Shock waves in conservation laws with physical viscosity

We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of the solutions. In particular, we show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Liu, Tai-Ping, Zeng, Yanni
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2015
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:9781470410162, 1470410168
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of the solutions. In particular, we show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small, but independent. Our assumptions on the viscosity matrix are general so that our results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. Our analysis depends on accurate construction of an approximate Green’s function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that we can close the nonlinear term through the Duhamel’s principle.
AbstractList We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of the solutions. In particular, we show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small, but independent. Our assumptions on the viscosity matrix are general so that our results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. Our analysis depends on accurate construction of an approximate Green’s function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that we can close the nonlinear term through the Duhamel’s principle.
The authors study the perturbation of a shock wave in conservation laws with physical viscosity. They obtain the detailed pointwise estimates of the solutions. In particular, they show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small but independent. The authors' assumptions on the viscosity matrix are general so that their results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. The authors' analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that the author can close the nonlinear term through Duhamel's principle.
Author Liu, Tai-Ping
Zeng, Yanni
Author_xml – sequence: 1
  fullname: Liu, Tai-Ping
– sequence: 2
  fullname: Zeng, Yanni
BackLink https://cir.nii.ac.jp/crid/1130000797887235840$$DView record in CiNii
BookMark eNpVkU9rGzEQxdU0CbFTH_INFlIIPWwzI-3qzzExblow9NDSq5DlWax6vUqszRp_-8q1IeQyc3g_3gzvjdl5Fzti7AbhK4KB-w1t4j0i1B_YxCiNlYKKg-B4xkZoKlVKzvHjm4aAkp-zEYCsS8OlvGBjDlhlxdTmko1MFjRApa7YJKW_AFmspeIwYvrXKvp1sXMDpSJ0hY9dou3g-hC7onW7VOxCvyqeV_sUvGuLISQfU-j3n9hF49pEk9O-Zn--zX5Pv5fzn08_pg_z0olaK1162WhqGk8oqdFckCDuiVQtZE3Sa0m1UMtqsUDNOTmljRNuqZqlW3BvwItr9uVo7NKadmkV2z7ZoaVFjOtk3-WT2bsj-7yNL6-Uevsf89T1W9fa2eNUIFZc6Ux-PpJdCNaHw0QUORlQ2VIrnr-vIGO3p-ObZE8nEeyhJnuoyR5qEv8Aoad5XQ
CitedBy_id crossref_primary_10_1137_22M1473534
crossref_primary_10_1007_s00205_018_1260_2
crossref_primary_10_3934_dcdss_2025113
crossref_primary_10_1007_s00205_018_1217_5
crossref_primary_10_1007_s10255_023_1032_0
crossref_primary_10_1090_qam_1461
crossref_primary_10_1007_s00205_017_1140_1
crossref_primary_10_1090_qam_1608
crossref_primary_10_3934_cpaa_2021080
crossref_primary_10_1007_s00220_021_04203_x
crossref_primary_10_1088_1361_6544_adb23a
crossref_primary_10_1360_SSM_2025_0101
ContentType eBook
Book
Copyright Copyright 2014 American Mathematical Society
Copyright_xml – notice: Copyright 2014 American Mathematical Society
DBID RYH
DEWEY 531/.1133
DOI 10.1090/memo/1105
DatabaseName CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISBN 9781470420321
1470420325
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470420321
EBC3114278
BB18237339
10_1090_memo_1105
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
XOL
YNT
YQT
3.E
38.
AABBV
AAWPO
ABARN
ABQPQ
ACLGV
ADVEM
AEKGI
AERYV
AFOJC
AHWGJ
AJFER
AOJMM
AZZ
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a35878-c6f8effce16ef823e3e2cee75365e6c86e537d4bb1822ea789a3ad7fdab2c90c3
ISBN 9781470410162
1470410168
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000054914&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Fri Nov 08 04:32:38 EST 2024
Wed Dec 10 11:44:32 EST 2025
Thu Jun 26 21:03:56 EDT 2025
Thu Aug 14 15:25:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Conservation laws
Green’s function
nonlinear stability
wave interactions
compressible Navier-Stokes equations
magneto-hydrodynamics
physical viscosity
large time behavior
pointwise estimates
quasilinear hyperbolic-parabolic systems
shock waves
LCCN 2014041959
LCCallNum_Ident QA377 .L58 2014
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a35878-c6f8effce16ef823e3e2cee75365e6c86e537d4bb1822ea789a3ad7fdab2c90c3
Notes Includes bibliographical references (p. 167-168)
Volume 234, number 1105 (fifth of 5 numbers), March 2015
OCLC 906580047
PQID EBC3114278
PageCount 180
ParticipantIDs askewsholts_vlebooks_9781470420321
proquest_ebookcentral_EBC3114278
nii_cinii_1130000797887235840
ams_ebooks_10_1090_memo_1105
PublicationCentury 2000
PublicationDate 2015.
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015.
PublicationDecade 2010
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, R.I
– name: Providence, RI
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2015
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssj0001456720
ssj0008047
Score 2.6540585
Snippet We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of the solutions. In...
The authors study the perturbation of a shock wave in conservation laws with physical viscosity. They obtain the detailed pointwise estimates of the solutions....
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Conservation laws (Mathematics)
Green''s functions
Mathematics
Shock waves
Shock waves -- Mathematics
TableOfContents Introduction -- Preliminaries -- Green’s functions for Systems with Constant Coefficients -- Green’s Function for Systems Linearized Along Shock Profiles -- Estimates on Green’s Function -- Estimates on Crossing of Initial Layer -- Estimates on Truncation Error -- Energy Type Estimates -- Wave Interaction -- Stability Analysis -- Application to Magnetohydrodynamics
Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Preliminaries -- Chapter 3. Green's functions for Systems with Constant Coefficients -- Chapter 4. Green's Function for Systems Linearized Along Shock Profiles -- Chapter 5. Estimates on Green's Function -- Chapter 6. Estimates on Crossing of Initial Layer -- Chapter 7. Estimates on Truncation Error -- Chapter 8. Energy Type Estimates -- Chapter 9. Wave Interaction -- Chapter 10. Stability Analysis -- Chapter 11. Application to Magnetohydrodynamics -- References -- Back Cover
Title Shock waves in conservation laws with physical viscosity
URI https://www.ams.org/memo/1105/
https://cir.nii.ac.jp/crid/1130000797887235840
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3114278
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470420321
Volume 234
WOSCitedRecordID wos0000054914&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdo4UBPjA9R2FCEuE3RHDvxx7VTAWnT2GGgcYpcxxYRWzotXbc_n_fcxKkGEtphF6uJqjz190v9Pvw-CPnEraO5FDr1lQEHpQCHVbHKpIXUesE9AxUVppYcy5MTdX6uT7vhq20YJyCbRt3d6atHpRruAdlYOvsAuuND4QZ8BtJhBdphvWcRx8uuqOMX7G37t2YdcqwwnzxGXPcvzG1Xx3bVE7OuW4sZWzGmflzfBPZMnZ72Cg1Dym6zHfzE6UbbQYKsuBckGE5_Yi9Y7DWyjM1GokeZ5ZLm6NGzf-6vVGNC4qW7XKLHn9FiUCMxuW82y7ADDud6REZSgEf89Mv82_ejIfQFRptkNJTZddJU332rl943gdL0AKUdoKzQDLedkIlpf4MGAO2wgqtRU9d_KdJgHZy9IGOsGNkhT1zzkkyGH9--IiqQkgRSkrpJtklJkJQESUl6UpJIymvy4_P87PBr2g2rSA0vFLjiVnjlvLcuE84DAI47BhYIuIOicMIq4Qouq3yxAHSYM1Jpw00l4T-yYFZTy9-QcbNs3FuSKCcqL7UxqpK5ocxkknopK--FEZbLKdkFIMpwnN6WmzQCWiJOJeI0JR-3ECrXF90Xe4AZ5Sybkj0ArrQ1rhkeaoK1qDG3FIunczolSQ_pRlCXLFzOZ4ccC7ClevefR7wnz4d3cZeMV9c3bo88s-tV3V5_6N6KP7i0QoQ
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Shock+waves+in+conservation+laws+with+physical+viscosity&rft.au=Liu%2C+Tai-Ping&rft.au=Zeng%2C+Yanni&rft.date=2015-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470410162&rft_id=info:doi/10.1090%2Fmemo%2F1105&rft.externalDocID=BB18237339
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470420321.jpg