Twisted Nonlinear Optics in Monolayer van der Waals Crystals
In addition to a plethora of emergent phenomena, the spatial topology of optical vortices enables an array of applications in optical communications and quantum information science. Multibeam nonlinear optical processes, augmented by optical vortices, are essential in this context, providing robust...
Uložené v:
| Vydané v: | ACS nano Ročník 19; číslo 34; s. 30919 - 30929 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
American Chemical Society
02.09.2025
American Chemical Society (ACS) |
| Predmet: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In addition to a plethora of emergent phenomena, the spatial topology of optical vortices enables an array of applications in optical communications and quantum information science. Multibeam nonlinear optical processes, augmented by optical vortices, are essential in this context, providing robust access to an infinitely large set of quantum states associated with the orbital angular momentum of light. Here, we push the boundaries of vortex nonlinear optics to the ultimate limits of material dimensionality. By exploiting multipulse difference frequency, sum frequency, and four-wave mixing in monolayer quantum materials, we demonstrate their ability to independently control the orbital angular momentum and radial distribution of vortex light-fields in addition to their wavelength. Due to the atomically thin nature of the host crystal, this control spans a broad spectral bandwidth in a highly integrable platform that is unconstrained by the traditional limits of bulk nonlinear optical materials. Our work heralds an innovative path for ultracompact and scalable hybrid nanophotonic technologies empowered by twisted nonlinear light–matter interactions in van der Waals nanomaterials. |
|---|---|
| AbstractList | In addition to a plethora of emergent phenomena, the spatial topology of optical vortices enables an array of applications in optical communications and quantum information science. Multibeam nonlinear optical processes, augmented by optical vortices, are essential in this context, providing robust access to an infinitely large set of quantum states associated with the orbital angular momentum of light. Here, we push the boundaries of vortex nonlinear optics to the ultimate limits of material dimensionality. By exploiting multipulse difference frequency, sum frequency, and four-wave mixing in monolayer quantum materials, we demonstrate their ability to independently control the orbital angular momentum and radial distribution of vortex light-fields in addition to their wavelength. Due to the atomically thin nature of the host crystal, this control spans a broad spectral bandwidth in a highly integrable platform that is unconstrained by the traditional limits of bulk nonlinear optical materials. Our work heralds an innovative path for ultracompact and scalable hybrid nanophotonic technologies empowered by twisted nonlinear light-matter interactions in van der Waals nanomaterials. In addition to a plethora of emergent phenomena, the spatial topology of optical vortices enables an array of applications in optical communications and quantum information science. Multibeam nonlinear optical processes, augmented by optical vortices, are essential in this context, providing robust access to an infinitely large set of quantum states associated with the orbital angular momentum of light. Here, we push the boundaries of vortex nonlinear optics to the ultimate limits of material dimensionality. By exploiting multipulse difference frequency, sum frequency, and four-wave mixing in monolayer quantum materials, we demonstrate their ability to independently control the orbital angular momentum and radial distribution of vortex light-fields in addition to their wavelength. Due to the atomically thin nature of the host crystal, this control spans a broad spectral bandwidth in a highly integrable platform that is unconstrained by the traditional limits of bulk nonlinear optical materials. Our work heralds an innovative path for ultracompact and scalable hybrid nanophotonic technologies empowered by twisted nonlinear light-matter interactions in van der Waals nanomaterials.In addition to a plethora of emergent phenomena, the spatial topology of optical vortices enables an array of applications in optical communications and quantum information science. Multibeam nonlinear optical processes, augmented by optical vortices, are essential in this context, providing robust access to an infinitely large set of quantum states associated with the orbital angular momentum of light. Here, we push the boundaries of vortex nonlinear optics to the ultimate limits of material dimensionality. By exploiting multipulse difference frequency, sum frequency, and four-wave mixing in monolayer quantum materials, we demonstrate their ability to independently control the orbital angular momentum and radial distribution of vortex light-fields in addition to their wavelength. Due to the atomically thin nature of the host crystal, this control spans a broad spectral bandwidth in a highly integrable platform that is unconstrained by the traditional limits of bulk nonlinear optical materials. Our work heralds an innovative path for ultracompact and scalable hybrid nanophotonic technologies empowered by twisted nonlinear light-matter interactions in van der Waals nanomaterials. |
| Author | Yeo, June Ho Taylor, Antoinette J. Zhu, Xiaoyang Holtzman, Luke N. Zhu, Jian-Xin Tarefder, Nehan Schuck, P. James Martinez, Luis M. Olsen, Nicholas Kort-Kamp, Wilton J. M. Kwock, Kevin W. C. Prasankumar, Rohit P. Zhao, Liuyan Norden, Tenzin McClintock, Luke M. Hone, James C. Yoo, Jinkyoung Padmanabhan, Prashant |
| AuthorAffiliation | Department of Chemistry Theoretical Division Deep Science Fund Department of Electrical Engineering Center for Integrated Nanotechnologies Department of Applied Physics and Applied Mathematics Department of Mechanical Engineering Department of Physics |
| AuthorAffiliation_xml | – name: Theoretical Division – name: Department of Chemistry – name: Department of Mechanical Engineering – name: Department of Physics – name: Deep Science Fund – name: Department of Electrical Engineering – name: Department of Applied Physics and Applied Mathematics – name: Center for Integrated Nanotechnologies |
| Author_xml | – sequence: 1 givenname: Tenzin orcidid: 0000-0002-7114-3768 surname: Norden fullname: Norden, Tenzin email: tnorden@lanl.gov organization: Center for Integrated Nanotechnologies – sequence: 2 givenname: Luis M. surname: Martinez fullname: Martinez, Luis M. organization: Center for Integrated Nanotechnologies – sequence: 3 givenname: Nehan surname: Tarefder fullname: Tarefder, Nehan organization: Center for Integrated Nanotechnologies – sequence: 4 givenname: Kevin W. C. surname: Kwock fullname: Kwock, Kevin W. C. organization: Department of Electrical Engineering – sequence: 5 givenname: Luke M. surname: McClintock fullname: McClintock, Luke M. organization: Center for Integrated Nanotechnologies – sequence: 6 givenname: Nicholas orcidid: 0000-0003-1606-8707 surname: Olsen fullname: Olsen, Nicholas organization: Department of Chemistry – sequence: 7 givenname: Luke N. surname: Holtzman fullname: Holtzman, Luke N. organization: Department of Applied Physics and Applied Mathematics – sequence: 8 givenname: June Ho surname: Yeo fullname: Yeo, June Ho organization: Department of Physics – sequence: 9 givenname: Liuyan orcidid: 0000-0001-9512-3537 surname: Zhao fullname: Zhao, Liuyan organization: Department of Physics – sequence: 10 givenname: Xiaoyang orcidid: 0000-0002-2090-8484 surname: Zhu fullname: Zhu, Xiaoyang organization: Department of Chemistry – sequence: 11 givenname: James C. orcidid: 0000-0002-8084-3301 surname: Hone fullname: Hone, James C. organization: Department of Mechanical Engineering – sequence: 12 givenname: Jinkyoung orcidid: 0000-0002-9578-6979 surname: Yoo fullname: Yoo, Jinkyoung organization: Center for Integrated Nanotechnologies – sequence: 13 givenname: Jian-Xin orcidid: 0000-0001-7991-3918 surname: Zhu fullname: Zhu, Jian-Xin organization: Theoretical Division – sequence: 14 givenname: P. James orcidid: 0000-0001-9244-2671 surname: Schuck fullname: Schuck, P. James organization: Department of Mechanical Engineering – sequence: 15 givenname: Antoinette J. surname: Taylor fullname: Taylor, Antoinette J. organization: Center for Integrated Nanotechnologies – sequence: 16 givenname: Rohit P. orcidid: 0000-0003-0902-2831 surname: Prasankumar fullname: Prasankumar, Rohit P. organization: Deep Science Fund – sequence: 17 givenname: Wilton J. M. orcidid: 0000-0002-0679-6690 surname: Kort-Kamp fullname: Kort-Kamp, Wilton J. M. email: kortkamp@lanl.gov organization: Theoretical Division – sequence: 18 givenname: Prashant orcidid: 0000-0002-1881-5262 surname: Padmanabhan fullname: Padmanabhan, Prashant email: prashpad@lanl.gov organization: Center for Integrated Nanotechnologies |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40767575$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2587587$$D View this record in Osti.gov |
| BookMark | eNp1kEtLAzEUhYNU7EPX7mRwJUjbPJrHgBspvqDaTUV3Ic1kcMo0qUlG6b83MmN3rs6B-527-IagZ501AJwjOEEQo6nSwSrrJlRDlkNxBAYoJ2wMBXvvHTpFfTAMYQMh5YKzE9CfQc445XQAblbfVYimyF6crStrlM-Wu1jpkFU2e3bW1WpvfPalbFakfFOqDtnc70NM5RQclynMWZcj8Hp_t5o_jhfLh6f57WKsCOVxXGJqCMeKlSWnYiYoJjnJOTEUMrQu-EwQzUhZ5AIpUvAScaZJiQWF1GClFRmBy_avC7GSQVfR6A_trDU6SkxF-soTdNVCO-8-GxOi3FZBm7pW1rgmSIIJTwYwzhN60aHNemsKufPVVvm9_NOSgGkLaO9C8KY8IAjKX_GyEy878Wlx3S7SQW5c420S8i_9A7LQg3U |
| Cites_doi | 10.1039/D3NH00246B 10.1038/s41566-020-00758-8 10.1126/science.aao5392 10.1038/nature14246 10.1038/nature14341 10.1126/science.1158275 10.1126/sciadv.abm0100 10.1364/OL.41.005019 10.1038/s41377-019-0194-2 10.1103/PhysRevA.54.R3742 10.1103/PhysRevA.56.4193 10.1103/PhysRevA.84.061801 10.1038/s41566-019-0560-x 10.1126/science.aba9192 10.1103/RevModPhys.94.035003 10.1038/s41565-024-01636-y 10.1038/nphoton.2012.138 10.29026/oea.2022.210174 10.1515/nanoph-2021-0527 10.1088/2040-8978/18/10/103501 10.1038/lsa.2016.253 10.1038/natrevmats.2016.55 10.1126/sciadv.aba0509 10.1038/nnano.2012.96 10.1038/s41563-019-0421-5 10.1126/sciadv.adh0725 10.1002/adma.201705963 10.1364/OL.19.000780 10.1038/s42254-020-0193-5 10.1201/9781482269017 10.1038/s41586-019-1013-x 10.1021/acsnano.9b07555 10.1038/s41566-020-0623-z 10.1515/nanoph-2019-0565 10.1103/PhysRevLett.99.047601 10.1021/nl401561r 10.1021/acs.chemmater.7b00243 10.1103/PhysRevLett.114.097403 10.1038/s41467-023-37594-7 10.1038/nphoton.2012.154 10.1364/AOP.3.000161 10.1021/acsnano.3c02511 10.1103/PhysRevB.107.214429 10.1063/5.0054885 10.1016/S0079-6638(08)70391-3 10.1038/lsa.2017.146 10.1103/PhysRevB.96.060407 10.1038/nphys1092 10.1038/s41586-022-05393-7 10.1021/acsnano.6b00371 10.1038/s41377-019-0140-3 10.1038/nphys3946 10.1126/science.aba1416 10.1038/s41467-022-31786-3 10.1038/nnano.2015.336 10.1103/PhysRevB.108.125435 10.1038/s41566-020-00728-0 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors. Published by American Chemical Society |
| Copyright_xml | – notice: 2025 The Authors. Published by American Chemical Society |
| CorporateAuthor | American Chemical Society (ACS-C) |
| CorporateAuthor_xml | – name: American Chemical Society (ACS-C) |
| DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI |
| DOI | 10.1021/acsnano.5c06908 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 30929 |
| ExternalDocumentID | 2587587 40767575 10_1021_acsnano_5c06908 a177271913 |
| Genre | Journal Article |
| GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI AAHBH ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACBEA ACGFO ACGFS ACS ADHGD ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAYXX CITATION NPM 7X8 OIOZB OTOTI |
| ID | FETCH-LOGICAL-a357t-f25e372a6ff7584852393973e5061bd7483c63fd981a3d7f176c3f28505e2aca3 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001545207200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Mon Sep 15 02:20:25 EDT 2025 Sat Nov 01 15:04:08 EDT 2025 Tue Sep 09 02:30:42 EDT 2025 Sat Nov 29 07:35:30 EST 2025 Wed Sep 03 03:27:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 34 |
| Keywords | nonlinear optics two-dimensional semiconductors vortex beams difference frequency generation sum frequency generation orbital angular momentum four-wave mixing |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a357t-f25e372a6ff7584852393973e5061bd7483c63fd981a3d7f176c3f28505e2aca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 National Nuclear Security Administration Gordon and Betty Moore Foundation Department of Energy National Nuclear Security Administration Laboratory Residency Graduate Fellowship Center for Integrated Nanotechnologies Alfred P. Sloan Foundation NA0003960 Division of Materials Research Los Alamos National Laboratory |
| ORCID | 0000-0003-1606-8707 0000-0002-2090-8484 0000-0001-9244-2671 0000-0002-7114-3768 0000-0003-0902-2831 0000-0002-9578-6979 0000-0001-7991-3918 0000-0002-0679-6690 0000-0002-1881-5262 0000-0001-9512-3537 0000-0002-8084-3301 0000000295786979 0000000179913918 0000000271143768 0000000309022831 0000000220908484 0000000316068707 0000000218815262 0000000206796690 0000000195123537 0000000192442671 0000000280843301 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/2587587 |
| PMID | 40767575 |
| PQID | 3237005229 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | osti_scitechconnect_2587587 proquest_miscellaneous_3237005229 pubmed_primary_40767575 crossref_primary_10_1021_acsnano_5c06908 acs_journals_10_1021_acsnano_5c06908 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-02 |
| PublicationDateYYYYMMDD | 2025-09-02 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2025 |
| Publisher | American Chemical Society American Chemical Society (ACS) |
| Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref31/cit31 ref2/cit2 Allen L. (ref8/cit8) 2016; 45 ref34/cit34 Jackson J. D. (ref59/cit59) 1999 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Boyd R. W. (ref44/cit44) 2008 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 Shen Y. R. (ref60/cit60) 2002 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref7/cit7 |
| References_xml | – volume-title: The Principles of Nonlinear Optics year: 2002 ident: ref60/cit60 – ident: ref42/cit42 doi: 10.1039/D3NH00246B – ident: ref49/cit49 doi: 10.1038/s41566-020-00758-8 – ident: ref34/cit34 doi: 10.1126/science.aao5392 – ident: ref21/cit21 doi: 10.1038/nature14246 – ident: ref48/cit48 doi: 10.1038/nature14341 – ident: ref52/cit52 doi: 10.1126/science.1158275 – ident: ref12/cit12 doi: 10.1126/sciadv.abm0100 – ident: ref47/cit47 doi: 10.1364/OL.41.005019 – ident: ref25/cit25 doi: 10.1038/s41377-019-0194-2 – ident: ref26/cit26 doi: 10.1103/PhysRevA.54.R3742 – ident: ref27/cit27 doi: 10.1103/PhysRevA.56.4193 – ident: ref28/cit28 doi: 10.1103/PhysRevA.84.061801 – ident: ref22/cit22 doi: 10.1038/s41566-019-0560-x – ident: ref11/cit11 doi: 10.1126/science.aba9192 – ident: ref13/cit13 doi: 10.1103/RevModPhys.94.035003 – ident: ref31/cit31 doi: 10.1038/s41565-024-01636-y – ident: ref53/cit53 doi: 10.1038/nphoton.2012.138 – ident: ref29/cit29 doi: 10.29026/oea.2022.210174 – ident: ref20/cit20 doi: 10.1515/nanoph-2021-0527 – ident: ref45/cit45 doi: 10.1088/2040-8978/18/10/103501 – ident: ref51/cit51 doi: 10.1038/lsa.2016.253 – ident: ref2/cit2 doi: 10.1038/natrevmats.2016.55 – ident: ref7/cit7 doi: 10.1126/sciadv.aba0509 – ident: ref1/cit1 doi: 10.1038/nnano.2012.96 – ident: ref6/cit6 doi: 10.1038/s41563-019-0421-5 – ident: ref32/cit32 doi: 10.1126/sciadv.adh0725 – ident: ref40/cit40 doi: 10.1002/adma.201705963 – ident: ref54/cit54 doi: 10.1364/OL.19.000780 – ident: ref24/cit24 doi: 10.1038/s42254-020-0193-5 – volume: 45 start-page: 31 volume-title: Optical Angular Momentum year: 2016 ident: ref8/cit8 doi: 10.1201/9781482269017 – volume-title: Classcial Electrodynamics year: 1999 ident: ref59/cit59 – ident: ref41/cit41 doi: 10.1038/s41586-019-1013-x – ident: ref37/cit37 doi: 10.1021/acsnano.9b07555 – ident: ref33/cit33 doi: 10.1038/s41566-020-0623-z – ident: ref43/cit43 doi: 10.1515/nanoph-2019-0565 – ident: ref3/cit3 doi: 10.1103/PhysRevLett.99.047601 – ident: ref46/cit46 doi: 10.1021/nl401561r – ident: ref30/cit30 doi: 10.1021/acs.chemmater.7b00243 – ident: ref38/cit38 doi: 10.1103/PhysRevLett.114.097403 – ident: ref55/cit55 doi: 10.1038/s41467-023-37594-7 – ident: ref17/cit17 doi: 10.1038/nphoton.2012.154 – ident: ref10/cit10 doi: 10.1364/AOP.3.000161 – ident: ref58/cit58 doi: 10.1021/acsnano.3c02511 – volume-title: Nonlinear Optics year: 2008 ident: ref44/cit44 – ident: ref16/cit16 doi: 10.1103/PhysRevB.107.214429 – ident: ref19/cit19 doi: 10.1063/5.0054885 – ident: ref9/cit9 doi: 10.1016/S0079-6638(08)70391-3 – ident: ref23/cit23 doi: 10.1038/lsa.2017.146 – ident: ref14/cit14 doi: 10.1103/PhysRevB.96.060407 – ident: ref4/cit4 doi: 10.1038/nphys1092 – ident: ref36/cit36 doi: 10.1038/s41586-022-05393-7 – ident: ref39/cit39 doi: 10.1021/acsnano.6b00371 – ident: ref18/cit18 doi: 10.1038/s41377-019-0140-3 – ident: ref56/cit56 doi: 10.1038/nphys3946 – ident: ref57/cit57 doi: 10.1126/science.aba1416 – ident: ref5/cit5 doi: 10.1038/s41467-022-31786-3 – ident: ref50/cit50 doi: 10.1038/nnano.2015.336 – ident: ref15/cit15 doi: 10.1103/PhysRevB.108.125435 – ident: ref35/cit35 doi: 10.1038/s41566-020-00728-0 |
| SSID | ssj0057876 |
| Score | 2.4877098 |
| Snippet | In addition to a plethora of emergent phenomena, the spatial topology of optical vortices enables an array of applications in optical communications and... |
| SourceID | osti proquest pubmed crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 30919 |
| Title | Twisted Nonlinear Optics in Monolayer van der Waals Crystals |
| URI | http://dx.doi.org/10.1021/acsnano.5c06908 https://www.ncbi.nlm.nih.gov/pubmed/40767575 https://www.proquest.com/docview/3237005229 https://www.osti.gov/servlets/purl/2587587 |
| Volume | 19 |
| WOSCitedRecordID | wos001545207200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB509aAH34-6KhE8eKluk7ZJwIssigdZBRX3FtI0gQXpyrYq_nsn265PFpQeeiltOo9-33TCNwCHyAAsHlEoEf3CWGgWZpxmYSwp15HWHZmPPX3Fez3R78ubT7Honx18Gp1oUxa6GB4nxovqilmYo0hy_e69s-7t5KPr4y6tG8hYICOL-FDx-XUDD0Om_AZDrSGm03SKOYaai-V_LHIFlho-Sc7qAFiFGVusweIXlcF1OL179b7MSa-WxdAjcv3k1ZnJoCCY01jcIu8mSKlJjucHjRFJuqM35I2P5QbcX5zfdS_DZmhCqFnCq9DRxDJOdeoclgKxSLzGmeTMJojcWc5jwUzKXC5FpFnOXcRTwxwVyIQs1UazTWgVw8JuA0lNmiZUO-OHpMe8k7nMCicdi7I0k1YEcIjvrZqgL9W4n00j1RhDNcYI4GhiavVUS2hMv7TtXaEQ_b2ErfF7fUylaIJVleABHEw8pDAJfGdDF3b4XCpGGfc_uKkMYKt23cejsGLFeOHJzt9W24YF6kf8-p4R3YVWNXq2ezBvXqpBOdqHWd4X--PQeweISNEf |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_SbNDtoWv30aXtNhX6sBe3sWRZEvQlhIaMpdmgGeubkGUJAsMJcdKx_74n20lbSmHFDwZj5PN9-H7ns38HcIIIwOEWRwqzX5RIw6JM0CxKFBUmNqar8srSIzEey-tr9bMF3fW_MChEiSuVVRP_jl0gPsNjhSlmp9wGbl25BS84Jtcws6DXv1o_e4P7pXUfGetkBBMbMp9HC4RsZMsH2ag9w6h6GmlWGWfw5vmy7sJOgy5Jr3aHPWi54i28vsc5-A7OJ3-DZXMyrkkyzIL8mAeuZjItCEY4lrqIwgkCbJLj_rdB_yT9xT9EkX_K9_BrcDHpD6NmhEJkGBfLyFPumKAm9R4Lg0TywHimBHMc83iWi0QymzKfKxkblgsfi9QyTyXiIkeNNewDtItZ4T4CSW2acmq8DSPTE9HNfOakV57FWZopJztwgvetmxAoddXdprFulKEbZXTg61rjel4Tajx96mGwiEYsEAhtbfjyxy415VhjSdGB47WhNIZE6HOYws1WpWaUifC6m6oO7NcW3FwK61cskQQ_-D9pv8D2cHI50qNv4--H8IqG4b-hm0SPoL1crNwneGlvltNy8bnyw1uLhtid |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_aayn60Grrx2mrW_ChL2nNbja7C32Rs0eLxynUUt-WzWYXBMkdlzvF_96ZJCcVEaTkIRDCZjMfmd_sZH8DcIAIIOCRJgajX5JpJ5JC8SLJDFcude7QlI2mR2o81hcX5qzbFEZ7YXASNY5UN0V88uppGTuGgfQbXq9cNfkqPfHr6pfwSmI4p74FR4Pfy-8vmWDe1pIxV0ZAcU_o82gAiki-fhCRehP0rKfRZhN1hu_-b75r8LZDmeyoNYt1eBGq97D6D_fgB_h-fkMaLtm4JctwM3Y6Jc5mdlkx9HRMeRGNMwTarMTzX4d2ygazW0STV_UG_Bn-OB_8TLpWCokTUs2TyGUQirs8RkwQMi2J-cwoESTG86JUmRY-F7E0OnWiVDFVuReRa8RHgTvvxCb0qkkVtoHlPs8ld9FT6_RMHRaxCDqaKNIiL0zQfTjA97adK9S2qXLz1HbCsJ0w-vBlKXU7bYk1nr51l7RiERMQsa2nP4D83HKJuZZWffi8VJZF16B6h6vCZFFbwYWiZW9u-rDVavH-UZjHYqqk5M7zZrsPb86Oh3b0a3yyCyucegBTUYl_hN58tgif4LW_nl_Ws73GFO8ArIzbFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twisted+Nonlinear+Optics+in+Monolayer+van+der+Waals+Crystals&rft.jtitle=ACS+nano&rft.au=Norden%2C+Tenzin&rft.au=Martinez%2C+Luis+M.&rft.au=Tarefder%2C+Nehan&rft.au=Kwock%2C+Kevin+W.+C.&rft.date=2025-09-02&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=19&rft.issue=34&rft.spage=30919&rft.epage=30929&rft_id=info:doi/10.1021%2Facsnano.5c06908&rft.externalDocID=a177271913 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |