Shock waves in conservation laws with physical viscosity
We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of the solutions. In particular, we show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to...
Uloženo v:
| Hlavní autoři: | , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence, Rhode Island
American Mathematical Society
2015
|
| Vydání: | 1 |
| Edice: | Memoirs of the American Mathematical Society |
| Témata: | |
| ISBN: | 9781470410162, 1470410168 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of
the solutions. In particular, we show that the solution converges to a translated shock profile. The strength of the perturbation and
that of the shock are assumed to be small, but independent. Our assumptions on the viscosity matrix are general so that our results
apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of
multiple eigenvalues in the transversal fields, as long as the shock is classical. Our analysis depends on accurate construction of an
approximate Green’s function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that we
can close the nonlinear term through the Duhamel’s principle. |
|---|---|
| AbstractList | We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of
the solutions. In particular, we show that the solution converges to a translated shock profile. The strength of the perturbation and
that of the shock are assumed to be small, but independent. Our assumptions on the viscosity matrix are general so that our results
apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of
multiple eigenvalues in the transversal fields, as long as the shock is classical. Our analysis depends on accurate construction of an
approximate Green’s function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that we
can close the nonlinear term through the Duhamel’s principle. The authors study the perturbation of a shock wave in conservation laws with physical viscosity. They obtain the detailed pointwise estimates of the solutions. In particular, they show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small but independent. The authors' assumptions on the viscosity matrix are general so that their results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. The authors' analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that the author can close the nonlinear term through Duhamel's principle. |
| Author | Liu, Tai-Ping Zeng, Yanni |
| Author_xml | – sequence: 1 fullname: Liu, Tai-Ping – sequence: 2 fullname: Zeng, Yanni |
| BackLink | https://cir.nii.ac.jp/crid/1130000797887235840$$DView record in CiNii |
| BookMark | eNpVkU9rGzEQxdU0CbFTH_INFlIIPWwzI-3qzzExblow9NDSq5DlWax6vUqszRp_-8q1IeQyc3g_3gzvjdl5Fzti7AbhK4KB-w1t4j0i1B_YxCiNlYKKg-B4xkZoKlVKzvHjm4aAkp-zEYCsS8OlvGBjDlhlxdTmko1MFjRApa7YJKW_AFmspeIwYvrXKvp1sXMDpSJ0hY9dou3g-hC7onW7VOxCvyqeV_sUvGuLISQfU-j3n9hF49pEk9O-Zn--zX5Pv5fzn08_pg_z0olaK1162WhqGk8oqdFckCDuiVQtZE3Sa0m1UMtqsUDNOTmljRNuqZqlW3BvwItr9uVo7NKadmkV2z7ZoaVFjOtk3-WT2bsj-7yNL6-Uevsf89T1W9fa2eNUIFZc6Ux-PpJdCNaHw0QUORlQ2VIrnr-vIGO3p-ObZE8nEeyhJnuoyR5qEv8Aoad5XQ |
| CitedBy_id | crossref_primary_10_1137_22M1473534 crossref_primary_10_1007_s00205_018_1260_2 crossref_primary_10_3934_dcdss_2025113 crossref_primary_10_1007_s00205_018_1217_5 crossref_primary_10_1007_s10255_023_1032_0 crossref_primary_10_1090_qam_1461 crossref_primary_10_1007_s00205_017_1140_1 crossref_primary_10_1090_qam_1608 crossref_primary_10_3934_cpaa_2021080 crossref_primary_10_1007_s00220_021_04203_x crossref_primary_10_1088_1361_6544_adb23a crossref_primary_10_1360_SSM_2025_0101 |
| ContentType | eBook Book |
| Copyright | Copyright 2014 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2014 American Mathematical Society |
| DBID | RYH |
| DEWEY | 531/.1133 |
| DOI | 10.1090/memo/1105 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Physics |
| EISBN | 9781470420321 1470420325 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470420321 EBC3114278 BB18237339 10_1090_memo_1105 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 XOL YNT YQT 3.E 38. AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AEKGI AERYV AFOJC AHWGJ AJFER AOJMM AZZ BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a35878-c6f8effce16ef823e3e2cee75365e6c86e537d4bb1822ea789a3ad7fdab2c90c3 |
