Practical Data Science for Information Professionals

Practical Data Science for Information Professionals provides an accessible introduction to a potentially complex field, providing readers with an overview of data science and a framework for its application. It provides detailed examples and analysis on real data sets to explore the basics of the s...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Stuart, David
Médium: E-kniha
Jazyk:angličtina
Vydáno: London Facet Publishing 2020
Facet
Vydání:1
Témata:
ISBN:1783303468, 9781783303465, 178330345X, 9781783303458
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • Intro -- Title page -- Contents -- Preface -- 1 What is data science? -- Data, information, knowledge, wisdom -- Data everywhere -- The data deserts -- Data science -- The potential of data science -- From research data services to data science in libraries -- Programming in libraries -- Programming in this book -- The structure of this book -- 2 Little data, big data -- Big data -- Data formats -- Standalone files -- Application programming interfaces -- Unstructured data -- Data sources -- Data licences -- 3 The process of data science -- Modelling the data science process -- Frame the problem -- Collect data -- Transform and clean data -- Analyse data -- Visualise and communicate data -- Frame a new problem -- 4 Tools for data analysis -- Finding tools -- Software for data science -- Programming for data science -- 5 Clustering and social network analysis -- Network graphs -- Graph terminology -- Network matrix -- Visualisation -- Network analysis -- 6 Predictions and forecasts -- Predictions and forecasts beyond data science -- Predictions in a world of (limited) data -- Predicting and forecasting for information professionals -- Statistical methodologies -- 7 Text analysis and mining -- Text analysis and mining, and information professionals -- Natural language processing -- Keywords and n-grams -- 8 The future of data science and information professionals -- Eight challenges to data science -- Ten steps to data science librarianship -- The final word: play -- References -- Appendix - Programming concepts for data science -- Variables, data types and other classes -- Import libraries -- Functions and methods -- Loops and conditionals -- Final words of advice -- Further reading -- Index