Massively parallel 3D image reconstruction
Computed Tomographic (CT) image reconstruction is an important technique used in a wide range of applications. Among reconstruction methods, Model-Based Iterative Reconstruction (MBIR) is known to produce much higher quality CT images; however, the high computational requirements of MBIR greatly res...
Gespeichert in:
| Veröffentlicht in: | International Conference for High Performance Computing, Networking, Storage and Analysis (Online) S. 1 - 12 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY, USA
ACM
12.11.2017
|
| Schriftenreihe: | ACM Conferences |
| Schlagworte: | |
| ISBN: | 9781450351140, 145035114X |
| ISSN: | 2167-4337 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Computed Tomographic (CT) image reconstruction is an important technique used in a wide range of applications. Among reconstruction methods, Model-Based Iterative Reconstruction (MBIR) is known to produce much higher quality CT images; however, the high computational requirements of MBIR greatly restrict their application. Currently, MBIR speed is primarily limited by irregular data access patterns, the difficulty of effective parallelization, and slow algorithmic convergence.
This paper presents a new algorithm for MBIR, the Non-Uniform Parallel Super-Voxel (NU-PSV) algorithm, that regularizes the data access pattern, enables massive parallelism, and ensures fast convergence. We compare the NU-PSV algorithm with two state-of-the-art implementations on a 69632-core distributed system. Results indicate that the NU-PSV algorithm has an average speedup of 1665 compared to the fastest state-of-the-art implementations. |
|---|---|
| ISBN: | 9781450351140 145035114X |
| ISSN: | 2167-4337 |
| DOI: | 10.1145/3126908.3126911 |