| ISBN | 9781470410162 1470410168 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000054914&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 04:32:38 EST 2024 Wed Dec 10 11:44:32 EST 2025 Thu Jun 26 21:03:56 EDT 2025 Thu Aug 14 15:25:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Conservation laws Green’s function nonlinear stability wave interactions compressible Navier-Stokes equations magneto-hydrodynamics physical viscosity large time behavior pointwise estimates quasilinear hyperbolic-parabolic systems shock waves |
| LCCN | 2014041959 |
| LCCallNum_Ident | QA377 .L58 2014 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a35878-c6f8effce16ef823e3e2cee75365e6c86e537d4bb1822ea789a3ad7fdab2c90c3 |
| Notes | Includes bibliographical references (p. 167-168) Volume 234, number 1105 (fifth of 5 numbers), March 2015 |
| OCLC | 906580047 |
| PQID | EBC3114278 |
| PageCount | 180 |
| ParticipantIDs | askewsholts_vlebooks_9781470420321 proquest_ebookcentral_EBC3114278 nii_cinii_1130000797887235840 ams_ebooks_10_1090_memo_1105 |
| PublicationCentury | 2000 |
| PublicationDate | 2015. |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – year: 2015 text: 2015. |
| PublicationDecade | 2010 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, R.I – name: Providence, RI |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2015 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0001456720 ssj0008047 |
| Score | 2.6540585 |
| Snippet | We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of
the solutions. In... The authors study the perturbation of a shock wave in conservation laws with physical viscosity. They obtain the detailed pointwise estimates of the solutions.... |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Conservation laws (Mathematics) Green''s functions Mathematics Shock waves Shock waves -- Mathematics |
| TableOfContents | Introduction
--
Preliminaries
--
Green’s functions for Systems with Constant Coefficients
--
Green’s Function for Systems Linearized Along Shock Profiles
--
Estimates on Green’s Function
--
Estimates on Crossing of Initial Layer
--
Estimates on Truncation Error
--
Energy Type Estimates
--
Wave Interaction
--
Stability Analysis
--
Application to Magnetohydrodynamics Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Preliminaries -- Chapter 3. Green's functions for Systems with Constant Coefficients -- Chapter 4. Green's Function for Systems Linearized Along Shock Profiles -- Chapter 5. Estimates on Green's Function -- Chapter 6. Estimates on Crossing of Initial Layer -- Chapter 7. Estimates on Truncation Error -- Chapter 8. Energy Type Estimates -- Chapter 9. Wave Interaction -- Chapter 10. Stability Analysis -- Chapter 11. Application to Magnetohydrodynamics -- References -- Back Cover |
| Title | Shock waves in conservation laws with physical viscosity |
| URI | https://www.ams.org/memo/1105/ https://cir.nii.ac.jp/crid/1130000797887235840 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3114278 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470420321 |
| Volume | 234 |
| WOSCitedRecordID | wos0000054914&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdo4UBPjA9R2FCEuE3RHDvxx7VTAWnT2GGgcYpcxxYRWzotXbc_n_fcxKkGEtphF6uJqjz190v9Pvw-CPnEraO5FDr1lQEHpQCHVbHKpIXUesE9AxUVppYcy5MTdX6uT7vhq20YJyCbRt3d6atHpRruAdlYOvsAuuND4QZ8BtJhBdphvWcRx8uuqOMX7G37t2YdcqwwnzxGXPcvzG1Xx3bVE7OuW4sZWzGmflzfBPZMnZ72Cg1Dym6zHfzE6UbbQYKsuBckGE5_Yi9Y7DWyjM1GokeZ5ZLm6NGzf-6vVGNC4qW7XKLHn9FiUCMxuW82y7ADDud6REZSgEf89Mv82_ejIfQFRptkNJTZddJU332rl943gdL0AKUdoKzQDLedkIlpf4MGAO2wgqtRU9d_KdJgHZy9IGOsGNkhT1zzkkyGH9--IiqQkgRSkrpJtklJkJQESUl6UpJIymvy4_P87PBr2g2rSA0vFLjiVnjlvLcuE84DAI47BhYIuIOicMIq4Qouq3yxAHSYM1Jpw00l4T-yYFZTy9-QcbNs3FuSKCcqL7UxqpK5ocxkknopK--FEZbLKdkFIMpwnN6WmzQCWiJOJeI0JR-3ECrXF90Xe4AZ5Sybkj0ArrQ1rhkeaoK1qDG3FIunczolSQ_pRlCXLFzOZ4ccC7ClevefR7wnz4d3cZeMV9c3bo88s-tV3V5_6N6KP7i0QoQ |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Shock+waves+in+conservation+laws+with+physical+viscosity&rft.au=Liu%2C+Tai-Ping&rft.au=Zeng%2C+Yanni&rft.date=2015-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470410162&rft_id=info:doi/10.1090%2Fmemo%2F1105&rft.externalDocID=BB18237339 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470420321.jpg |

