Three‐Dimensional Steady‐State Hydraulic Tomography Analysis With Integration of Cross‐Hole Flowmeter Data at a Highly Heterogeneous Site
Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization...
Saved in:
| Published in: | Water resources research Vol. 59; no. 6 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington
John Wiley & Sons, Inc
01.06.2023
Wiley |
| Subjects: | |
| ISSN: | 0043-1397, 1944-7973 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization results in predicting groundwater flow and solute transport. To overcome this issue, this study integrates cross‐hole flowmeter measurements with HT analysis of steady‐state pumping/injection test data for the three‐dimensional (3‐D) characterization of hydraulic conductivity (K) at a highly heterogeneous glaciofluvial deposit site, which has not been previously attempted. Geostatistical inverse analyses of cross‐hole flowmeter data are conducted to yield preliminary estimates of K distribution, which are then utilized as initial K fields for steady‐state HT analysis of head data. Four cases combining three data types (geological information, cross‐hole flowmeter measurements, and steady‐state head data) for inverse modeling are performed. Model calibration and validation results from all cases are compared qualitatively and quantitatively to evaluate their performances. Results from this study show that (a) geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing vertical distributions of K at well locations and major high/low K zones between wells, (b) cross‐hole flowmeter data carry non‐redundant information of K heterogeneity compared to geological information and steady‐state head data, and (c) integration of flowmeter data improves characterization results in terms of revealing K heterogeneity details and predicting independent hydraulic test data. Therefore, this study demonstrates the usefulness of cross‐hole flowmeter data in augmenting HT surveys for improved K characterization in 3‐D.
Key Points
Geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing heterogeneity patterns of hydraulic conductivity
Cross‐hole flowmeter data carry non‐redundant information compared to structural information and head response data
Integration of cross‐hole flowmeter data with steady‐state hydraulic tomography analysis improves characterization results |
|---|---|
| AbstractList | Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization results in predicting groundwater flow and solute transport. To overcome this issue, this study integrates cross‐hole flowmeter measurements with HT analysis of steady‐state pumping/injection test data for the three‐dimensional (3‐D) characterization of hydraulic conductivity (K) at a highly heterogeneous glaciofluvial deposit site, which has not been previously attempted. Geostatistical inverse analyses of cross‐hole flowmeter data are conducted to yield preliminary estimates of K distribution, which are then utilized as initial K fields for steady‐state HT analysis of head data. Four cases combining three data types (geological information, cross‐hole flowmeter measurements, and steady‐state head data) for inverse modeling are performed. Model calibration and validation results from all cases are compared qualitatively and quantitatively to evaluate their performances. Results from this study show that (a) geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing vertical distributions of K at well locations and major high/low K zones between wells, (b) cross‐hole flowmeter data carry non‐redundant information of K heterogeneity compared to geological information and steady‐state head data, and (c) integration of flowmeter data improves characterization results in terms of revealing K heterogeneity details and predicting independent hydraulic test data. Therefore, this study demonstrates the usefulness of cross‐hole flowmeter data in augmenting HT surveys for improved K characterization in 3‐D.
Key Points
Geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing heterogeneity patterns of hydraulic conductivity
Cross‐hole flowmeter data carry non‐redundant information compared to structural information and head response data
Integration of cross‐hole flowmeter data with steady‐state hydraulic tomography analysis improves characterization results Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization results in predicting groundwater flow and solute transport. To overcome this issue, this study integrates cross‐hole flowmeter measurements with HT analysis of steady‐state pumping/injection test data for the three‐dimensional (3‐D) characterization of hydraulic conductivity (K) at a highly heterogeneous glaciofluvial deposit site, which has not been previously attempted. Geostatistical inverse analyses of cross‐hole flowmeter data are conducted to yield preliminary estimates of K distribution, which are then utilized as initial K fields for steady‐state HT analysis of head data. Four cases combining three data types (geological information, cross‐hole flowmeter measurements, and steady‐state head data) for inverse modeling are performed. Model calibration and validation results from all cases are compared qualitatively and quantitatively to evaluate their performances. Results from this study show that (a) geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing vertical distributions of K at well locations and major high/low K zones between wells, (b) cross‐hole flowmeter data carry non‐redundant information of K heterogeneity compared to geological information and steady‐state head data, and (c) integration of flowmeter data improves characterization results in terms of revealing K heterogeneity details and predicting independent hydraulic test data. Therefore, this study demonstrates the usefulness of cross‐hole flowmeter data in augmenting HT surveys for improved K characterization in 3‐D. Abstract Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization results in predicting groundwater flow and solute transport. To overcome this issue, this study integrates cross‐hole flowmeter measurements with HT analysis of steady‐state pumping/injection test data for the three‐dimensional (3‐D) characterization of hydraulic conductivity (K) at a highly heterogeneous glaciofluvial deposit site, which has not been previously attempted. Geostatistical inverse analyses of cross‐hole flowmeter data are conducted to yield preliminary estimates of K distribution, which are then utilized as initial K fields for steady‐state HT analysis of head data. Four cases combining three data types (geological information, cross‐hole flowmeter measurements, and steady‐state head data) for inverse modeling are performed. Model calibration and validation results from all cases are compared qualitatively and quantitatively to evaluate their performances. Results from this study show that (a) geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing vertical distributions of K at well locations and major high/low K zones between wells, (b) cross‐hole flowmeter data carry non‐redundant information of K heterogeneity compared to geological information and steady‐state head data, and (c) integration of flowmeter data improves characterization results in terms of revealing K heterogeneity details and predicting independent hydraulic test data. Therefore, this study demonstrates the usefulness of cross‐hole flowmeter data in augmenting HT surveys for improved K characterization in 3‐D. Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield smooth estimates of hydraulic parameters when pumping tests and drawdown measurements are sparse, thus limiting the utility of characterization results in predicting groundwater flow and solute transport. To overcome this issue, this study integrates cross‐hole flowmeter measurements with HT analysis of steady‐state pumping/injection test data for the three‐dimensional (3‐D) characterization of hydraulic conductivity ( K ) at a highly heterogeneous glaciofluvial deposit site, which has not been previously attempted. Geostatistical inverse analyses of cross‐hole flowmeter data are conducted to yield preliminary estimates of K distribution, which are then utilized as initial K fields for steady‐state HT analysis of head data. Four cases combining three data types (geological information, cross‐hole flowmeter measurements, and steady‐state head data) for inverse modeling are performed. Model calibration and validation results from all cases are compared qualitatively and quantitatively to evaluate their performances. Results from this study show that (a) geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing vertical distributions of K at well locations and major high/low K zones between wells, (b) cross‐hole flowmeter data carry non‐redundant information of K heterogeneity compared to geological information and steady‐state head data, and (c) integration of flowmeter data improves characterization results in terms of revealing K heterogeneity details and predicting independent hydraulic test data. Therefore, this study demonstrates the usefulness of cross‐hole flowmeter data in augmenting HT surveys for improved K characterization in 3‐D. Geostatistical inverse analysis of cross‐hole flowmeter data is capable in revealing heterogeneity patterns of hydraulic conductivity Cross‐hole flowmeter data carry non‐redundant information compared to structural information and head response data Integration of cross‐hole flowmeter data with steady‐state hydraulic tomography analysis improves characterization results |
| Author | Yeh, T.‐C. Jim Illman, Walter A. Zhao, Zhanfeng Luo, Ning Zha, Yuanyuan Mok, Chin Man W. |
| Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0001-5736-9405 surname: Luo fullname: Luo, Ning email: n2luo@uwaterloo.ca organization: University of Waterloo – sequence: 2 givenname: Zhanfeng orcidid: 0000-0003-1489-1038 surname: Zhao fullname: Zhao, Zhanfeng organization: Chinese Academy of Sciences – sequence: 3 givenname: Walter A. orcidid: 0000-0001-8950-0324 surname: Illman fullname: Illman, Walter A. organization: University of Waterloo – sequence: 4 givenname: Yuanyuan orcidid: 0000-0003-4323-0730 surname: Zha fullname: Zha, Yuanyuan organization: Wuhan University – sequence: 5 givenname: Chin Man W. orcidid: 0000-0001-8607-5887 surname: Mok fullname: Mok, Chin Man W. organization: GSI Environmental Inc – sequence: 6 givenname: T.‐C. Jim orcidid: 0000-0003-0826-5268 surname: Yeh fullname: Yeh, T.‐C. Jim organization: University of Arizona |
| BookMark | eNp9kd-KEzEYxQdZwe7qnQ8Q8MYLq_k3yeRy6bpOYUFoK70cvpn5pk1JJzVJWebON9Bn9EmctiKyoBAInPzOSfKd6-yq9z1m2WtG3zPKzQdOOV8vqJDjepZNmJFyqo0WV9mEUimmTBj9IruOcUcpk7nSk-z7ahsQf377cWf32Efre3BkmRDaYRSXCRKScmgDHJ1tyMrv_SbAYTuQ2xEcoo1kbdOWzPuE40Ea_cR3ZBZ8jKO_9A7JvfOPe0wYyB0kIJAIkNJutm4g5Un2G-zRHyNZ2oQvs-cduIivfu832Zf7j6tZOX34_Gk-u32YgsiNnrZaKSq7HHJNi5oKA12NUNcdkxTA1AXkLauVKgoFpulMlzeyQWqUVgKgLcRNNr_kth521SHYPYSh8mCrs-DDpoKQbOOw4lLSVvMWme5kzpqiaVnLtMCcmoZrOWa9vWQdgv96xJiqvY0NOgfnf1W8kMZQqqge0TdP0J0_hnGUJ4qbgimVs5F6d6Ga0xwDdn8eyGh1arr6u-kR50_wxqZzFymAdf8yiYvp0Toc_ntBtV7MFlwppcUvosrABg |
| CitedBy_id | crossref_primary_10_3390_s24030815 crossref_primary_10_1111_gwat_70016 crossref_primary_10_1029_2023WR036035 crossref_primary_10_1111_gwat_13348 crossref_primary_10_1016_j_jhydrol_2024_130709 crossref_primary_10_3390_jmse12030522 |
| Cites_doi | 10.1029/2001WR000338 10.1111/j.1745-6584.2010.00761.x 10.1029/2001wr001176 10.1002/2015WR017191 10.1111/j.1745-6584.1993.tb00597.x 10.1023/B:MATG.0000016232.71993.bd 10.1016/j.jappgeo.2003.06.004 10.1029/2011WR010616 10.1002/2016WR019185 10.1016/j.jhydrol.2021.126700 10.1111/j.1745-6584.2008.00541.x 10.1111/j.1745-6584.1998.tb02843.x 10.1016/S0022-1694(99)00119-5 10.1029/2004wr003717 10.1029/2012WR012216 10.1029/TR036i001p00095 10.1029/TR027i004p00526 10.1016/j.jhydrol.2022.127971 10.1029/WR022i013p02069 10.1029/2011WR010429 10.1111/j.1745-6584.2010.00729.x 10.1029/2009WR007745 10.1111/gwat.12960 10.1029/2008WR007180 10.1029/2010wr009262 10.1029/WR025i007p01677 10.1111/j.1745-6584.1999.tb00988.x 10.1016/j.jhydrol.2022.127911 10.1016/j.jhydrol.2017.09.045 10.1002/wrcr.20519 10.1016/j.jhydrol.2020.125438 10.1002/2013WR014630 10.1016/j.jhydrol.2021.126939 10.1029/WR005i004p00856 10.1029/2000wr900114 10.1029/2004WR003790 10.1111/j.1745-6584.2012.00914.x 10.1029/2003wr002262 10.1029/2011WR011704 10.1111/gwat.12119 10.1111/j.1745-6584.1997.tb00104.x 10.1029/2007WR006715 10.1029/2006wr004932 10.1002/2014WR016552 10.1016/j.jhydrol.2018.02.024 10.1111/gwat.13039 10.1016/0022-1694(94)90148-1 10.1111/j.1745-6584.2000.tb00243.x 10.1029/93WR03104 10.1111/gwat.12421 10.1111/j.1745-6584.2007.00419.x 10.1111/gwmr.12193 10.1016/j.advwatres.2014.06.008 10.1016/S0022-1694(02)00092-6 10.1002/2015WR016910 10.1016/j.jhydrol.2022.128124 10.1029/95WR02869 10.1016/j.jhydrol.2016.12.004 10.1029/TR016i002p00519 10.1016/j.jhydrol.2007.05.011 10.1088/0266-5611/11/2/005 10.1016/j.jhydrol.2016.08.061 10.1002/2015WR017751 |
| ContentType | Journal Article |
| Copyright | 2023. American Geophysical Union. All Rights Reserved. Copyright John Wiley & Sons, Inc. 2023 |
| Copyright_xml | – notice: 2023. American Geophysical Union. All Rights Reserved. – notice: Copyright John Wiley & Sons, Inc. 2023 |
| DBID | AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 DOA |
| DOI | 10.1029/2022WR034034 |
| DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics Geology |
| EISSN | 1944-7973 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_2440d72de17f451c8cd1d173e509c274 10_1029_2022WR034034 WRCR26667 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Environmental Security and Technology Certification Program funderid: ER201212 – fundername: Canada Foundation for Innovation – fundername: Ontario Research Foundation – fundername: Natural Sciences and Engineering Research Council of Canada |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a3597-d76604f5a5708b039afbeabbf140aa9b8a5d1b66886a9cf9f5c4ce096763aad83 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001000816100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Mon Oct 20 19:36:27 EDT 2025 Fri Sep 05 17:16:44 EDT 2025 Sat Oct 18 23:20:51 EDT 2025 Tue Nov 18 22:14:18 EST 2025 Sat Nov 29 07:03:21 EST 2025 Wed Jan 22 16:21:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3597-d76604f5a5708b039afbeabbf140aa9b8a5d1b66886a9cf9f5c4ce096763aad83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1489-1038 0000-0001-5736-9405 0000-0001-8607-5887 0000-0003-0826-5268 0000-0003-4323-0730 0000-0001-8950-0324 |
| OpenAccessLink | https://doaj.org/article/2440d72de17f451c8cd1d173e509c274 |
| PQID | 2829816651 |
| PQPubID | 105507 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2440d72de17f451c8cd1d173e509c274 proquest_miscellaneous_2849900607 proquest_journals_2829816651 crossref_primary_10_1029_2022WR034034 crossref_citationtrail_10_1029_2022WR034034 wiley_primary_10_1029_2022WR034034_WRCR26667 |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-00 20230601 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2009; 45 2009; 47 2011b; 47 2007; 341 2021; 601 2021; 603 2016; 542 2020; 58 2017; 554 2022; 610 1996; 32 1979 1993; 34 2017; 37 2013; 51 2004; 36 1969; 5 2002; 265 1993; 31 2014; 52 2014; 50 1994; 30 1989 2002; 38 2013; 49 2015; 51 1995; 11 2016; 54 2005; 41 2016; 52 2003; 39 1993 1999; 224 1946; 27 1989; 25 2022a; 612 1935; 16 2004; 55 2017; 53 2021; 59 1955; 36 2022b; 610 2000; 38 2010; 46 2000; 36 2018; 559 1986; 22 1994; 163 1997; 35 1999; 37 2020; 590 2008; 46 2012; 48 2011; 47 2011; 49 2007; 43 2014; 71 2011a; 47 2017; 544 1998; 36 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Molz F. J. (e_1_2_9_41_1) 1993; 34 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 163 start-page: 347 issue: 3–4 year: 1994 end-page: 371 article-title: Borehole flowmeters: Field application and data analysis publication-title: Journal of Hydrology – volume: 45 issue: 2 year: 2009 article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis publication-title: Water Resources Research – volume: 52 start-page: 2141 issue: 3 year: 2016 end-page: 2156 article-title: Aquifer imaging with pressure waves—Evaluation of low‐impact characterization through sandbox experiments publication-title: Water Resources Research – volume: 38 start-page: 60‐1 issue: 12 year: 2002 end-page: 60‐15 article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities publication-title: Water Resources Research – volume: 265 start-page: 100 issue: 1–4 year: 2002 end-page: 117 article-title: Using flowmeter pulse tests to define hydraulic connections in the subsurface: A fractured shale example publication-title: Journal of Hydrology – volume: 36 start-page: 2095 issue: 8 year: 2000 end-page: 2105 article-title: Hydraulic tomography: Development of a new aquifer test method publication-title: Water Resources Research – year: 1989 – volume: 16 start-page: 519 issue: 2 year: 1935 end-page: 524 article-title: The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage publication-title: Eos, Transactions American Geophysical Union – volume: 51 start-page: 29 issue: 1 year: 2013 end-page: 40 article-title: Field study of subsurface heterogeneity with steady‐state hydraulic tomography publication-title: Ground Water – volume: 46 start-page: 193 issue: 2 year: 2008 end-page: 201 article-title: Three‐dimensional geostatistical inversion of flowmeter and pumping test data publication-title: Groundwater – volume: 36 start-page: 95 issue: 1 year: 1955 end-page: 100 article-title: Non‐steady radial flow in an infinite leaky aquifer publication-title: Eos, Transactions American Geophysical Union – volume: 59 start-page: 266 issue: 2 year: 2021 end-page: 272 article-title: A physically based approach for estimating hydraulic conductivity from HPT pressure and flowrate publication-title: Groundwater – year: 1979 – volume: 610 year: 2022 article-title: Large‐scale three‐dimensional hydraulic tomography analyses of long‐term municipal wellfield operations publication-title: Journal of Hydrology – volume: 37 start-page: 305 issue: 2 year: 1999 end-page: 315 article-title: In‐well hydraulics of the electromagnetic borehole flowmeter publication-title: Groundwater – volume: 48 issue: 5 year: 2012 article-title: A field proof‐of‐concept of aquifer imaging using 3‐D transient hydraulic tomography with modular, temporarily‐emplaced equipment publication-title: Water Resources Research – volume: 25 start-page: 1677 issue: 7 year: 1989 end-page: 1683 article-title: The impeller meter for measuring aquifer permeability variations: Evaluation and comparison with other tests publication-title: Water Resources Research – volume: 554 start-page: 758 year: 2017 end-page: 779 article-title: Comparative study of transient hydraulic tomography with varying parameterizations and zonations: Laboratory sandbox investigation publication-title: Journal of Hydrology – volume: 51 start-page: 4137 issue: 6 year: 2015 end-page: 4155 article-title: Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study publication-title: Water Resources Research – volume: 55 start-page: 39 issue: 1–2 year: 2004 end-page: 59 article-title: Borehole flowmeter applications in irregular and large‐diameter boreholes publication-title: Journal of Applied Geophysics – volume: 41 issue: 7 year: 2005 article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography publication-title: Water Resources Research – volume: 27 start-page: 526 issue: 4 year: 1946 end-page: 534 article-title: A generalized graphical method for evaluating formation constants and summarizing well field history publication-title: Eos, Transactions American Geophysical Union – volume: 37 start-page: 78 issue: 1 year: 2017 end-page: 91 article-title: Applying the HPT‐GWS for hydrostratigraphy, water quality and aquifer recharge investigations publication-title: Groundwater Monitoring & Remediation – volume: 49 start-page: 534 issue: 4 year: 2011 end-page: 547 article-title: Permeability profiles in granular aquifers using flowmeters in direct‐push wells publication-title: Groundwater – volume: 11 start-page: 353 issue: 2 year: 1995 end-page: 360 article-title: Identification of the permeability distribution in soil by hydraulic tomography publication-title: Inverse Problems – volume: 22 start-page: 2069 issue: 13 year: 1986 end-page: 2082 article-title: A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process publication-title: Water Resources Research – volume: 47 issue: 10 year: 2011b article-title: Three‐dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer‐aquitard system publication-title: Water Resources Research – volume: 31 start-page: 634 issue: 4 year: 1993 end-page: 644 article-title: A numerical model for water flow and chemical transport in variably saturated porous media publication-title: Ground Water – year: 1993 – volume: 612 year: 2022a article-title: Improved high‐resolution characterization of hydraulic conductivity through inverse modeling of HPT profiles and steady‐state hydraulic tomography: Field and synthetic studies publication-title: Journal of Hydrology – volume: 51 start-page: 3219 issue: 5 year: 2015 end-page: 3237 article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation publication-title: Water Resources Research – volume: 54 start-page: 793 issue: 6 year: 2016 end-page: 804 article-title: An application of hydraulic tomography to a large‐scale fractured granite site, Mizunami, Japan publication-title: Ground Water – volume: 71 start-page: 162 year: 2014 end-page: 176 article-title: Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium publication-title: Advances in Water Resources – volume: 559 start-page: 392 year: 2018 end-page: 410 article-title: Three‐dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site publication-title: Journal of Hydrology – volume: 36 start-page: 101 issue: 1 year: 2004 end-page: 126 article-title: An application of Bayesian inverse methods to vertical deconvolution of hydraulic conductivity in a heterogeneous aquifer at Oak Ridge National Laboratory publication-title: Mathematical Geology – volume: 5 start-page: 856 issue: 4 year: 1969 end-page: 869 article-title: A method of analyzing transient fluid flow in multilayered aquifers publication-title: Water Resources Research – volume: 34 issue: 01 year: 1993 article-title: Development and application of borehole flowmeters for environmental assessment publication-title: Log Analyst – volume: 49 start-page: 365 issue: 3 year: 2011 end-page: 382 article-title: Field study of hydrogeologic characterization methods in a heterogeneous aquifer publication-title: Ground Water – volume: 39 issue: 12 year: 2003 article-title: A travel time based hydraulic tomographic approach publication-title: Water Resources Research – volume: 52 start-page: 659 issue: 5 year: 2014 end-page: 684 article-title: Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks publication-title: Groundwater – volume: 32 start-page: 85 issue: 1 year: 1996 end-page: 92 article-title: An iterative stochastic inverse method: Conditional effective transmissivity and hydraulic head fields publication-title: Water Resources Research – volume: 603 year: 2021 article-title: An inverse approach integrating flowmeter and pumping test data for three‐dimensional aquifer characterization publication-title: Journal of Hydrology – volume: 590 year: 2020 article-title: Three‐dimensional hydraulic tomography analysis of long‐term municipal wellfield operations: Validation with synthetic flow and solute transport data publication-title: Journal of Hydrology – volume: 610 year: 2022b article-title: Integrating hydraulic profiling tool pressure logs and hydraulic tomography for improved high‐resolution characterization of subsurface heterogeneity publication-title: Journal of Hydrology – volume: 35 start-page: 443 issue: 3 year: 1997 end-page: 450 article-title: Borehole flowmeter application in fluvial sediments: Methodology, results, and assessment publication-title: Groundwater – volume: 30 start-page: 685 issue: 3 year: 1994 end-page: 690 article-title: Measuring distributions of hydraulic conductivity and specific storativity by the double flowmeter test publication-title: Water Resources Research – volume: 601 year: 2021 article-title: The importance of fracture geometry and matrix data on transient hydraulic tomography in fractured rocks: Analyses of synthetic and laboratory rock block experiments publication-title: Journal of Hydrology – volume: 542 start-page: 156 year: 2016 end-page: 171 article-title: On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study publication-title: Journal of Hydrology – volume: 47 start-page: 259 issue: 2 year: 2009 end-page: 270 article-title: A potential‐based inversion of unconfined steady‐state hydraulic tomography publication-title: Ground Water – volume: 49 start-page: 7311 issue: 11 year: 2013 end-page: 7326 article-title: Hydraulic conductivity imaging from 3‐D transient hydraulic tomography at several pumping/observation densities publication-title: Water Resources Research – volume: 41 issue: 9 year: 2005 article-title: Traditional analysis of aquifer tests: Comparing apples to oranges? publication-title: Water Resources Research – volume: 544 start-page: 640 year: 2017 end-page: 657 article-title: On the importance of geological data for three‐dimensional steady‐state hydraulic tomography analysis at a highly heterogeneous aquifer‐aquitard system publication-title: Journal of Hydrology – volume: 341 start-page: 222 issue: 3–4 year: 2007 end-page: 234 article-title: Steady‐state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi‐method and multiscale validation of hydraulic conductivity tomograms publication-title: Journal of Hydrology – volume: 45 issue: 1 year: 2009 article-title: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan publication-title: Water Resources Research – volume: 36 start-page: 679 issue: 4 year: 1998 end-page: 690 article-title: Modeling a complex multi‐aquifer system: The Waterloo Moraine publication-title: Groundwater – volume: 38 start-page: 5‐1 issue: 4 year: 2002 end-page: 5‐9 article-title: Effectiveness of hydraulic tomography: Sandbox experiments publication-title: Water Resources Research – volume: 46 issue: 4 year: 2010 article-title: Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study publication-title: Water Resources Research – volume: 43 issue: 5 year: 2007 article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities publication-title: Water Resources Research – volume: 53 start-page: 2850 issue: 4 year: 2017 end-page: 2876 article-title: Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach publication-title: Water Resources Research – volume: 48 issue: 10 year: 2012 article-title: Transient hydraulic tomography in a fractured dolostone: Laboratory rock block experiments publication-title: Water Resources Research – volume: 58 start-page: 710 issue: 5 year: 2020 end-page: 722 article-title: Aquifer imaging with oscillatory hydraulic tomography: Application at the field scale publication-title: Groundwater – volume: 47 issue: 9 year: 2011a article-title: Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments publication-title: Water Resources Research – volume: 52 start-page: 3 issue: 1 year: 2016 end-page: 20 article-title: The relative importance of head, flux, and prior information in hydraulic tomography analysis publication-title: Water Resources Research – volume: 50 start-page: 5428 issue: 7 year: 2014 end-page: 5443 article-title: Principal component geostatistical approach for large‐dimensional inverse problems publication-title: Water Resources Research – volume: 38 start-page: 510 issue: 4 year: 2000 end-page: 521 article-title: A field technique for estimating aquifer parameters using flow log data publication-title: Groundwater – volume: 224 start-page: 55 issue: 1–2 year: 1999 end-page: 63 article-title: Evaluation of flowmeter‐head loss effects in the flowmeter test publication-title: Journal of Hydrology – volume: 47 issue: 9 year: 2011 article-title: Joint estimation of transmissivity and storativity in a bedrock fracture publication-title: Water Resources Research – ident: e_1_2_9_33_1 doi: 10.1029/2001WR000338 – ident: e_1_2_9_44_1 doi: 10.1111/j.1745-6584.2010.00761.x – ident: e_1_2_9_8_1 doi: 10.1029/2001wr001176 – ident: e_1_2_9_50_1 doi: 10.1002/2015WR017191 – ident: e_1_2_9_56_1 doi: 10.1111/j.1745-6584.1993.tb00597.x – ident: e_1_2_9_19_1 doi: 10.1023/B:MATG.0000016232.71993.bd – ident: e_1_2_9_43_1 doi: 10.1016/j.jappgeo.2003.06.004 – ident: e_1_2_9_6_1 doi: 10.1029/2011WR010616 – ident: e_1_2_9_57_1 doi: 10.1002/2016WR019185 – ident: e_1_2_9_60_1 doi: 10.1016/j.jhydrol.2021.126700 – ident: e_1_2_9_12_1 doi: 10.1111/j.1745-6584.2008.00541.x – ident: e_1_2_9_37_1 doi: 10.1111/j.1745-6584.1998.tb02843.x – ident: e_1_2_9_46_1 doi: 10.1016/S0022-1694(99)00119-5 – ident: e_1_2_9_52_1 doi: 10.1029/2004wr003717 – ident: e_1_2_9_47_1 doi: 10.1029/2012WR012216 – ident: e_1_2_9_21_1 doi: 10.1029/TR036i001p00095 – ident: e_1_2_9_17_1 doi: 10.1029/TR027i004p00526 – ident: e_1_2_9_64_1 doi: 10.1016/j.jhydrol.2022.127971 – ident: e_1_2_9_48_1 doi: 10.1029/WR022i013p02069 – ident: e_1_2_9_5_1 doi: 10.1029/2011WR010429 – ident: e_1_2_9_2_1 doi: 10.1111/j.1745-6584.2010.00729.x – ident: e_1_2_9_26_1 doi: 10.1029/2009WR007745 – ident: e_1_2_9_15_1 doi: 10.1111/gwat.12960 – ident: e_1_2_9_53_1 doi: 10.1029/2008WR007180 – ident: e_1_2_9_30_1 – ident: e_1_2_9_16_1 doi: 10.1029/2010wr009262 – ident: e_1_2_9_40_1 doi: 10.1029/WR025i007p01677 – ident: e_1_2_9_18_1 doi: 10.1111/j.1745-6584.1999.tb00988.x – ident: e_1_2_9_34_1 doi: 10.1016/j.jhydrol.2022.127911 – ident: e_1_2_9_36_1 doi: 10.1016/j.jhydrol.2017.09.045 – ident: e_1_2_9_14_1 doi: 10.1002/wrcr.20519 – ident: e_1_2_9_35_1 doi: 10.1016/j.jhydrol.2020.125438 – ident: e_1_2_9_31_1 doi: 10.1002/2013WR014630 – ident: e_1_2_9_3_1 doi: 10.1016/j.jhydrol.2021.126939 – ident: e_1_2_9_27_1 doi: 10.1029/WR005i004p00856 – ident: e_1_2_9_55_1 doi: 10.1029/2000wr900114 – ident: e_1_2_9_68_1 doi: 10.1029/2004WR003790 – ident: e_1_2_9_4_1 doi: 10.1111/j.1745-6584.2012.00914.x – ident: e_1_2_9_11_1 doi: 10.1029/2003wr002262 – ident: e_1_2_9_13_1 doi: 10.1029/2011WR011704 – ident: e_1_2_9_22_1 doi: 10.1111/gwat.12119 – ident: e_1_2_9_9_1 doi: 10.1111/j.1745-6584.1997.tb00104.x – ident: e_1_2_9_25_1 doi: 10.1029/2007WR006715 – ident: e_1_2_9_7_1 doi: 10.1029/2006wr004932 – ident: e_1_2_9_23_1 doi: 10.1002/2014WR016552 – ident: e_1_2_9_62_1 doi: 10.1016/j.jhydrol.2018.02.024 – ident: e_1_2_9_10_1 doi: 10.1111/gwat.13039 – ident: e_1_2_9_39_1 doi: 10.1016/0022-1694(94)90148-1 – volume: 34 issue: 01 year: 1993 ident: e_1_2_9_41_1 article-title: Development and application of borehole flowmeters for environmental assessment publication-title: Log Analyst – ident: e_1_2_9_42_1 doi: 10.1111/j.1745-6584.2000.tb00243.x – ident: e_1_2_9_28_1 doi: 10.1029/93WR03104 – ident: e_1_2_9_58_1 doi: 10.1111/gwat.12421 – ident: e_1_2_9_32_1 doi: 10.1111/j.1745-6584.2007.00419.x – ident: e_1_2_9_38_1 doi: 10.1111/gwmr.12193 – ident: e_1_2_9_59_1 doi: 10.1016/j.advwatres.2014.06.008 – ident: e_1_2_9_51_1 doi: 10.1016/S0022-1694(02)00092-6 – ident: e_1_2_9_66_1 doi: 10.1002/2015WR016910 – ident: e_1_2_9_63_1 doi: 10.1016/j.jhydrol.2022.128124 – ident: e_1_2_9_54_1 doi: 10.1029/95WR02869 – ident: e_1_2_9_61_1 doi: 10.1016/j.jhydrol.2016.12.004 – ident: e_1_2_9_49_1 doi: 10.1029/TR016i002p00519 – ident: e_1_2_9_24_1 doi: 10.1016/j.jhydrol.2007.05.011 – ident: e_1_2_9_20_1 doi: 10.1088/0266-5611/11/2/005 – ident: e_1_2_9_65_1 doi: 10.1016/j.jhydrol.2016.08.061 – ident: e_1_2_9_67_1 doi: 10.1002/2015WR017751 – ident: e_1_2_9_29_1 – ident: e_1_2_9_45_1 |
| SSID | ssj0014567 |
| Score | 2.462353 |
| Snippet | Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can yield... Abstract Hydraulic tomography (HT) has been shown to be a robust approach for the high‐resolution characterization of subsurface heterogeneity. However, HT can... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Analysis cross‐hole flowmeter survey Drawdown Estimates Flowmeters Geology geostatistical interpretation Geostatistics Groundwater Groundwater flow Heterogeneity Hydraulic conductivity Hydraulic tests Hydraulics model calibration and validation Pumping Pumping tests Solute transport Solutes steady‐state hydraulic tomography subsurface heterogeneity Tomography water |
| SummonAdditionalLinks | – databaseName: Wiley Online Library dbid: WIN link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQCgku_CPCLshIcIKIunHi5Ahdqu6lQqWoe4vGP2ErZRvUpKx64w3gGXkSZhIn6h5AQkg5RM6MlMQe-xvP-BvGXhqFMMAlMlSxUqEUYEKQGr1WosCJnQQx7opNqPk8PT_PPvoNNzoL0_FDDBtuZBntfE0GDrr2ZAPEkYle-3i1GEUSL5yChRRUwGB1Nh-CCIgNVB9gJqDj895R_e2h8rUVqSXuv4Y2DzFru-hM7_7v695jdzzc5O-68XGf3XCbB-xWfxq5xntfBf1i_5D9WGLHul_ff54S5X9H18Ep4dfusbGFpXy2t1vYlWvDl9Wl1-Q9swlfrZsLfuYZKFCfVwWf0Fej_qwqHZ-W1dUlZeDwU2iAQ8OBU6pJueczaq5wPLtqV_NPCIUfsc_TD8vJLPQFG0KI0DEJrUqSkSxiiNUo1aMog0I70LpALw4g0ynEVugkSdMEMlNkRWykcehE4SQHYNPoMTvaVBv3hHFEbalVhc0gs1KhdpolOtGmQHdUaBEH7HXfabnxbOZUVKPM26j6OMsPf3jAXg3SXzsWjz_Ivaf-H2SIe7ttqLZfcm_KOQKikVVj64QqZCxMaqywQkUOsZdBJz9gJ_3oyf2EUOcUsKYQbSwC9mJ4jKZM8Rlo_yzKoPtJBDkqYG_asfTXl81Xi8kC8VWinv6b-DG7jQ-iLuHthB012517xm6ab8263j5vbeg3Wfwdcw priority: 102 providerName: Wiley-Blackwell |
| Title | Three‐Dimensional Steady‐State Hydraulic Tomography Analysis With Integration of Cross‐Hole Flowmeter Data at a Highly Heterogeneous Site |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022WR034034 https://www.proquest.com/docview/2829816651 https://www.proquest.com/docview/2849900607 https://doaj.org/article/2440d72de17f451c8cd1d173e509c274 |
| Volume | 59 |
| WOSCitedRecordID | wos001000816100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1944-7973 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQggSXFZ8i7LIyEpwgIk6cOD5CS9WVUIVKV91bNP6ItlK2QW26q972Hyy_kV_COHGq7gG4cEscOxrZ4_g9zeQNIW-1QBhgMx6KVIiQM9AhcIWs1UngpJYDi7tiE2Iyyc_P5be9Ul8uJ6yTB-4m7iMeP5ERsbFMlDxlOteGGSYSiyedRkrlvr6Ienoy5eMHCAtEH1t2GMenvEexdGw_nk-jhEcJv3MYtZr9d4DmPlxtz5vRY3LogSL91Bn4hNyzy6fkYf8f8Rqvff3yi-0zcjvDJbG_bn4OnVh_J7RBXaqu2WJjCyjpeGtWsKkWms7qSz-S9pokdL5oLuip147A8bQu6cAZjePHdWXpqKqvL13uDB1CAxQaCtQliVRbOnbNNXqirTdr-h1B7HNyNvoyG4xDX2ohhAQpRWhElkW8TCEVUa6iREKpLChVIv8CkCqH1DCVZXmegdSlLFPNtUX6g58nAJMnL8jBsl7al4Qi3sqNKI0EabjA0bnMVKZ0iUSSKZYG5H0_54X2OuSuHEZVtPHwWBb7KxSQd7vePzr9jT_0--yWb9fHqWa3DehLhfel4l--FJDjfvELv5XXhQs1u-BqygLyZvcYN6GLrEA7s9gHiaOTthEB-dA6zV-NLebTwRSRUSZe_Q-zj8gjfHvSJbAdk4NmtbGvyQN91SzWq5N2Y5yQ-8Pp6Owr3s1PJ78Bm3ETFQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9NADB7BgrRceCMCCwwSnCAi0zwmOUKXKhVLhUpR9xZ5HmErdRvUpqDe-AfwG_kl2Mkk6h5AQkg5RBNbSjL25HPs-czYMy0RBtgk8mUspR8J0D5ECqNWosCJbQRi0DabkJNJenqafXB9TmkvTMsP0f9wI89o1mtycPoh7dgGiCQTw_bBfBqEER6X2ZUIsQb1bpiPJ30aAdGB7FLMBHVc5Tvqv9rXvvBNaqj7L-DNfdTafHZGN_77hm-y6w5x8tetidxil-zqNjvsNiRv8Nw1Qj_b3WE_Zji39tf3n8fE-t8ydnCq-TU7HGyQKc93Zg3b5ULzWXXuNHlHbsLni_qMjx0JBerzquRDemzUz6ul5aNl9e2cinD4MdTAoebAqdpkueM5DVdo0rbabvhHRMN32afR29kw913PBh9CjE18I5MkiMoYYhmkKggzKJUFpUoM5AAylUJshEqSNE0g02VWxjrSFuMoXOcATBreYweramXvM47ALTWyNBlkJpKonWaJSpQuMSIVSsQee9HNWqEdoTn11VgWTWJ9kBX7L9xjz3vpLy2Rxx_k3pAB9DJEv90MVOvPhfPmAjFRYOTAWCHLKBY61UYYIUOL8EtjnO-xo858CrcmbArKWVOWNhYee9pfRm-mFA00bxZlMAIljhzpsZeNMf31Zov5dDhFiJXIB_8m_oQd5rP3J8XJePLuIbuGQmFb_3bEDur11j5iV_XXerFZP24c6jckUyGR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BiqAX3qiGAosEJ7DqjR9rHyEhSkUVVSFVerP2SSO5cZU4oNz4B_Ab-SXM2msrPYCEkHyw1jPW2p5Zf-MZfwPwWjKEATqJfBYz5keUS59HAqNWS4ET64jTftNsgk0m6fl5dur6nNp_YRp-iO6Dm_WMer22Dq6vlHFsA5YkE8P2_nwahBFuN2Evsn1kerA3nI7OTrpEAuID1iaZLdhxte94hqNd_WtvpZq8_xri3MWt9YtndO-_p3wf7jrMSd43RvIAbujlQ7jT_pK8xn3XCv1i-wh-zPDp6l_ffw4t73_D2UFs1a_a4mCNTcl4q1Z8UywkmZWXTpO09CZkvqguyLGjoUB9UhoysJeN-uOy0GRUlN8ubRkOGfKKE14RTmy9SbElYztcolHrcrMmnxEPP4az0cfZYOy7rg0-DzE68RVLkiAyMY9ZkIogzLgRmgthMJTjPBMpjxUVSZKmCc-kyUwsI6kxksKVjnOVhk-gtyyX-gAIQrdUMaMynqmIoXaaJSIR0mBMSgWNPXjbPrVcOkpz21mjyOvUej_Ld2-4B2866auGyuMPch-sAXQyloC7HihXX3LnzzmiokCxvtKUmSimMpWKKspCjQBMYqTvwWFrPrlbFda5zVrbPG1MPXjVHUZ_tkkaXt9ZlMEY1LLkMA_e1cb018nm8-lgiiArYU__Tfwl3D4djvKT48mnZ7CPMmFTAHcIvWq10c_hlvxaLdarF86jfgMPliI6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three%E2%80%90Dimensional+Steady%E2%80%90State+Hydraulic+Tomography+Analysis+With+Integration+of+Cross%E2%80%90Hole+Flowmeter+Data+at+a+Highly+Heterogeneous+Site&rft.jtitle=Water+resources+research&rft.au=Luo%2C+Ning&rft.au=Zhao%2C+Zhanfeng&rft.au=Illman%2C+Walter+A.&rft.au=Zha%2C+Yuanyuan&rft.date=2023-06-01&rft.issn=0043-1397&rft.volume=59&rft.issue=6+p.e2022WR034034-&rft_id=info:doi/10.1029%2F2022WR034034&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |