArYU__Tfwl3D4djvKT48mnZ7CPMmFTAHcIvWq10c_hlvxaLdarF86jfgMPliI6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three%E2%80%90Dimensional+Steady%E2%80%90State+Hydraulic+Tomography+Analysis+With+Integration+of+Cross%E2%80%90Hole+Flowmeter+Data+at+a+Highly+Heterogeneous+Site&rft.jtitle=Water+resources+research&rft.au=Luo%2C+Ning&rft.au=Zhao%2C+Zhanfeng&rft.au=Illman%2C+Walter+A.&rft.au=Zha%2C+Yuanyuan&rft.date=2023-06-01&rft.issn=0043-1397&rft.volume=59&rft.issue=6+p.e2022WR034034-&rft_id=info:doi/10.1029%2F2022WR034034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon